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Abstract

We study the estimation and decomposition of optical flows from
highly non-rigid motions. To this end, recent methods from image de-
composition into structural and textural parts are combined with vari-
ational optical flow estimation. The approaches we suggest amount to
minimizing discrete convex functionals using second order cone pro-
gramming. Higher order regularization is necessary in order to ac-
curately recover important flow structure like vortices, and to incor-
porate key physically properties such as vanishing divergence, for in-
stance. For proper discretization, we apply the finite mimetic difference
method that preserves the identities fulfilled by the continuous differ-
ential operators. Numerical examples demonstrate the feasibility of
the complex approaches.
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1 Introduction

The representation, estimation, and analysis of non-rigid motions is rele-
vant to many scenarios in computer vision, medical imaging, remote sensing
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and experimental fluid dynamics. Especially in fluid dynamics, sophisti-
cated measurement techniques including pulsed laser light sheets and mod-
ern CCD cameras, as well as dedicated hardware enable the recording of
high-resolution image sequences that reveal the evolution of spatio-temporal
structures of unsteady flows [25]. In this connection, an important research
problem is to develop variational approaches that render flow estimation
from image sequences into a well-posed and numerically stable problem,
while preserving small-scale flow structures that are important for empirical
investigations of turbulent phenomena.

To this end, we investigate a novel class of variational flow estimation
schemes by combining higher-order flow regularization with recent tech-
niques developed for non-smooth image decomposition — see below for a
more detailed exposition. As a result, we obtain variational approaches that
allow not only for estimating fluid flow from image sequences but simulta-
neously yield a decomposition of the flow into coherent spatio-temporal flow
patterns and small-scale structures.

In the following, we briefly describe the respective basic ideas in a con-
tinuous setting. In the remainder of the paper, we will derive and investigate
discrete approaches using the so—called mimetic finite difference method de-
veloped by Hyman and Shashkov [18] that preserves the integral identities
fulfilled by the corresponding continuous integral operators.

Image decomposition. In image denoising one is typically interested in
removing noise without destroying important structures such as edges. This
goal cannot be achieved with linear filters, e.g. by minimizing

() = llg = FI2, 0+ A / IV £12 dady 1)
Q

for a given noisy image g(x,y) in Q C R2. The regularizer incorporates the
quadratic function ®(s) = s? with s = |V f|. Via the Euler-Lagrange equa-
tion this variational approach can be related to a linear diffusion equation.
As a consequence, the solution f smoothes g in a completely homogeneous
way and blurs therefore semantically important signal structures. To over-
come this drawback a variety of nonlinear methods have been proposed. One
of the frequently applied approaches replaces the function in the regulariza-
tion term by ®(s) = s and thus penalizes larger deviations of |V f| not as
hard as the quadratic function:
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This functional was first considered by Rudin, Osher and Fatemi [26]. For
f having partial derivatives in L; the regularizer coincides with the TV



semi-norm of f
1y = / V£ dedy.

In contrast to the linear approach (1) we will refer to this method as TV
approach. Based on the dual TV norm, the so—called G norm, this denoising
model was enlarged for the decomposition of given images ¢ into a structural
(cartoon) part f* and a textural part f* as

LY = o= (54 IR ey + ) [ 19| dady, 3)
Q

5.t 1l < 6.

For a more sophisticated treatment of the TV and G norms we refer to
[13, 21]. Meanwhile there exist various numerical realizations of (3), e.g.
[3, 24, 32, 34] . Although not considered in this paper, we note that there
exist other models including other than Gaussian white noise by using the
L; norm in the data fitting term [5, 23], noise as a third decomposition
component by applying Besov norms [4] or frame and TV /frame approaches
[12, 28] from Harmonic Analysis. Moreover, second order derivatives were
incorporated into the regularizer to avoid for example staircasing effects,
see, e.g. [8, 29].

In this paper, we are interested in the decomposition of vector fields
rather than scalar images. Specifically, we want to deal with optical flow
fields arising, e.g., in experimental fluid dynamics.

Optical flow estimation. Instead of a single image let us consider an
image sequence {g(z,y,t) : t € [0, 7]} with a time parameter ¢. A common
assumption is that image intensities are preserved over time:

g(x(tr),y(t1), t1) = g(a(t2),y(t2), t2) , t2>t1. (4)

Generalizations to other constraints exist but are not relevant for our present
investigation. The linearized version of the gray value constancy assumption
(4) yields the optical flow constraint

Gau1 + gyus + g =Vg-u+g =0, (5)

where the optical flow field v = (u1,u2)" := (&,9)" denotes the instanta-
neous velocities of image elements.

Obviously, equation (5) cannot be solved pointwise because at each lo-
cation and time point it consists in solving a single scalar equation for two
scalar unknowns. To overcome this so—called aperture problem additional re-
quirements have to be imposed. Instead of (5) we consider the least squares
approximation

F(u) = Vg -u+ g, q) (6)
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In 1981 Horn and Schunck [17] pioneered the field of regularization methods
for optical flow computation by suggesting to minimize the functional

J(u) = F(u) + )\/ |V |? + [Vug|* dedy. (7)
Q

We will refer to this widely used approach as Horn—Schunck model. Ob-
viously, the Horn—Schunck model suffers from the same drawbacks as the
linear image filtering model (1). The solution creates blurry optic flow fields
where the blur appears also across important flow discontinuities. One way
to overcome this limitation consists again in using another function in the
regularizer, e.g.

Tu) = 3 F(u) + A / (Vs + [Vugl?)? dady (8)
Q

as counterpart to the TV model (2), cf. [2, 14, 16].

In this paper we focus on non-rigid motion analysis. In particular, we
are interested in the representation of motions by components that capture
different physical aspects, e.g. solenoidal (divergence free) flows. Referring
again to experimental fluid dynamics, for example, the extraction of coher-
ent flow structures which are immersed into additional motion components
at different spatial scales [19] poses a challenge for image sequence analy-
sis. However, this goal cannot be achieved using first order derivatives in
the regularizer. Rather, based on early work on second—order regularizers
constraining the gradients of the flows divergence and curl [1, 9, 15, 30], we
deal instead of (7) with the functional

J(u) = F(u) —I—)\d/|Vdivu|2d$dy—|—)\c/|chrlu|2d:17dy—|—7/(8nu)2 ds,
Q

Q o0
(9)
where the boundary is incorporated for stability reasons, cf. [36, 38]. A
key property of this approach is that due to the second order of the flow
derivatives involved, the regularizing terms do not penalize the magnitude
of the basic low components involving first-order derivatives, i.e. divergence
and curl. To further motivate this approach consider Fig. 1 which shows the
estimation of a solenoidal flow field by first and second order approaches.
The figure clearly demonstrates the superiosity of the div—curl model.
Finally, related to the TV model (8), we deal with
J(u) = %F(u) +)\d/ |Vdiv ul dxdy—l—)\c/ |Veurl ul d$dy+% /(8nu)2 ds,
Q Q o0
(10)
involving regularizing terms that are of second order as in (9), and that are
additionally suited to preserve jumps of the divergence and the curl of a flow



field, respectively, by utilizing the TV-norm. As in image decomposition
we will extend this estimation approach to the decomposition of motion
vector fields into physically relevant components at different scales by using
a discrete equivalent of the G norm. Moreover, we will study the feasibility
of an extension to the simultaneous estimation and decomposition of optical
flows.
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Figure 1: Estimation of a typical solenoidal flow field u. Top: Restored flow
based on the Horn-Schunck model (7). Bottom: Restored flow based on
the second order model (9) Vortex structures are better recovered by the
div—curl approach (bottom), cf. [36].

Organization of the paper. We start by introducing our discrete set-
ting based on the mimetic finite difference method in Section 2. We define
scalar and vector fields on primal and dual grids together with appropriate
norms. Then we introduce the first-order operators, where we focus on their
matrix representation using tensor product notation. We show how integral
identities as the Gaussian integral identity and the Helmholtz decomposition
carry over to the discrete situation. Finally, we define discrete TV and G
norms with respect to the primal and dual grid. Based on these definitions
and results we consider the flow estimation task in Section 3. Here we are in-



terested in the linear versus the TV approach. While the linear method was
already treated in [36], the higher order TV approach is novel. In Section
4, we deal with flow decomposition by the TV-G norm model. To this end
we have to introduce a decomposition of the optical flow into components
with constant divergence and curl and variable components which can be
further decomposed into a ’structural’ part and a ’textural’ part. In fact,
these parts comprise flow patterns at different scales. In Section 5, we com-
bine the flow estimation and the decomposition model in order to solve both
tasks simultaneously. In Sections 3, 4 and 5 we especially focus on the prac-
tically relevant case of solenoidal flows. Some parts of Sections 4 and 5 were
previously announced at a conference [37]. Section 6 provides the numerical
algorithms to solve the convex optimization problems posed in Sections 3, 4
and 5. We used second order cone programming (SOCP) [35, 20]. Finally,
we demonstrate the feasibility of our approaches by numerical examples in
Section 7.

2 Discretization

For our discrete versions of the functionals we need a careful discretization
which preserves the identities satisfied by the continuous operators as, e.g.
div = —V*, curl V = 0, the Gaussian integral identity and the Helmholtz
decomposition. For discretizing the relevant spaces and differential operators
we apply the mimetic finite difference method introduced by Hyman and
Shashkov in [18]. This method defines the corresponding discrete operators
of V, div and curl simultaneously on two grids. These grids which we call
primal and dual grid are shifted with respect to each other by half a pixel.

Primal and dual scalar/vector fields. Corresponding to the grids we
define the following scalar fields and vector fields:

Hp: space of scalar fields on vertices,

Hg: space of vector fields defined normal to sides,

Hy . space of scalar field on cells,

Hp: space of vector fields defined tangential to sides.

By H%, Hg and Hp, we denote the corresponding spaces with zero boundary
elements. Finally, let Hy 19y and Hgy g be the extended version of Hy and
Hp to the boundary, respectively. If our primal grid consists of m xn vertices
then dim Hp = mn, dim Hy = (m—1)(n—1), dim Hg = m(n—1)+n(m—1)
and dim Hg = (m —1)(n —2) + (n — 1)(m — 2). The fields are illustrated in
Fig. 2.

While Hp and Hy are equipped with the usual ¢» inner product, the
inner products on Hg and Hg are defined with respect to the cells. To this
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Figure 2: Primal and dual grid. Left: Spaces Hp (dots) and Hg (arrows).
Right: Spaces Hy (dots), Hgy (squares) and Hp (arrows) for m = 5 and
n=4.

end, we consider the elements of Hg associated with the elements of Hy by

1
T
u =\, i, 1,U,; 1, Up 1 s Uy 1
Vit d+d \/5( bity? Vit Lty Vit g’ ’+§J+1)

fori =1,....m—1;57 = 1,...,n — 1. Then we define a dotproduct - :
HsXHS—>HV by

(( ) >>m—1,n—l < > m—1n—1
u-v .= U-vV),, 1 .,1 = u v
H3atal)ii= Viedary Vekard )

where (-,-) denotes the usual inner product on f2. Now the inner product
on the vector field Hg is given by

m—1n—1

=20 (v

i=1 j=1

and the corresponding norm by

2 m—1n—12
Hu”Hs : H(” v . +1 ”Z)i,jzl H2
1 '«
5 Z Z ,y+; +uz+1,y+% +u2+2,] +ul+2,]+1)
=1 j=1
Related to the #1 norm we define
m—1,n—1
lulpg = H(‘|UV.+% I2); ij=1 H1
1 &=«
2
2 Z Z \/ ,]—i—% +u 2+1,j+% +uz+2,] +uz+2,y+1

=1 j=1



Similarly, we associate elements of u € Hr with elements of H% by

1 T
Yr, T (W g Ui g Win o Yin L 5)

fori=2,....m—1;7=2,...,n—1 and set

HuH%IE = H(Hu”w Hz)znj;gn_l‘@’ lulfp = H(HUPU ||2)an_:12n_1H1

Primal and dual operators. We use the following discrete versions of
the first order operators V, div and curl with respect to the primal and dual
grid:

Grad : Hp — HE+6E7 Gradl : Hp — Hs

and

G:Hp — Hy, Div :Hs — Hy, GJ‘:Hj’D—>H§,

G:Hy — Hg, Div:Hy— Hp, Curl : HG — Hp.
Reshaping the scalar/vector fields columnwise into vectors of appropriate
lengths these operators act on the corresponding vector spaces as matrices
which can be described by using the first order forward difference matrix

-1 1 0 ... 0 0O
0o -1 1 ... 0 00
Dm = E]Rm—l,m7
0o 0 o0 ... -1 120
0O 0 0 ... 0 -1 1

and the tensor product ® of matrices. Then we have

_ In®Dm 1 _Dn®Im
Grad-(Dn®Im>, Grad —< In®Dm>

which explains the notation +. The operator Gt is just the restriction of
Grad* to H?P,. Altough G is not the restriction of Grad to Hp we will again
use the notation -. More precisely, we define

_ Iy 2® Do 1 D£_1®Im—2
b= < Dy 2 ® I > e = ( ANy

Div = ( In—1®DmyDn®Im—1 )

where I,, denotes the n x n identity matrix and the matrices are considered
without the zero rows/columns due to embedding. Then we have on the
dual grid

G = —(Div,,)", B = ~G, Turl = (G)" (11)



where the adjoint operator corresponds to the transposed matrices. Using
properties of the tensor product of matrices we obtain that curl V = 0 reads
as

Curl G=0, Div Gt =-G*Curl *=0. (12)
We extend the operator G to Hy L5y by incorporating the boundary ele-
ments Hyy into the forward differences. Since the distance of a boundary
point to its neighboring inner point is only % we have to multiply the dif-
ference filter (—1,1) at the boundary by 2. The matrix of the resulting
operator

is given in the appendix. Finally, we define another extension of G in one
of the following ways:

- apply a linear extrapolation operator from Hy to Hy gy and then
@17

- apply G and then a constant extrapolation from HE to Hg.
Both procedures result in the same operator
Gy : Hy — Hg
given in matrix form in the appendix.
Discrete integral identities. Next we are interested in a discrete version

of the Gaussian Integral Identity fQ divudx = faQ n-uds. To this end, we
introduce the boundary operator

B I, 1® B, 0
’ 0 Bn X Im—l ’
where 0 are zero matrices of appropriate sizes and
(-1 0 ... 00 2m
Bm’( 00 ... 01>€]R :

Then the mimetic Gaussian Integral Identity becomes
We will apply the following discrete version of the Helmholtz decomposition:

Proposition 2.1 (Mimetic Helmholtz decomposition)
Anyu € Hg can be decomposed into an irrotational part uy, and a soleniodal
part ugo by

U = Ujpy + Usgol = le + Gl()@ (14)

where ¢ € H% is uniquely determined and ¢ € Hy gy is uniquely deter-

mined up to an additive constant. Moreover the decomposition is orthogonal
in the sense that <G1w,Glcp>Hs =0.



Proof: By (12) and since G; considered as mapping onto HE equals G we
see that

Curl uypr = Curl G1p =0, Div ug = Div Glgp =0.

Therefore we have indeed an irrotational and a solenoidal part.

By definition of the matrices it is easy to check that dimR(G;) =
dim Hy gy —1 = mn+m+n—4, and dimR(G1) = dim HS = (m—2)(n—2)
so that dimR(G1) + dimR(G') = dimHg. Here R denotes the range of the
operator. By (11) and (12) we obtain that

(G119, G ) g = (Curl Gro, ) g, =0

and consequently Hg = R(G1) ® R(G1) with the orthogonal sum &.

Since G has full rank, the potential ¢ is uniquely determined by ).
Since the kernel of Gy is given by N (G;) = {ldgim Hy,py : ¢ € R} we have
that v is uniquely determined by u;, up to an element from the kernel. This
completes the proof. O

Conversely, assume for u € Hg that

p = Divu = Ng,
= Curlu = A,

where

Ng:=Div Gy, A.:=Curl G+

are given. Since A, : Hp — Hp is invertible, the potential ¢ is uniquely
determined by w while ¢ (and u) are given only up to a laminar flow wujay,
with vanishing Div and Curl. The laminar flow can be determined by
boundary conditions where we have to take the mimetic Gaussian integral
identity (13) into account. More precisely, we have the following proposition,
cf. [37]:

Proposition 2.2 The operator
Div
H = Curl c RdimHs—l—l,dimHs
B
provides a bijection between the spaces Hg and
Vs :={(p,w,v)": 1§imHv p= 1§imH@V v}
More precisely, if (p,w,v)" = Hu then u = H'(p,w,v)”, i.e. the inverse

mapping on Vs is given by the pseudo-inverse HI := (H™H)™'H"™ of H.
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In case of a solenoidal flow field from {u € Hg : Div u = 0}, we have by
Proposition 2.1 that Div G1¢» = 0 and Curl Gi¢» = 0. Hence G1v¢) = ujam

is a laminar flow and
U = Ujam + Usol = G190 + G, Hu = (0,0,v)T + (0,w,0)". (15)
Further we have the following Proposition:
Proposition 2.3 Fvery soleniodal flow field w € Hg can be written as
u = Gradt¢ (16)
for some ¢ € Hp.

Proof: By properties of the tensor product it is easy to check that
Div Grad™ = 0 so that the right-hand side of (16) is indeed solenoidal.

By Proposition 2.2 we obtain that dim({u € Hg : Div u = 0}) = mn—1.
On the other hand we have dim(R(Gradt)) = dimHp —1=mn—1. O

Primal and dual TV /G norms. For our optical flow decomposition and

estimation we need discrete versions of the TV norm | f|lty := [ |V f|dzdy

and the G norm | f|q¢ = fi%'f | p| |z Where |p| := (p? + p3)'/? for a
=divp

vector field p = (p1,p2), P1,P2 € Loo. For a more sophisticated treatment of
these norm in the continuous setting see, e.g. [13, 21].
For w € H} we set

[wllTv = ‘GW’H%-

This defines a semi-norm on Hp. As usual we will skip the prefix ’semi’
in the following. Let N := dim H%. According to the norm in Hg let S :
RAimHg _, RAN be the matrix which assigns the four appropriate elements

of HY to each point of H%, cf. appendix. For w := (w!, w?, w? w!)T € R
with w" := (w;f)é-vzl, r=1,...,4 we define the vector
N
wl == ([l(w))r=ill2) - (17)
Then the TV norm can be rewritten as
[wllrv = [[[SGw] |1
Now the G norm of w is defined by
lwllg == min_[[|jw|[lc = min [[|w]]e.
w=G*S*w w=Div S*w

Similarly, we can define the TV and the G norm on Hy . For p € Hy let
Ipllrv = |Ga P!HS :

11



We focus on the second way of extending G to G and introduce the operator
S : RIMHAS RN with N := dim Hy which constantly extrapolates from
HE to Hg and assigns the elements of Hg to those of Hy . For the matrix
structure of S see the appendix. Then we obtain that

ol = 11SG pl 11

and

lollg= min [[|p|[lc=min [/|p|[le- (18)
p=G*S*p p=Div S*p

The G norm (G norm) can be considered as dual to the TV norm (TV
norm) in the following sense.

Proposition 2.4 For @ € R(G*S*) the following relation holds true

[{@, w)

sup = [©lle- (19)
lollev0 @]y

Proof: 1. Set
L:=SG:RY - RYW, N :=dimHY.

Then, using the notation (17), the relation (19) can be rewritten as

w,w
sup u = min 1] oo = R(LT)‘
Ll a0 w1 a=LTv
Let v(®) :==  sup ||‘|<$:‘)u|}>||‘1' By applying the Schwarz inequality to the

Il 1 L] []170
four parts of the corresponding vectors in R*Y, we obtain for all v € R*V
with LTv = & that

(@,w) = (v, Lw) < (|v],|Lw|), VYweRY,
and then obviously

(ol [Lw]) < Lol Ll ol loo Vo € RY.
Consequently, we have

v(@) < min [|o] .
= v

To show the reverse direction we consider the subspace B := R (L) of R*V
equipped with the norm ||| - |||;. Let @ with L™® = @ be fixed. Then the
mapping l(Lw) := (0, Lw) is a linear functional on B which has exactly the
norm v(w). By the Hahn-Banach Theorem this functional can be extended

12



to a linear functional I on (R*V ||| |||1) with ||I|| = ||lz||. Then there exists
o € R* such that I(v) = (§,v) for all v € R*" and

(0, Lw) = (0, Lw) Yw € RY.

Since this can be rewritten as

-
,_]
=
£
Il

(L™, w) YweRY
the vector v must fulfil L0 = L™® = &. Then
v(@) = llall = 7l = 7] |loo,

where the last equality follows from the fact that || |-|||; and || || ||co are dual
norms on R*V. Thus, v(@) > min || |v] |loo and we obtain the assertion. [
w=L"v

3 Flow estimation

Assume now that we are given an image sequence {g(-,j) € Hy : j =
1,...,T}. For fixed j € N, we set g = ¢:(j) :=g(-,j+1)—g(-,7). Then the
data fitting functional (6) can be discretized by

F(u) = [Gag - u+ gellf,

with the dotproduct on Hg and by applying the mimetic Helmholtz decom-
position (14) by

F(1h, ) = |Gag - G19p + Gag - G + gtll7r, -

This further decomposition can be useful from two points of view. First the
vectors ¢ and ¢ have only approximately half the lengths of the vector wu.
Secondly this approach allows for efficiently handling solenoidal flows which
are very common in computational fluid dynamics.

To discretize the boundary integral [ (8,u)*ds in (9) and (10) we use the

o0

operator

B :— In—l@B;?l% 0

' 0 B ®I,_1
with
-1 1 ... 0 0
n .__ 2m
Bm“( 00 ... -1 1>6R ‘

For the smoothing penalizer we distiguish between the linear and the TV
approach.
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Linear approach. The discrete version of the functional (9) becomes

J(u) = F(u) + A [|[Ga Div ul|,_ + Ac |G Curl ul

2 2
HY, +7 ”Bnu HaHs : (20)

The minimizer u of (20) can be obtained by solving the corresponding nor-
mal equation.
Using the Helmholtz decomposition together with w,, = (le)laHs

and (12), problem (20) can be rewritten as

— 2 el 2
J(wa QO) = F(w7 (10) + )‘d HGQ Ad wHHS + )\C HGAC (‘0”%{% +7 HB qu/}”aHs :
(21)
Since 1 is only determined up to a constant we add the additional condition

1gim Hv+@v7/) =0
to make the functional strictly convex. This problem can be solved by sub-
space correction methods [31, 33]. More precisely, we iterate the following
process: we consider ¢ as given and find the solution ¢ of (21) via the
normal equation. Then we fix this solution as ¥ and compute ¢.
In case of a solenoidal flow field u € Hg we can apply (15) and our
variational problem reduces to

= 2
J(W,0) = F(h,0) + AcllG Lcpllfry + 7B C1o[| o,
s.t. @2 Ngp =0, 1£imHv+avw =0.

The linear case was more extensively treated by some of the authors in [36].

TV approach. Functional (10) becomes
1 , —_— Y o
J(u) = 3 F(u) + Mg [|Div ulgy + Ae H(Curl uHTV + 3 |B uH%HS (22)
and by applying the Helmholtz decomposition

1 Y A 2
J(lb,sﬁ) = §F(¢790)+)‘d ”Adw”ﬁ"i_)‘cHAc(p”TV"i_E HB leHé)Hs’ (23)

where 1}, 4 1 = 0. In case of solenoidal flows the functional further
Hyov !’
reduces as in the linear case.

To solve (22) we propose SOCP, cf. Section 6.

Alternatively, we can apply again a splitting algorithm in (23) which
iteratively fixes ¢ as previously computed and finds the minimizer ¢ and
conversely. Then any of the subproblems with fixed ¢ or fixed % can be
written in the form

1
114w = Bl + Al La |1 (24

where A : RiimHAvioy _, RdimHy 1 . RdimHyiov _, RAGMHAv iy cage of
fixed ¢ and A : RimHAp _, RdimHy = . RdimHp _, RAdimHp i) case of
fixed ¥. The minimizer of (24) can be found by applying dual optimization
techniques as proposed by Chambolle et al. [3, 7, 6].

14



4 Flow decomposition

In this section, we want to decompose a given flow vector u € Hg in a
meaningful way. To this end we have to compute some basic decomposition
of u first. We apply Proposition 2.2 and consider Hu = (p,w,)". Let

T T
dimHy P 1dimH1% w
Cpi= ——— :

dimHy * 7 “dimHg
be the discrete versions of |Q™! [, divudazdy and |2 [, curlu dzdy and

Pconst = Cp 1dimH\m Weonst += Cw 1dimH‘F’,- (25)
Then we can decompose (p,w,v)" € Vg as

(/07 w, V) = (pconsta Weonst V) + (pvar, Wvar 0)7 (26)

T ot _ . .
where 1dimHV Pvar = 1dimH1ngar = 0. Obviously, both summands are in Vg
again so that

U = Uconst T Uvar

is the corresponding basic decomposition of u € Hg, where

Uconst = HT((pconsta Weonst 5 V)T Uvar = HT (pvara Wyar O)T
We call vector uconst, resp. (Pconst,Weonsts V), the basic pattern of the non-
rigid flow and its boundary behaviour while tyay, resp. (pvars Wvar,0), 1S
related to the variable (oscillating) flow pattern.
We are interested in further decomposing the intrinsic flow variation tyay
into a structural part u*® and a texture part u?, i.e.,

t
Uygr = U’ + 1.

This can be done in two ways. The first approach uses Proposition 2.2.
Given u € Hg, we compute (p,w,v)" = Hu and then pyar = p — peonst
and Wyar = W — Weonst by (25). Next we decompose pyar = p° + pt and
Wyar = w* + w! by minimizing separately

1
To%p") = S lpvar =0 = p'll3 + Nallo* oy + palle'll,

J@'w') = 3l —w' =3+ Aoty + pelloll

5|

The minimizers can be computed as proposed in [3]. By (18) we see that

p' € R(G*) = R(Div),,, ) and since 1"Div,,, = 0 we have that (p,w",0)" €
S S

Vs and further by (26) that (p*,w?®,0)T € Vg. Thus we can finally compute

u® and u’ by

ut = H(p*,w®,0)T, ul =H(pw' 0)T.
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In this paper, we prefer a second approach that computes the compo-
nents of v directly. This variational approach extends Meyer’s model for the
decomposition of scalar-valued functions to the simultaneous decomposition
of vector fields into basic and variable (structural and textural) flow pat-
terns. Moreover it also fits into our flow estimation-decomposition model
in the next section. For u € Hg we propose to to find uc¢onst € Hg and
u®,ut € H?g by minimizing

J (teonst, u®, ut) = Ag || Div |7 + Ae H(Curl USHTV (27)
st. |Div u'llg <dq, ||Curl uf|jg < 6.
Uconst + u° + ut = u,
GDiv teonst = 0, GCurl teonst = 0,
1§imH}%WUS =0.
Concerning the last three constraints we note the following: To obtain the
desired decomposition we have to ensure that Div Uconst and Curl uconst are
constant vectors c1 and that 1}, 5 Div (u® + ul) = 0, 1£imH}g(Curl (u’® +
u') = 0. The first two conditions are fulfilled by the fourth and fifth con-
straint. The third condition is fulfilled by the mimetic Gaussian integral
identity and since u*, ut € Hg. The last condition follows by the last con-

straint and since Curl u' € R(Div ) and 1"Div = 0.
The solution of (27) can be found by SOCP as shown in the Section 6.

5 Flow estimation and decomposition

In this section, we combine optical flow estimation with structure-texture
flow decomposition. Given image sequence {g(-,j) € Hy : j=1,...,T}, we
want to compute the components uconst With constant divergence and curl,
the large scale patterns u® € Hg of divergence and curl with bounded TV
norms, and the small scale patterns u’ € HZ of divergence and curl with
bounded G norms. To this end, we introduce the fitting functional

F(uconstyusaut) = H@Qg : (uconst +u® + ut) + gtH%

Then, with respect to the previous section, one can consider to minimize

1 , -
J (Ueonst, u®, u') = 5 F(eonst, u®, u') + Ag||Div u® ||y + Ael|Curl w®|| v

~
+ LBl

st. |Div ullg <da, [|[Curl u'|g < 6,

GDiv teonst = 0,  GCurl ueonst = 0,

1gimH%(Curl u® = 0.
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Unfortunately, this approach is not well-posed. For the image areas where
Vg = 0, the data term disappears, and the local constraints on the G-norms
will lead to unbounded solutions. Therefore, we propose to replace the G
norm by the Lo—norm which leads to

1 ] _
J(uconsta u87 ut) = 5 F(uconsta u87 ut) + )\dHDZU USHW + )\CH(CUTZ USHTV
+ palDiv w3 + el Curl o' |3+ SIB"ul3g,  (28)
s.t. GDiv teonst =0, GCurl ugonst = 0,

1§imHlo3((Curl u® + Curl u') = 0.

We will see in our experiments that this approach works well although the
superiosity of the G—norm over the Ly—norm in capturing (scalar) oszillating
patterns was experimentally shown in [4].

Finally, we are interested in solenoidal flows u € Hg. Coupling the
mimetic Helmholtz decomposition and the basic decomposition we obtain
with the laminar flow G4 and ¢ = peonst + ©° + ¢! that

U = Uconst + u® + ut = (@17/) + Gl@const) + GJ_‘;DS + Gl@t-

1

o,

By Proposition 2.3 and since Grad- = G this can be rewritten as

u = Gradl((bconst + SDS + (Pt)a (b € HP7 9087 (:Dt € H%
Then the fitting term reads

F(¢const7 9087 Spt) = H@Qg : Gradj_(gbconst + 908 + Spt) + gtH%

and (28) can be rewritten as

TGeonsts #°,6) =3 F(Geomss#%,0) + Acllbe v + il el (29)
+ 5 [B"Grad" deons 31
s.t.  GCurl Gradtdeonst = 0, 1gimngAC(cps + ") =0,
1gimH P Geonst = 0,

where the last constraint appears since @const is only determined up to an
additive element from the kernel of Grad' which consists of constant vector
fields.

6 Algorithmic aspects - SOCP

Our computational approach to flow estimation via (27) and to simultaneous
flow estimation and decomposition via (29) is based on second-order cone
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programming (SOCP) [20]. This amounts to minimizing a linear objective
function subject to the constraints that several affine functions of the vari-
ables have to lie in a second order cone £*T' C R™*! defined by the convex

set
x
= {<t> = (@1, wn,t) " 2 < ’f}‘

With this notation, the general form of a SOCP is given by

(A,x + bi

inf f'z, st.
inf f'z, st c;fpx—l—di

>6£"+1,i:1,...,r. (30)
reR™

Problem (30) is a convex program for which efficient, large scale solvers
are available [22]. In connection with TV-based image decomposition the
application of SOCPs was recently suggested in [35, 34].
We reformulate the variational approach (27) as the SOCP:
J(uconst, us’ ut) = )\dlgimHv'U + )\C]‘gimH%w
S.t. Uconst + u° +ul =u, GDiv teonst = 0, GCurl teonst = 0
1gimH%(Curl u® =0, Divu' =Divpg, Curl u' = Div p.

GDiv u? CCurT oS

v w
\% P;
i+%.i+3 &

(Pd)vH%,H% €5 (pC)Pm‘ c Lo
5 e

In order to incorporate the quadratic terms of the variational approaches to
optical flow estimation, we use the following rotated version of the standard
cone:

T 1
R = {($>$n+1,$n+2) e R"2: 3 [2[3 < Zn1Zn12, Tngt, Tngo > 0}-

Fixing x40 = 1/2, we have ||z]|3 < x,41. Now we can rewrite (29) as
follows:

J(¢C0nsta 9087 th) =v+ pct + AclgimH;’gw
s.t. GCurl GradL(bconSt =0, 1;me Dconst = 0
Liimmg Dc(@” +¢') = 0,

GO Acp'
<(G cf )vﬁ%’ﬁ%) c £57 ; c RAimHp+2

wVi,j 1/2
@29 : GradJ_((bconst + SDS + (pt) + g:
v € RdimHy+2
1/2
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7 Numerical Examples

In this section we verify our approaches by numerical examples. The pro-
grams were written in MATLAB and used the software package SeDuMi for
SOCP [27]. Unfortunately, we do not have an automatized choice of param-
eter values. Parameter values were chosen by hand following two general
rules: (i) Choose the weights as small as possible in order to not smooth out
turbulent motion. (ii) For TV-terms, smaller values than in the linear case
(e.g., (21)) are appropriate, because these regularizers return larger values
than their linear counterparts (assuming that image data are scaled to the
range [0, 1]). Rule (ii) leads to parameter values of the order o< e~*. Thanks
to the mimetic discretization, this suffices for numerical stability

Flow estimation. We start by comparing flow estimations obtained by
the linear approach (21) and the TV approach (23). We consider the ar-
tificial example in Fig. 3 with the groundtruth on top of Fig. 4. Fig. 4
(middle) was obtained by solving the linear systems of equations resulting
from (21) with parameters Ay = 0.06, A\. = 0.048. As boundary parameter
we have used 7 = 0.04. The result shows the typical blurring effects at the
edges. If we decrease the parameter values the rectangular shape of div and
curl becomes better visiable but the artefacts always visible in Fig. 4 (mid-
dle) increase too. The bottom of Fig. 4 containes the solution of (22) with
the parameters Ay = ¢ %, \. = ¢7% and v = ¢~ by SOCP and 17 iterations.
As expected for this example, the TV approach gives very good results by
preserving discontinuities of flow derivatives (div, curl).

Figure 3: Frame g (left) and its warping with the groundtruth flow (right)
for flow estimation by the linear approach and the TV approach.

Flow decomposition. Figure 5 shows a turbulent flow field u as ground
truth along with its divergence p and curl w. Applying the variational
method (27) with Ay = 0.2, A\, = 0.5, and é4 = 0.05, §. = 0.1, we obtain
the decompositions depiced in Figures 6 and 7. The structural and textural
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Figure 4: Top: The groundtruth flow wu, its div and curl (left to right).
Middle: Linear reconstruction by (20), difference between u and its estima-
tion, reconstructed div and curl (left to right). Bottom: TV reconstruction
by (22). difference between w and its estimation, reconstructed div and
curle(left to right).
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components recovered the interesting motion patterns at different scales,
which are not easily visible in the flow wu itself.
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Figure 5: Ground truth data to be decomposed: flow field u (left), its
divergence field p (middle), and its curl field w (right).

Flow estimation and decomposition. In this section we will validate
the flow estimation—decomposition model (29). First we created a divergence-
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Figure 6: The components of the flow u from Fig. 5: uconst (left), u® (middle),
and u (right). The vectors of u®, u' are scaled-up for better visibility. Note
that despite |u| &~ |uconst|, the structural and texture part u® and u' are
recovered well.
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Figure 7: Decomposition of u from Fig. 5 with the approach (27). Top:
peonsts P55 pt (left to right). Bottom: weonst, w®,w! (left to right). The struc-
ture and texture components reveal turbulent flow patterns at different
scales which are not easily visible in the flow u itself.

free ground truth flow field u by superimposing a dominant laminar flow with
some turbulent vortices structures, see Fig. 8. Using this flow, an artificial
image sequence {g} was created.

Figures 9 and 10 show the decomposition-based optical flow estimates,
where we have used A\, = 6e~® and y. = 3e~*. The boundary parameter
was choosen slightly smaller than Ay. The u¢onst component nicely recovered
the laminar flow, whereas the structural and textural components reveal the
turbulent curl field. Finally, Fig. 10 gives a close-up view of a section of
Fig. 9.

Real-world example. Figure 11, top-left, shows a sample image of the
experimental evaluation of the spreading of a low diffusivity dye in a 2D
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turbulent flow, forced at a large scale. The passive scalar is a mixture of
fluorescein and water. The divergence of the corresponding flow vanishes.
For more details about the experimental setup, we refer to [39].

Figure 11 shows the components of the flow and curl field estimated in
terms of Geonst, ¢°, ©' by minimizing (29) (parameter values: A\, = le™, p. =
3e™4 v = be~4). This result clearly demonstrates how the convex con-
strained optimization approach allows for estimating complex flows while
simultaneously separating large-scale coherent motion patterns from turbu-
lent fluctuations.

AR 7
CLLIIII

N
N
\

Figure 8: Ground truth data u (left) and its curl (right) to be estimated from
a corresponding artificially created image sequence. Here u is a superposition
of a laminar flow and turbulent vortices.

TN

el

-

Figure 9: Estimated and decomposed flow corresponding to Fig. 8 using
the TV — Lo approach (29). Top: ueonst, u® and u! (left to right). Bottom:
Weonst, w® and w! (left to right).
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Figure 10: Close-up view of a section of Fig. 9. From left to right: w?®, w’, w®+
w! with the corresponding flows as overlays.

A Additional matrix notation

The extensions Gy, Gy of G = —(Div | Hg)* = ( 55;‘_11%]3,::1 ) are given as
follows: Let

-2 2 o0 0o 0 o0
o -1 1 ... 0 0 0
1 . . . . m,m+1
D, = o eR
o o0 o0 -1 1 o0
o 0 o 0 -2 2
and
-1 1 o 0 0 o0
-1 1 o 0 0 0
o -1 1 ... 0 0 0
2 . . . m+1,m
Dy, = o eR
o 0 0 ... -1 1 0
o 0 0 ... 0 -1 1
o 0 o0 0 -1 1

and let the diagonal matrices Z; and Z5 be defined by

Zy = (O(n—l)m,m—la I(n—l)(m—l—l) ’ O(n—l)m,m—l) )

Tm—1 Om—1,(n—1)(m+1) Om—1,m—1
Z2 = Otn—1)(m=1),m—-1 In-1®Om—-1,1,1m—-1,0m-1,1)  O(n_1)(m—1),m—1 ,
Om—1,m—1 Om—1,(n—1)(m+1) Tm—1

where 0y, ,, is the matrix consisting of m x n zeros. Then
. . (In—1®D;,)Z1 e In_1®D2,_,
G := ( (D}, @ Im—1)Z2 )’ Gy = ( D2 _ | ® I, 1

The matrices S and S for the computation of the TV and G norm can be
defined using

Ly, (a) := v 0117:"‘1 . Rp(a) = Ll
( ) ( )

01,m—1 ﬁa
as

fn—Q@]L%m—Z’»EO; 0 f'n.—l ®Ilém_2E1; 0

- n—2® Ry _3(0 0 Q. n—1® Ry _2(1 0

Si= 0 Ly—3(0) ® Iy—2 ’ Si= 0 Lp_2(1) ® Ip—1 :
0 0 —2(1)®

Ry, —3(0) ® Injp—2



Figure 11: Top-left: frame of a real image sequence depicting the mixture
of fluorescin and water [39]. Top-center: the turbulent solenoidal flow esti-
mated by minimizing (29). Flow vectors are color-coded for better visibility
(color ~ direction, magnitude ~ brightness). Top-right: the curl field com-
prising large-scale patterns immersed in turbulent oscillations. Middle, from
left to right: tconst,u®,u’. Note that wueonst contains the (non-vanishing)
boundary values, and how u® and u! separate coherent motion patterns and
turbulent fluctuations, respectively. Bottom, from left to right: the curl
fields weonst, w® and w?.
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