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Abstract

We introduce a convex relaxation approach for the quadratic assignment problem to the field of computer vision. Due to convexity, a
favourable property of this approach is the absence of any tuning parameters and the computation of high-quality combinatorial solu-
tions by solving a mathematically simple optimization problem. Furthermore, the relaxation step always computes a tight lower bound
of the objective function and thus can additionally be used as an efficient subroutine of an exact search algorithm. We report the results
of both established benchmark experiments from combinatorial mathematics and random ground-truth experiments using computer-
generated graphs. For comparison, a deterministic annealing approach is investigated as well. Both approaches show similarly good per-
formance. In contrast to the convex approach, however, the annealing approach yields no problem relaxation, and four parameters have
to be tuned by hand for the annealing algorithm to become competitive.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Quadratic assignment; Weighted graph matching; Combinatorial optimization; Convex programming; Object recognition
1. Introduction

1.1. Motivation

Visual object recognition is a central problem of computer
vision research. A key question in this context is how to rep-
resent objects for the purpose of recognition by a computer
vision system. Approaches range from view-based to 3D
model-based, from object-centered to viewer-centered repre-
sentations [1], each of which may have advantages under
constraints related to specific applications. Psychophysical
findings however provide evidence for view-based object rep-
resentations [2] in human vision, and so we will focus on this
representation in this paper. A common and powerful struc-
ture for representing object views is to define a set of local
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image features V along with pairwise relations E � V · V

(spatial proximity and (dis)similarity measure) in terms of
a weight function w : E! Rþ, that is an undirected weighted
graph G = (V,E) (see Fig. 1). Accordingly, a core routine of
any recognition system is to compare graphs in different
images, or to match graphs against prototypical graphs in
some object database.

Finding a good match between two graphs G, G0 amounts
to compute a permutation of the vertices of one graph so as
to become similar to the other one (cf. Section 2). The
relaxation approach we are concerned with to tackle this
problem was developed by Anstreicher and Brixius [3,4] for
the quadratic assignment problem (QAP). It is well-known
that the quadratic assignment problem and general graph
matching problems are NP-hard [5,6] and cannot be solved
to optimality even for moderately sized problem instances.
For the graph matching problem shown in Fig. 1, an exhaus-
tive search has to check the impractical number of about
38!� 5 Æ 1044 possible permutations of vertices.
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Fig. 1. Two graphs representing the same object. The graphs are created based on features obtained with the FEX-system (cf. [7,8]).

1302 C. Schellewald et al. / Image and Vision Computing 25 (2007) 1301–1314
The task of developing good matching algorithms
amounts to make a compromise between two contradictory
requirements: first, a high-quality solution close to the
(unknown) global optimum should be efficiently comput-
able in polynomial time. Second, since the matching algo-
rithm is only a particular module of a computer vision
system, there should be no need for manual interaction
(selection of a starting point or tuning parameters) in order
to obtain good performance. It seems to us that this latter
algorithmic aspect has received less attention in the comput-
er vision literature than the former one. This motivated us to
look for an approach satisfying both requirements.

1.2. Related work

Our aim is to find desired matchings between relational
structures that occur in computer vision applications. In
order to do this we utilize a reformulation of a weighted
graph matching problem into the quadratic assignment
problem. The quadratic assignment problem is a classical
problem in the field of combinatorial optimization which
is very general in the sense that several well-known prob-
lems, for example the traveling salesman problem, are spe-
cial cases of it. For a comprehensive review of the
quadratic assignment problem we refer to [9].

Classical approaches to the quadratic assignment prob-
lem include

• linearizations [10,11] which can be efficiently solved in
polynomial time at the cost of a considerably larger
number of variables,

• the use of exact search algorithms, like the cutting plane
method [12] or branch-and-bound [13], which are based
on lower bounds [14,10] of the objective function but
can only be applied to small problem instances, or

• heuristic search algorithms like tabu search, modified
simulated annealing, or genetic algorithms [15–17]. In
[18] the authors present a ant colony optimization
method that is combined with a local search algorithm.
The authors in [19] proposed a chaos driven tabu search
neural network hardware system to solve the QAP.
A separate class of approaches is formed by relaxations

of the quadratic assignment problem. Typically, these
approaches aim at computing a lower bound of the objec-
tive function based on eigenvalue problems [20,21,9].
Recently, an convex relaxation approach has been pro-
posed [4] which can be used to compute both a lower
bound and the corresponding approximate minimizer. A
favorable property due to the convexity of this approach
is that the relaxed solution can numerically be computed
without the need to select good starting points and tuning
parameter values. This will be studied in more detail below.

Another important approach to the quadratic assign-
ment problem is based on the deterministic annealing strat-
egy. This approach has been extensively investigated in the
neural-network literature [22–29]. In the context of image
segmentation, piecewise-smooth restoration and clustering,
deterministic annealing is well-known in the computer
vision literature as well [30–35]. A favorable feature of
deterministic annealing is that this strategy can be derived
in a theoretically sound way using the maximum entropy
principle (e.g., [34]). On the other hand, an obvious disad-
vantage from the viewpoint of algorithm design is the com-
plex bifurcation phenomena encountered when lowering
the annealing parameter [36]. To the best of our knowl-
edge, no control strategy is known which guarantees to
reach a ‘‘good’’ local minimum. While excellent experimen-
tal results have been reported using deterministic anneal-
ing, the dependence of these results on various tuning
parameters apparently has not received much attention in
the literature. In view of this important aspect we present
a thorough comparison of a deterministic annealing
approach tailored to the quadratic assignment problem
[27,29] with a convex programming approach [4].

Further important work on the graph-matching problem
includes alternative algorithmic approaches like probabilis-
tic relaxation [37], genetic search [38], error-correcting
matching [39] or two-step iterative approaches [40], and also
specialized work like, for example, simultaneous estimation
of transformation geometry [41], or matching trees in terms
of the maximum clique of the association graph [42]. A com-
parison of this variety of approaches is beyond the scope of
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this paper. We also do not discuss variations of the optimiza-
tion criterion (see, e.g., [37,43]), nor do we investigate the
task to determine the weight function w in some optimal
way. Rather, by focusing on the optimization problem, we
wish to emphasize the advantages of parameter-free convex
relaxation in the context of graph-matching and to reveal its
performance in comparison to recent approaches which are
based on the well-known deterministic annealing
framework.

As relaxation has a context-dependent meaning, the word
relaxation refers in this paper to the strategy of making a
combinatorial problem computationally tractable by keep-
ing exactly the objective criterion with respect to feasible
combinatorial solutions but weakening the combinatorial
constraints. Solving (approximately) the combinatorial
weighted graph matching problem by relaxation has several
advantages. First, it is mathematically comprehensible where
and how approximations are introduced in order to solve the
optimization problem. By contrast, many other approaches
are based on algorithmic modifications, making a theoretical
understanding and comparison more difficult. Second, solv-
ing a relaxed problem formulation results in a lower bound
of the objective function, because weakening the constraints
gives more degrees of freedom for minimization. Third,
relaxations can be used either to directly compute approxi-
mate solutions to the original combinatorial problem, or as
subroutines in exact branch-and-bound search algorithms.

Due to these advantages, this paper focuses on relax-
ations of a weighted graph matching problem formulation.

1.3. Contribution

Our work contributes under the aspects relaxation, algo-

rithm design and performance evaluation.

1.3.1. Relaxation

A relaxation of a combinatorial weighted graph matching
problem formulation is used to directly compute approxi-
mate solutions to the original graph matching problems.
For this, the weighted graph matching problem formulation
is reformulated into a quadratic assignment problem formu-
lation. Different problem relaxations can be ranked based on
the lower bound they compute and which determines the
overall performance: the larger the lower bound, the better
the relaxation.

1.3.2. Algorithm design

A common problem of many approaches concerns the
selection of tuning parameters in order to obtain good
performance. A representative example – a deterministic
annealing strategy – will be examined in more detail below.
In this context, convex optimization approaches provide an
attractive alternative, because the global optimum exists
under mild conditions and can be computed by established
numerical algorithms in polynomial time [44] without any

additional parameters.
1.3.3. Performance evaluation

A widely-used collection of difficult, real-life bench-
mark problems exists in the field of combinatorial opti-
mization [45], which has become a standard during the
last years. Apparently, this database has not been used
in the computer vision literature so far in order to eval-
uate approaches to the weighted graph matching prob-
lem. Besides extensive random ground-truth experiments
that are created to simulate computer vision graph
matching problems, our performance evaluation was car-
ried out for problem instances of this database. In addi-
tion to this also a real world graph matching problem
will be shown.

1.4. Organisation of the paper

After stating the problem formally in Section 2, we
present a hierarchy of relaxations in Section 3, the
strongest one being a convex relaxation. For compari-
son, we sketch two alternative approaches from the liter-
ature in Section 4, a simple but fast approach based on
eigenvalue decomposition, and a more sophisticated
deterministic annealing strategy. In order to stress the
difference to these non-convex approaches, various
aspects of the convex relaxation approach are visualized
for a toy example in Section 5. In Section 6, the results
of numerous experiments for both real-life benchmarks
from the field of combinatorial optimization and for
ground-truth experiments based on computer-generated
graphs are summarized. Also a real world example is
shown. We conclude and indicate further work in Sec-
tion 7.
2. Problem statement and definitions

2.1. Notation

We will use the following notation:
X>
 transpose of the matrix X
In
 n · n unit matrix

O
 set of orthogonal matrices X, i.e., X>X = In
E
 set of matrices with unit row and column sums

N
 set of non-negative matrices

P
 set of permutation matrices P 2 O \ E \N

e
 vector of all ones: ei = 1, i = 1, . . . ,n
Tr[X]
 trace of the matrix X
Æ
 scalar product of two matrices
X,Y: X Æ Y = Tr[X>Y]
iXi
 Frobenius norm of the matrix
X: iXi = Tr[X>X]1/2
vec[X]
 vector obtained by stacking the columns
of the matrix X
�
 Kronecker product

k(X)
 vector of the eigenvalues of the matrix X
dij
 Kronecker delta: dij = 1 if i = j, and 0 otherwise
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2.2. Problem statement

In this paper, we consider undirected graphs G = (V,E,w)
with nodes V = {1, . . . ,n} and edges E � V · V. The weight
function w : E ! Rþ0 typically encodes a similarity measure
with respect to pairs of features (i, j). This measure along with
the structure of the graph is represented by the adjacency
matrix AG: (AG)ij = wij, i, j = 1, . . . ,n. Since wij = wji, adja-
cency matrices are symmetric: A>G ¼ AG.

Let G = (VG,EG,wG) and H = (VH,EH,wH) denote two
given graphs. In order to match these two graphs, we want
to compute a permutation U: VG ´ VG of the nodes of G

such that the following distance measure is minimized:Xn

i;j¼1

ðwG;UðiÞUðjÞ � wH ;ijÞ2: ð1Þ

Representing the permutation U by a permutation matrix
X 2 P, this cost function takes the following form [46] in
terms of the adjacency matrices of G and H:

f ðX Þ ¼ kXAGX> � AHk2
: ð2Þ

For isomorphic graphs exists a permutation matrix such
that the minimum value f(X) = 0 of the objective function
is attained. For features VG,VH supplied by an image pre-
processing stage, it is unlikely that G and H are isomorphic.
In this case we define as the best match the permutation
matrix X* which minimizes f over P. Thus, the graph
matching problem formally reads

f ðX �Þ ¼ min
X2P
kXAGX> � AHk2

: ð3Þ

The minimization problem (3) has a close relationship to
the quadratic assignment problem (QAP) in combinatorial
mathematics (for a survey, see [9]):

min
X2P

Tr½AXBX> þ CX>�: ð4Þ

Provided that the graphs have the same number of nodes,
this relationship can be seen by reformulating the graph
matching objective function as follows:

f ðX Þ ¼ kXAGX> � AHk2

¼ CG þ CH � 2Tr½AH XA>GX>�:
ð5Þ

Dropping the constant terms CG ¼ Tr½AGA>G � and
CH ¼ Tr½AH A>H �, we recognize the graph matching problem
(3) as a special case of the quadratic assignment problem
(4) with A = AH, B = � AG and C = 0. Throughout the
remainder of this paper, we can therefore consider the fol-
lowing optimization problem:

ðQAPÞ min
X2P

Tr½AXB>X>�: ð6Þ

We note that (1) corresponds to (6) only if
|VG| = |VH| = n. In this paper, we make this simplifying
assumption (as did Umeyama [46], for instance) in order
to assess the techniques which have been developed for
the quadratic assignment problem for the weighted graph
matching problem in computer vision. The issue of
extending the techniques to subgraph matching will be
taken up in Section 7.

3. Relaxations and lower bounds

In this section, we consider various relaxations of
problem (6). We will see that a ranking of these
approaches can be obtained by virtue of the correspond-
ing lower bounds.

3.1. Orthogonal relaxation

Relaxing the set P to O � P, Finke et al. [20] suggested
the so-called eigenvalue bound (EVB) which gives a lower
bound for the minimization problem (6):

ðEVBÞ min
X2O

Tr½AXB>X>� ¼ hkðAÞ; kðBÞi: ð7Þ

Here, Æk(A),k(B)æ� denotes the so-called minimal scalar prod-

uct. This is the scalar product of the vectors k(A) and k(B)
containing the eigenvalues of the adjacency matrices A and
B ordered as follows: k1(A) 6 k2(A) 6 	 	 	 6 kn(A) and
k1(B) P k2(B)P 	 	 	P kn(B). The matrix X for which the
bound (EVB) is attained can be calculated as well. If
U ; V 2 O diagonalize the adjacency matrices A and B,
respectively, and this columns are arranged according to
the order of the eigenvalues mentioned above, then
X = UV>. It turned out that in many cases this relaxation
yields a bound for the minimization problem (6) which is
too weak to be useful in practice.

3.2. Projected eigenvalue bound

Hadley et al. [21] improved the lower bound (7) by tak-
ing into account the constraint set E in addition to O. To
this end, they parameterized matrices X 2 O \ E based on
(n � 1) · (n � 1) orthogonal matrices X̂ 2 O and the
relationship

X ¼ V X̂ V > þ 1

n
E;

where E = ee> and the n � 1 columns of the n · (n � 1) ma-
trix V form a basis of the subspace orthogonal to the vector
e. Conversely, for any (n � 1) · (n � 1) matrix X̂ 2 O we
have X ¼ V X̂ V > þ 1

n E 2 O \ E. The n · (n � 1) matrix V

can be calculated using the following scheme:

V ¼

a a 	 	 	 a a

1þ b b 	 	 	 b b

..

. ..
.
	 	 	 ..

. ..
.

b b 	 	 	 b 1þ b

0
BBBB@

1
CCCCA

with

a ¼ � 1ffiffiffi
n
p and b ¼ � 1

nþ ffiffiffi
n
p :

Using this parameterization, the objective function can be
rearranged as follows:
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Tr½AXB>X>� ¼ Tr½ÂX̂ B̂>X̂>� þ Tr½DX � � C1; ð8Þ
where Â ¼ V >AV , B̂ ¼ V >BV , D ¼ 2

n rðAÞrðBÞ> and
C1 ¼ 1

n2 sðAÞsðBÞ. The vector r(A) = Ae denotes the vector
of row sums of the matrix A, and the scalar s(A) = e>Ae

is the sum of all elements in A. The authors of [21] suggest-
ed to optimize the first two terms on the right hand side of
(8) separately, the first one over X̂ 2 Oðn� 1Þ, and the sec-
ond one over X 2 P. The latter problem amounts to solve
the linear assignment problem

LAPðDÞ ¼ min
X2P

Tr½DX �; ð9Þ

which can be solved using any linear programming solver.
As a result, the projected eigenvalue bound as a lower
bound for the minimization problem (6) is obtained

ðPEVBÞ hkðÂÞ; kðB̂Þi� þ LAPðDÞ � C1: ð10Þ
However, a major drawback of this bound is that due to
separately minimizing the two terms in (8), a corresponding
minimizing matrix X cannot be computed in general. The
next subsection shows how one can overcome this draw-
back by convex relaxation and even achieve a better lower
bound than (10).

3.3. Convex relaxation

Following the work of Anstreicher, Brixius and Wol-
kowicz [3,4], we focus on a convex relaxation of the mini-
mization problem (6) in this section. Besides the general
arguments discussed in Section 1.1, the main motivation
for this approach is its ability to compute both a tight lower
bound and the corresponding matrix X where this bound is
attained. In general this is not possible for the bound (10).
As a starting point reconsider the minimization of the first
term of the right hand side of Eq. (8) over the set Oðn� 1Þ

min
X̂

Tr½ÂX̂ B̂>X̂>�

s:t: X̂ X̂> ¼ I

X̂>X̂ ¼ I :

ð11Þ

The Lagrangian dual of this problem reads [3]:

max
Ŝ;T̂

Tr½Ŝ þ T̂ �

s:t: Q̂ 
 0;
ð12Þ

where

Q̂ :¼ ðB̂� ÂÞ � ðI � ŜÞ � ðT̂ � IÞ; Ŝ ¼ Ŝ>; T̂ ¼ T̂>:

Here Q̂ 
 0 means that Q̂ has to be positive semidefinite.
The optimal solution for (11), according to (7), is

min
X̂2Oðn�1Þ

Tr½ÂX̂ B̂>X̂>� ¼ hkðÂÞ; kðB̂Þi: ð13Þ

The duality gap between the optimal solutions of (11) and
(12) is zero since interior points exist for both problems
(see, e.g., [44]). Hence, the optimal values are the same:
max
Ŝ;T̂

Tr½Ŝ þ T̂ � ¼ hkðÂÞ; kðB̂Þi: ð14Þ

The objective function in (11) can be reformulated as
follows:

Tr½ÂX̂ B̂>X̂>� ¼ vecðX̂ Þ>ðB̂� ÂÞvecðX̂ Þ
¼ Tr½ðB̂� ÂÞvecðX̂ ÞvecðX̂ Þ>�
¼ ðB̂� ÂÞ 	 Y ;

ð15Þ

where

Y ¼ vecðX̂ ÞvecðX̂ Þ>:
For arbitrary matrices Ŝ and T̂ and X̂ 2 O the following
equations hold:

Tr½Ŝ� ¼Tr½ŜI � ¼ Tr½ŜX̂>X̂ �
¼Tr½X̂ ŜX̂>� ¼ Tr½IX̂ ŜX̂>�
¼ðŜ � IÞ 	 Y ;

Tr½T̂ � ¼Tr½T̂ I � ¼ Tr½T̂ X̂ IX̂>�
¼ðI � T̂ Þ 	 Y :

Using this, a positive semidefinite form containing Q̂ from
(12) can be introduced into the objective function
Tr½ÂX̂ B̂>X̂>�, if we assume that Ŝ and T̂ are a feasible solu-
tion for the dual problem (12):

Tr½ÂX̂ B̂>X̂>�
¼ ðB̂� ÂÞ 	 Y
¼ðB̂� ÂÞ 	 Y þ Tr½Ŝ� � ðŜ � IÞ 	 Y þ Tr½T̂ � � ðI � T̂ Þ 	 Y
¼Tr½Ŝ þ T̂ � þ ½ðB̂� ÂÞ � ðI � ŜÞ � ðT̂ � IÞ� 	 Y
¼Tr½Ŝ þ T̂ � þ Q̂ 	 Y
¼Tr½Ŝ þ T̂ � þ vecðX̂ Þ>Q̂vecðX̂ Þ:

Choosing Ŝ and T̂ as the optimal solution to (12) we obtain
with (14):

Tr½ÂX̂ B̂>X̂>� ¼ hkðÂÞ; kðB̂Þi þ vecðX̂ Þ>Q̂vecðX̂ Þ: ð16Þ
Finally, substituting this expression as well as all the non-
projected variables X̂ ¼ V >XV , etc., into (8), we obtain
after an elementary but tedious calculation the quadratic
programming bound

ðQPBÞ Tr½AXB>X>� ¼ hkðÂÞ; kðB̂Þi
þ vecðX Þ>QvecðX Þ: ð17Þ

A comparison with (8) shows that now we have just a single
term on the right hand side comprising the unknown ma-
trix X and (17) allows the computation of both a lower
bound and the corresponding minimizing matrix X. For
the linear term in (8), minimizing over the set P (cf. (9))
is equivalent to minimizing over E \N. Accordingly, Ans-
treicher and Brixius [4] suggest to minimize the quadratic
form in (17) over E \N, i.e., to solve the convex quadratic
problem:
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min vecðX Þ>QvecðX Þ
s:t: Xe ¼ X>e ¼ e

X P 0:

ð18Þ

Here X P 0 means that all entries of the matrix X have to
be non-negative. The following relationship between the
bounds (7), (10) and (17) holds [4]:

ðEVBÞ 6 ðPEVBÞ 6 ðQPBÞ 6 ðQAPÞ: ð19Þ
Consequently the bound (17) computed by convex pro-
gramming cannot perform worse than the other bounds.
The quality of the corresponding solution X in comparison
to other approaches (see next section) will be assessed in
Section 6.

3.4. Computing a combinatorial solution

To obtain a permutation matrix P 2 P from the non-in-
teger solution X 2 E \N to (18), a good permutation
matrix close to X has to be found. A simple way of doing
this is to solve the following linear programming problem:

P 0 ¼ arg max
P2P

Tr½X>P �: ð20Þ

In this paper, we use a slightly different idea which takes
into account that in most cases a linear approximation of
the original problem leads to an improvement of the ob-
tained objective function. To this end, we add an unknown
matrix D to the relaxed solution X so as to give a permuta-
tion matrix:

P ¼ ðX þ DÞ 2 P:

Next, we expand the objective function Tr[APB>P>]
around X up to linear terms with respect to D:

Tr½APB>P>� ¼Tr½AðX þ DÞB>ðX þ DÞ>�
¼Tr½AXB>X>� þ Tr½AXB>D>� þ Tr½ADB>X>� þ Tr½ADB>D>�
�Tr½AXB>X>� þ Tr½AXB>D>� þ Tr½ADB>X>�
¼ � Tr½AXB>X>� þ Tr½AXB>P>� þ Tr½B>X>AP �
¼ � Tr½AXB>X>� þ 2Tr½B>X>AP �:

As a result, we have to minimize the term Tr[B>X>AP] to
obtain the combinatorial solution P from the relaxed solu-
tion X. This problem can again be solved by linear
programming:

P 1 ¼ arg min
P2P

Tr½B>X>AP �:

To see the difference to (20), we put M = � B>X>A and
finally have

P 1 ¼ arg max
P2P

Tr½MP �: ð21Þ
3.5. The 2opt post-processing heuristics

A simple heuristics called 2opt was proposed in [29]
in order to further improve combinatorial solutions
computed by more expensive methods. This greedy
strategy iteratively exchanges pairs of assignments in
the permutation until no further improvement is
possible.

4. Non-convex approaches

In this section, we briefly sketch two approaches
that we used for comparison with the convex relaxa-
tion approach of Section 3.3. The first one was pro-
posed by Umeyama [46] and resembles the spectral
relaxation approach of [20]. Furthermore, we consider
the deterministic annealing approaches [27] and [29]
for which excellent performances are reported in the
literature.

4.1. The approach by Umeyama

Based on the Eigenvalue Bound (7), Umeyama [46] pro-
posed the following estimate for the solution of (6):

X Ume ¼ arg max
X2P

TrðX>jU jjV j>Þ: ð22Þ

Here, U and V diagonalize the adjacency matrices A

and B, respectively, with the eigenvalues sorted
according to (EVB), and | Æ | denotes the matrix consist-
ing of the absolute values taken for each element. (22)
is a linear assignment problem which can be efficiently
solved by using standard methods like linear
programming.

4.2. Graduated assignment

Gold and Rangarajan [27] and Ishii and Sato [29] inde-
pendently developed a technique commonly referred to as
graduated assignment or soft assign algorithm. The set of
permutation matrices P is replaced by the convex set
D ¼ E \N of positive matrices with unit row and column
sums (doubly stochastic matrices). In contrast to previous
mean-field annealing approaches, the graduated assign-
ment algorithm enforces hard constraints on row and col-
umn sums, making it usually superior to other
deterministic annealing approaches.

The core of the algorithm is an iteration scheme, which
computes an approximative solution matrix X at each step
of the decreasing annealing schedule. In our description
b > 0 denotes the current annealing parameter; c is a fixed
‘‘self-amplification’’ parameter, which enforces that the
minimum on the set D is also in P. Denoting the iteration
time step by the superscript, the matrix X(r+1) is calculated
as follows (for b fixed):

X ðrþ1Þ
ij ¼ gihjy

ðrÞ
ij ; ð23Þ

with

yðrÞij ¼ exp �b
X

k;l

AikBjl þ dikdjlc
� �

X ðrÞkl

 !
:
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Fig. 2. Two small sample graphs G and H to be matched.
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The scaling coefficients gi,hj are computed so that X(r+1) is
projected on the set D using Sinkhorn’s algorithm [27] as
inner loop

yðr;2sÞ
ij ¼

yðr;2s�1Þ
ijP
kyðr;2s�1Þ

ik

;

yðr;2sþ1Þ
ij ¼

yðr;2sÞ
ijP
kyðr;2sÞ

kj

:

Stopping criteria based on convergence bounds or the
number of iterations have to be established for the inner
projection loop and the iteration scheme. For more details,
we refer the reader to [27,29].

Rangarajan et al. [28] showed that this scheme locally
converges under mild assumptions. Several studies revealed
excellent experimental results. In our experiments, we
improved the obtained results with the local 2opt
heuristics.

A drawback of the graduated assignment algorithm is
that the selection of several ‘‘tuning’’-parameters is neces-
sary to obtain optimal performance. An annealing schedule
has to be set up, which is usually described by three param-
eters: an initial temperature, the annealing rate, and a final
temperature or other stopping criterion [27]. There are the-
oretically motivated methods that give a lower bound for
reasonable initial temperatures based on an analysis of
the bifurcation structure of the problem [29]. Nevertheless,
careful selection of the parameter greater than this bound
can improve the results. The self-amplification parameter
also has a lower bound that guarantees the above property
that the minimizer of the objective function is in P. An
exhaustive parameter search for the annealing schedule,
even below the theoretical bound, may increase the perfor-
mance. Finally, the stopping criteria also influence the
quality of the results. All parameters have in common that
their optimal values vary for different problem instances
(cf. [29]).

5. Convex relaxation: an illustrative numerical example

For the purpose of illustration, we apply the convex
relaxation approach to a small graph matching problem
in this section.

5.1. A small graph matching problem

In order to graphically visualize the convex relaxation
approach, we consider the two small weighted graphs G

and H shown in Fig. 2. Obviously, the best match corre-
sponds to exchanging vertices 2 and 3 in either graph.
The adjacency matrices of the graphs G and H are:

AG ¼
0 0:56 0:92

0:56 0 0:12

0:92 0:12 0

0
B@

1
CA;
AH ¼
0 0:99 0:22

0:99 0 0:02

0:22 0:02 0

0
B@

1
CA:

In this example the objective function of the graph match-
ing problem (3) attains the following values for each of the
six possible permutations:

1:370; 3:077; 2:01; 3:365; 0:613; 0:261:

Thus, the optimum of this graph matching problem is

OPT ¼ CG þ CH þ 2 min
X2P

Tr½AXB>X>� � 0:261

with A = AH, B = � AG, CG ¼ Tr½AGA>G � � 2:349 and
CH ¼ Tr½AH A>H � � 2:058. In the following, we visualize per-
mutation matrices X by representing entries Xij = 1 graph-
ically by black squares and Xij = 0 by white squares.
Accordingly, the permutation matrices which lead to the
objective function values given above (in the same order)
are depicted here

The last permutation matrix represents an exchange of
vertices 2 and 3 and thus corresponds to the global opti-
mum of this graph matching problem.

5.2. Relaxations and bounds

We calculate the bounds described in Section 3 for the
problem depicted in Fig. 2.

5.2.1. Orthogonal relaxation

The eigenvalue bound leads to the following lower
bound:

EVB ¼ CG þ CH þ 2hkðAÞ; kðBÞi� � 0:023

with CG ¼ Tr½AGA>G � � 2:349, CH ¼ Tr½AH A>H � � 2:058 and
Æk(A),k(B)æ� � � 2.192. This bound is attained for

X �
0:999 0:041 0:002

�0:014 0:316 0:948

�0:038 0:948 �0:317

0
B@

1
CA:
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Due to the small size of our problem, this solution already
indicates the optimum despite the obvious weakness of the
EVB-bound in general.

5.2.2. Projected eigenvalue bound

Using the projected eigenvalue bound, we obtain the fol-
lowing lower bound for our small graph matching
problem:

PEVB ¼ CG þ CH þ 2½hkðÂÞ; kðB̂Þi� þ LAPðDÞ � C1�
� 0:181;

where hkðÂÞ; kðB̂Þi � �0:985, LAP(D) � � 2.003, C1 �
� 0.875. Note that this bound is much stronger than
the EVB-bound. On the other hand, as mentioned in
Section 3.2, this approach does not allow to compute a
corresponding matrix X for which the PEVB-bound is
attained.

5.2.3. Quadratic programming bound

The quadratic programming bound gives:

QPB ¼ CG þ CH þ 2½hkðÂÞ; kðB̂Þi
þ min

X2E\N
vecðX Þ>QvecðX Þ�

� 0:215:

Here the minimization of the quadratic term results in
minX2E\NvecðX Þ>QvecðX Þ � � 1:111 and the bound is at-
tained for

X �
0:747 0:000 0:253

0:253 0:000 0:747

0:000 1:000 0:000

0
B@

1
CA:

As predicted, this bound is superior to the PEVB-bound.
So summarizing, for the numerical example considered
here the ranking (19) of these bounds reads:
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Fig. 3. The original objective function and its convex rel
EVB � 0:023 6 PEVB � 0:181 6 QPB � 0:215

6 OPT � 0:261: ð24Þ
5.3. Visualization

To illustrate how the convex relaxation approximates
the original combinatorial problem, we inspect graphically
the original objective function

forigðX Þ ¼ CG þ CH þ 2Tr½AXB>X>�
along with its convex relaxation

fconvexðX Þ ¼ CG þ CH þ 2½hkðÂÞ; kðB̂Þi� þ vecðX Þ>QvecðX Þ�

for a few one-dimensional paths X(a) through the relaxed
solution set defined by X 2 E \N. It is well-known
(Birkhoff–von Neumann theorem) that this set is just the
convex hull of the original feasible set, i.e., the permutation
matrices X 2 P. Hence, all paths

X ðaÞ ¼ aX 2 þ ð1� aÞX 1; a 2 ½0; 1�
between extreme points X1,X22 P go through the interior
relaxed solution set, and we can graphically explore the
two cost functions above by plotting their graphs over var-
ious paths.

Figs. 3 and 4 show several paths and illustrate the fol-
lowing facts:

• At the end-points of all paths, the two cost functions
coincide because the relaxed approach does not change
the original objective function at the original feasible
set (cf. Section 1.3).

• The original objective function is non-convex in the
relaxed solution set and thus exhibits local minima. This
is not the case for the objective function of the convex
relaxation.
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axation along paths through the relaxed solution set.
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Fig. 4. The original objective function and its convex relaxation along paths through the relaxed solution set. On the right, the plot illustrates how the
lower bound is attained at a point close to the global optimum (end-point on the right).
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• The plot on the right hand side of Fig. 4 illustrates
how the lower bound is attained by the convex relax-
ation approach. Furthermore, the point where this
bound is attained is close to the global optimum
(the end-point on the right) due to the tightness of
the lower bound.

In summary, these Figures illustrate that the convex
relaxation ‘‘feels’’ where the ‘‘good’’ minimum lies, and
that a nearby point can be computed without any initialisa-
tion problem or parameter tuning!

6. Experiments and discussion

This section has three parts. In the first part we inves-
tigate the performance of the convex optimization relax-
ation. To this end, we compare the corresponding lower
bounds with the combinatorial solutions of several
benchmark problems from the QAPLIB-collection [45].
The QAPLIB is a public library of very difficult real-life
quadratic assignment problems which can be used to
evaluate and to compare the performance of any qua-
dratic assignment approach. In the second part we pres-
ent statistical results computed for a large set of
randomly generated graphs (including ground-truth).
Finally, in the third part a real world graph matching
example is shown.

Abbreviations: The following abbreviations are used
within the tables of this section. f represents in all cases
the value calculated by the objective function (cf.(6))

f ðX Þ ¼ Tr½AXB>X>�;
with an X 2 P. The subscript of f shows how and with
which approach the X 2 P was obtained.
f*
 value of the objective function. (6) at the
global optimum X* 2 P.
EVB
 the eigenvalue bound (7).

PEVB
 the projected eigenvalue bound (10).

QPB
 the quadratic programming bound (17).

fQPB
 value of the objective function in (6) using

the permutation matrix obtained with (20)
from the QPB solution.
f 1
QPB
 value of the objective function in (6) using

the permutation matrix obtained with (21)
from the QPB solution.
fGA
 value of the objective function in (6) using
the permutation matrix obtained by the
graduated assignment algorithm (23).
fUme
 value of the objective function (6) using
the permutation matrix obtained by
the approach from Umeyama (22).
An additional ‘‘+’’-sign (e.g., fQPBþ; f 1
QPBþ; fGAþ; fUmeþ)

indicates that the 2opt-heuristics was used as a post-pro-
cessing step to further improve the permutation matrix
found.

6.1. QAPLIB benchmark experiments

6.1.1. Quality of the relaxations

The quality of the various relaxation approaches, name-
ly the eigenvalue bound (EVB), the projected eigenvalue
bound (PEVB) and the quadratic programming bound
(QPB), can be assessed by measuring how close these
bounds are to the global optimum (see (19)).

Table 1 shows the results for problems drawn from the
QAPLIB [45]. The first column comprises labels indicating



Table 1
Bounds computed for QAPLIB-problems

Problem f* EVB PEVB QPB

chr12c 11,156 �127,514 �24,375 �22,648
chr15a 9896 �190,769 �52,468 �48,539
chr15c 9504 �186,403 �50,295 �47,409
chr20b 2298 �30,995 �8051 �7728
chr22b 6194 �66,432 �22,126 �20,995
esc16b 292 �230 250 250
rou12 235,528 �274,122 200,024 205,461
rou15 354,210 �424,419 296,705 303,487
rou20 725,522 �739,730 597,045 607,362
tai10a 135,028 �181,950 112,528 116,260
tai12a 224,416 �284,261 193,124 199,378
tai15a 388,214 �414,351 325,019 330,205
tai17a 491,812 �496,403 408,910 415,578
tai20a 703,482 �714,901 575,831 584,942
tai30a 1,818,146 �1,505,553 1,500,406 1,517,829
tai35a 2,422,002 �2,015,233 1,941,622 1,958,998
tai40a 3,139,370 �2,559,063 2,484,371 2,506,806
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the problem and the number |V| of vertices of a data set
from the QAPLIB. The second columns shows the value
of the objective function at the global optimum. The corre-
sponding lower bounds computed by the relaxation
approaches are listed in the remaining columns.

Since zero is a trivial lower bound, a negative sign indi-
cates that the relaxation is not tight. This happens for most
problems with the EV-bound which therefore can be con-
sidered not to be useful, and for some problems with the
other bounds as well (hence these problems seem to be
most difficult).

Furthermore, Table 1 confirms the relationship (19), and
that the convex relaxation approach gives the best lower
bound.

6.1.2. Comparison to spectral decomposition and graduated
assignment

We compare the combinatorial solutions obtained with
the convex relaxation approach with those computed with
Table 2
Results of the QAPLIB benchmark experiments (see text)

Problem f* fQPB fQPB+ f 1
QPB

chr12c 11,156 20,306 15,860 27,912
chr15a 9896 26,132 14,454 20,640
chr15c 9504 29,862 17,342 19,436
chr20b 2298 6674 2858 7276
chr22b 6194 9942 6848 8958
esc16b 292 296 292 312
rou12 235,528 278,834 246,712 266,864
rou15 354,210 381,016 371,480 394,192
rou20 725,522 804,676 746,636 795,578
tai10a 135,028 165,364 143,260 154,282
tai12a 224,416 263,978 237,200 246,424
tai15a 388,214 455,778 399,732 432,610
tai17a 491,812 550,852 513,170 545,410
tai20a 703,482 799,790 740,696 752,896
tai30a 1,818,146 1,996,442 1,883,810 1,979,530
tai35a 2,422,002 2,720,986 2,527,684 2,677,688
tai40a 3,139,370 3,529,402 324,3018 341,1278
the graduated assignment approach [27,29] and the spectral
decomposition approach by Umeyama [46].

Table 2 shows the results in the same way as Table 1, but
now only combinatorial solutions are shown. A ‘+’’-sign
indicates that the 2opt-heuristics was used as a post-pro-
cessing step to improve the solution. The difference
between fQPB and f 1

QPB is that linearization was used to
‘‘round’’ the relaxed convex programming solution to a
combinatorial solution in the latter case (see Section 3.4).

The columns labeled with fGA and fUme show the results
obtained for the graduated assignment approach [27,29]
and for the approach by Umeyama [46]. It should be noted
that considerable care was taken to find out optimal
parameter values for the graduated assignment approach
for each data set [47].

The following conclusions can be drawn from the results
shown in Table 2:

• The convex relaxation approach fQPB and the soft-assign
approach fGA have similarly good performance, despite
the fact that the latter approach is much more intricate
from the optimization point-of-view and involves a cou-
ple of tuning parameters which have to be (and were)
optimized by hand.

• The approach of Umeyama fUme based on spectral
decomposition is not as competitive.

• Using the simple 2opt greedy-strategy as a post-process-
ing step significantly improves the solution in most
cases.

6.2. Random ground-truth experiments

In this subsection we discuss our results obtained for
two different ground-truth experiments. In the first experi-
ment we created many problem instances (6) by indepen-
dently computing two different random graphs with the
same number of vertices. In the second experiment we com-
f 1
QPBþ fGA fGA+ fUme fUme+

13,088 19,014 11,186 40,370 11,798
13,540 30,370 11,062 60,986 17,390
12,754 23,686 13,342 76,318 13,338

3832 6290 2650 10,022 3294
6902 9658 6732 13,118 7418
292 298 292 306 292

241,802 273,438 246,282 295,752 251,848
374,000 457,908 359,748 480,352 384,018
757,270 840,120 738,618 905,246 765,872
139,524 168,096 135,828 189,852 147,838
238,902 263,778 224,416 294,320 252,044
390,782 451,164 400,328 483,596 405,442
526,518 589,814 505,856 620,964 526,814
726,038 871,480 724,188 915,144 775,456

1,872,722 2,077,958 1,886,790 2,213,846 1,875,680
2,511,800 2,803,456 2,496,524 2,925,390 2,544,536
3,277,450 3,668,044 3,249,924 3,727,478 3,282,284



C. Schellewald et al. / Image and Vision Computing 25 (2007) 1301–1314 1311
puted a large collection of random graphs along with
slightly perturbed and randomly permutated ‘‘copies’’ of
these graphs.

6.2.1. Random graphs

In this experiment we created many problem instances
(6) by independently computing two different random
graphs with the same number of vertices. The probability
that an edge is present in the underlying complete graph
was about 0.3. Fig. 5 shows an example in order to visual-
ize the edge-density of such graphs. The global optimum
for (6) was computed using an exact search algorithm.
The global optimum was used to calculate the ratio of
the suboptimal objective value to the best objective value
for each problem instance. Table 3 summarizes our results
based on this ratio. It shows the statistics (mean, worst case
and the best case) for three experiments with different sizes
of the graphs (n = 9,11,15). The number of problem
instances for each experiment is shown in angular brackets.
The number of correctly found matchings without/with the
2opt heuristics as post-processing step are shown in round
brackets. The following conclusions can be drawn from the
results shown in Table 3:

• The soft-assign approach performs somewhat better for
these experiments than the convex relaxation approach
but the latter needs no tuning parameters which have
to be optimized by hand.
Fig. 5. A randomly generated graph with 15 vertices and a probability of
about 0.3 for the presence of an edge.

Table 3
Statistics of the results of random ground-truth experiments (see text)

f 1
QPB=f � fUme/f*

Mean Worst case Best case Mean

n = 9 [128] (22/55) (7/29)
0.88765 0.43810 1 0.638244

2opt 0.97130 0.79256 1 0.928304

n = 11 [42] (3/10) (0/7)
0.83043 0.56268 1 0.636159

2opt 0.95760 0.85043 1 0.933206

n = 15 [99] (0/2) (0/1)
0.78726 0.52307 0.938917 0.225983

2opt 0.92195 0.77956 1 0.890131
• With increasing problem size the performance decreases
for all three approaches.

• The approach of Umeyama fUme based on spectral
decomposition is not as competitive.

• Using the simple 2opt greedy-strategy as a post-process-
ing step significantly improves the results.

6.2.2. Perturbed graphs

In the second series of experiments we computed a large
collection of random graphs along with slightly perturbed
and randomly permutated ‘‘copies’’ of these graphs. The
weights of the second graph were perturbed by a normally
distributed factor with standard deviation r = 0.1 around
1. The results for this kind of experiments are shown in
Table 4 which has the same structure as Table 3. For larger
problems (more than 15 vertices) where computing the
global optimum was too expensive, we assumed the opti-
mal permutation to be the inverse of the random permuta-
tion matrix which was used to compute the second graph of
each pair. In some cases this was not true and hence a dif-
ferent permutation with a lower objective value could be
found by the algorithms. This explains why some of the
quotients in Table 4 have a value greater than 1.

In summary, the statistics of our results shown in Table
4 reveal that in almost every case of these ‘‘low-level noise’’
experiments the optimal permutation was found by the
quadratic programming approach.

6.3. Real world example

In this section, we show an example for a real world
graph matching problem where the nodes of the object
graphs are based on features that can be found by an
appropriate feature extractor like, for example, the FEX-
system (cf. [7,8]). The graphs we want to match are shown
in Fig. 1. They have 38 nodes, which means that there is the
tremendous number of approximately 1044 possible assign-
ments. The result of the graph matching experiment is
shown in Fig. 6. The convex relaxation was able to find
the expected assignment which is very encouraging because
the number of possible assignments is very huge. Further-
more, it should be mentioned that the results shown in this
fGA/f*

Worst case Best case Mean Worst case Best case

(31/55)
0.065173 1 .948342 .7756129 1
0.753007 1 .969914 .843046 1

(7/10)
0.295194 0.998591 .940740 .8338586 1
0.811326 1 .958863 .8434407 1

(4/11)
0.131333 0.863508 .916225 .105164 1
0.74688 1 .95763 .820596 1



Table 4
Statistics of the results of perturbed graph experiments (see text)

f 1
QPB=f � fUme/f* fGA/f*

Mean Worst case Best case Mean Worst case Best case Mean Worst case Best case

n = 9 [155] (154/155) (142/154) (144/151)
0.999996 0.999382 1 0.986481 0.463282 1 .997206 .859380 1

2opt 1 1 1 0.999883 0.981862 1 .998154 .859380 1

n = 15 [183] (183/183) (163/175) (176/181)
1 1 1 0.974078 0.379189 1 .998347 .833787 1

2opt 1 1 1 0.993836 0.718871 1 .998484 .833787 1

n = 20 [173] (173/173) (148/163) (167/171)
1 1 1 0.977225 0.475711 1 .998205 .855257 1

2opt 1 1 1 0.991662 0.772512 1 .998338 .855257 1

n = 25 [169] (169/169) (64/123) (126/143)
1.00001 1 1.00155 0.848105 0.216079 1 .966097 .491432 1.001550

2opt 1.00002 1 1.00155 0.960519 0.602629 1.00099 .9748815 .686842 1.001550

Fig. 6. For the shown object graphs the desired matching is obtained by the convex optimization approach.
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section are not further optimized by the 2opt post-process-
ing step and are therefore the results of the convex relaxa-
tion approach (17), together with the linear optimization
(21) which is a convex problem too.

We added some small structure perturbations to this real
world example and the result for the structural perturbed
problem is shown in Fig. 7. Nearly the desired matching
is found but for the sake of clarity only the two undesired
mappings are shown. Note that the full desired matching is
very likely obtained by the two-opt post processing step.
Fig. 7. The matching result obtained with the convex optimization approach.
These perturbations are marked by arrows. Nearly the desired matching is fou
(compare with Fig. 6). Note that the 2opt post processing leads to the full de
The objective function (4) favors matchings which
map large edges of the first graph to large edges in the
second graph. Therefore, strong perturbations which
affect the large weights in the graphs are likely to lead
to a combinatorial optimum which corresponds to an
undesired matching. But from the viewpoint of computer
vision large weights can be expected to involve reliable
feature measurements. Therefore large weighted edges
are likely to be present in both the object and scene
graph.
In the graphs additionally to the weights also the structure is perturbed.
nd but for the sake of clarity only the two undesired mappings are shown
sired matching.
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7. Conclusion and further work

We showed that the convex programming approach is
a competitive approach for finding suboptimal solutions
to the weighted graph-matching problem. We compared
the convex approach with both a recent deterministic
annealing approach and an approach based on the eigen-
value decomposition. The performance of the latter
approach is worse whereas the deterministic annealing
approach performs similarly or slightly better, but uses
parameters values which were optimized by hand. The
advantage of the convex approach is that no ‘‘tuning’’
parameters have to be determined at all. Furthermore,
in contrast to the deterministic annealing approach, the
convex approach provides a lower bound and thus can
be used as a subroutine within an exact search strategy
like branch-and-bound. Our results and the real world
example show that it is an attractive direction of research
for solving relational matching problems in the context of
view-based object recognition.

Towards subgraph matching. Our further work will focus
on the case of graphs with an unequal number of vertices:
|VG|„|VH|. If this difference is small, our approach can be
applied by filling up the smaller graph with ‘‘virtual
nodes’’. In general, of course, this is not a satisfying way.
The consequence of different numbers of vertices is that
the unknown permutation matrix X becomes a matching
matrix, and that either of the two constants CG,CH in the
combinatorial objective function (5) changes to a term
which depends on X, too. In our further work we will
extend our approach to this more general case. For details
we refer to the dissertation [48].
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