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Abstract We present a novel convex shape prior functional
with potential for application in variational image segmen-
tation. Starting point is the Gromov-Wasserstein Distance
which is successfully applied in shape recognition and clas-
sification tasks but involves solving a non-convex optimiza-
tion problem and which is non-convex as a function of
the involved shape representations. In two steps we derive
a convex approximation which takes the form of a mod-
ified transport problem and inherits the ability to incor-
porate vast classes of geometric invariances beyond rigid
isometries. We propose ways to counterbalance the loss
of descriptiveness induced by the required approximations
and to process additional (non-geometric) feature informa-
tion. We demonstrate combination with a linear appear-
ance term and show that the resulting functional can be
minimized by standard linear programming methods and
yields a bijective registration between a given template
shape and the segmented foreground image region. Key as-
pects of the approach are illustrated by numerical experi-
ments.

Keywords Shape prior - Wasserstein distance - Convex
relaxation - Image segmentation

1 Introduction

1.1 Overview, Motivation

Convex variational approaches have been applied success-
fully in image processing and computer vision to obtain
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nearly global optimizers for models that are originally com-
binatorial and hard to solve exactly [7, 16, 21]. The energy
functionals are usually composed of a data term and a reg-
ularizer. In image segmentation the data term can be used
to process various kinds of local features whereas the reg-
ularizer aims to keep the resulting segmentation contours
smooth.

To this date the global shape of the contour has not
been incorporated into this framework in a satisfying fash-
ion. Common proposals to formulate shape-prior function-
als describe shapes by parametrizing their contour or as
the level set of a function, suitable for applying machine
learning methods to obtain a notion of the set of allowed
contours [8, 9, 27]. However there are several severe draw-
backs:

(i) The contour representation is not computationally
compatible with the usual representation of segmen-
tation regions by their indicator functions. The map be-
tween the two representations is mathematically com-
plex.

(i) Except for the simple case of Gaussian statistics
more sophisticated penalty functions employing kernel
methods tend to yield highly non-convex functionals.

(iii)) Making the prior functional invariant under repara-
metrization of the contour or Euclidean isometries is
a tedious task. While this alleviates the problem of cor-
respondence between contour points, the mechanisms
underlying shape matching and the integration of such
a prior with variational segmentation are involved com-
putationally and from the viewpoint of optimization.

For the tasks of shape recognition, classification and for
finding meaningful correspondences between two shapes
powerful approaches based on the Gromov-Hausdorff Dis-
tance and related shape similarity measures have been ap-
plied, being able to handle vast classes of transformations
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Fig. 1 Shape prior based convex variational segmentation: (a) Tem-
plate shape for representing prior knowledge. (b) Input image, gray
values are interpreted as foreground affinity coefficients (white indicat-
ing foreground). (c) Globally optimal segmentation: the correct shape
is located. Clutter and objects with wrong shape are neglected

of the data (see Sect. 2.2). But the power is paid for by
computational complexity. Thus, usually only subsets of the
shapes, obtained e.g. by farthest point sampling, can be com-
pared, which is not enough if the segmentation process re-
quires resolution on the pixel level. Also these frameworks
consider the shapes to be static in the sense that they are only
concerned in computing the distance between fixed shapes
and do not address the question of how one shape should be
altered to obtain a better matching.

1.2 Contribution, Organization

In this paper we propose a novel approach to modelling
shape priors for guiding image segmentation. We will rely
on metric measure spaces (mm-spaces) [13, 20] for shape
representation. Due to its computational complexity the
Gromov-Wasserstein Distance cannot be used for the con-
struction of shape prior functionals directly. Its evaluation
involves solving a non-convex quadratic assignment prob-
lem and it is non-convex as a function of the compared
shapes. To overcome these problems we present two suitable
approximation steps, arriving at a modified Wasserstein Dis-
tance with a particular cost function and relaxed marginal
constraints.

The representation of shapes by mm-spaces is compati-
ble to the representation of segmentation regions by relaxed
indicator functions which simplifies the application in vari-
ational segmentation approaches. In this paper we demon-
strate combination with a linear appearance term common
to many models. We show that in this case shape optimiza-
tion and distance computation for the optimal shape can be
performed simultaneously by solving a single partial linear
assignment problem.

The key aspects of the proposed approach are

(i) a sound mathematical basis for both shape and match-
ing,
(ii) its convexity which yields globally optimal results in-
dependent of initialization,
(iii) the generation of a full correspondence between two
given shapes,

@ Springer

(iv) the implementation of large classes of geometric invari-
ances by choosing a suitable metric,

(v) representation compatibility which simplifies combi-
nation with other terms (e.g. appearance model) and
application in image segmentation tasks (for a related
framework see [25]),

(vi) the applicability to a wide range of data within the very
same framework based on metric measure spaces.

Figure 1 illustrates an example of how the proposed
shape prior can be applied to image segmentation in a con-
vex variational framework.

The scope of this paper is to present the mathematical
framework and to illustrate the properties above by a range
of numerical experiments. The integration of the approach
into a full variational segmentation approach is beyond the
scope and subject of our future work.

The rest of the paper is organized as follows: Sect. 2 will
review related literature, Sect. 3 will introduce the neces-
sary mathematical background for our own developments,
described in Sect. 4. Numerical illustrations of the proposed
prior will be discussed in Sect. 5. The paper concludes in
Sect. 6.

2 Related Literature
2.1 Wasserstein Distance in Image Processing

The notion of optimal transport dates back to the 18™
century when Monge considered the question of how to
move construction materials in the most efficient way. Kan-
torovich independently rediscovered the problem in the 20
century in a convex formulation apt for the language of lin-
ear programming. Optimal transport since then has been
studied by numerous researchers and applied to a wide range
of problems in various fields (see for example [29] for a
modern comprehensive monograph and a brief historical
outline). Thus, a variety of labels and names is associated
with it: Optimal Transport, Mass Transport, “Earth Mover’s
Distance”, Monge, Kantorovich, Rubinstein, Wasserstein, to
name a few. For the sake of readability we will in the follow-
ing use the term Wasserstein Distance without intending to
take credit away from everyone else.

Also in mathematical image processing the Wasserstein
Distance has become a powerful tool: In [14] the L? Wasser-
stein Distance between two grayscale images is computed.
The application in mind is to obtain registrations between
different images of a non-rigid object in different states of
deformation, a task that for example comes up in analyz-
ing medical imaging data of moving organs. The questions
of geometric invariance and combination with appearance
models are not addressed in this paper: a meaningful reg-
istration will only be computed if the images are aligned
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properly and gray values are directly converted into mass
densities without handling potential detection errors.

The authors of [4] use the Wasserstein Distance as a mea-
sure of data-fidelity in an image regularization task. Given
noisy input data a target measure is sought after that min-
imizes the weighted sum of a regularization function and
the L? Wasserstein Distance between input and target. Nat-
urally the target measure is not known beforehand. This is
a common feature of our work presented here although we
swap the roles, as we are not concerned with density esti-
mation: The Wasserstein Distance will play the part of the
regularizer while another function will determine the fidelity
between in- and output.

The idea of [22] is to compute the Wasserstein Distance
between point clouds of descriptor vectors taken from two
different objects to perform shape classification. For this
purpose working with subsamples (in [22] only taken from
the contours) of two shapes is sufficient. This will not be
possible when a full correspondence is wanted. The gen-
eration of the descriptor vectors only uses shape-internal
geodesic distances and thus is invariant under the corre-
sponding class of geometric transformations. Hence, the
method is able to recognize the same shape in different poses
which leads up to the next point to be discussed.

2.2 Isometry Invariant Shape Classification

An important challenge in shape related tasks is the incor-
poration of various geometric invariances into the process.
In this context it has proven to be a powerful approach to
represent shapes by autonomous metric spaces, detaching
them from their embedding spaces and thus providing large
classes of invariances, depending on the choice of the met-
ric. Equipping an object with the Euclidean metric of the
embedding space renders internal distances invariant under
translations, rotations and reflections, the Euclidean isome-
tries. Articulated, non-rigid objects can appear in various
poses with very different Euclidean distances in the embed-
ding space. The geodesic metric based on pathlenghts on
or within the shapes is (in addition to Euclidean isometries)
approximately invariant under so-called bendings, deforma-
tions that for example correspond to the movement of a joint.

For classification purposes one then has to develop a no-
tion of distance between two such metric spaces. One could
compute some kind of shape signature based only on the in-
trinsic metric information and compare these signatures for
classification purposes. See [22, 23] for signatures of dif-
ferent complexity, ranging from a sequence of numbers to
point clouds in low dimensional spaces. In [11] the shapes
are first detached from their Euclidean embedding space
and equipped with their geodesic metrics. Then they are
re-embedded into another low dimensional Euclidean space
trying to replace the geodesic by the Euclidean metric with

as little distortion as possible (see Multi-Dimensional Scal-
ing). This strips off the vast class of non-Euclidean geodesic
isometries from the representations. The remaining isome-
tries can separately be dealt with by the final comparison
process.

Alternatively, as proposed in [20] one can use the
Gromov-Hausdorff distance (introduced in [13]) to measure
directly the similarity of the whole metric structures corre-
sponding to two shapes, yielding equality if and only if the
two derived metric spaces are isometric.

Computing the Gromov-Hausdorff distance involves
solving a combinatorial problem. This has led to the devel-
opment of the closely related Gromov-Wasserstein Distance
which can be computed by solving a quadratic optimiza-
tion problem with linear constraints. The objective function
however is still non-convex, rendering solving practically
impossible for large problem dimensions [18]. The fully
discretized case under the above-mentioned constraint of
measures of equal weights is known as the Quadratic As-
signment Problem in the combinatorial literature [5].

The developers of these methods are naturally aware of
such obstacles and thus strive to supply bounds to the exact
distances that are quick to compute and thus can be used for
preliminary decisions [18]. We will pursue a similar direc-
tion in this paper.

It should be mentioned that the choice of the under-
lying metric is a field of research in itself: The geodesic
metric appears to be the obvious choice to make the met-
ric structure independent of the pose. However it exhibits
strong sensibility to noise, especially to what one calls fopo-
logical noise, the accidental connection between initially
unconnected parts (for example two legs touching at the
lower ends). The diffusion distance of two points assigns
a weighted average of all available paths between these and
thus provides more robustness towards such perturbations
[3, 19].

2.3 Extracting Features from Metric Structure

Several ideas have been proposed as to how non-local prop-
erties can be extracted from the metric structure of two-
dimensional silhouettes. A well known example is the dis-
tance transform which assigns each point within the silhou-
ette its minimal distance to the boundary. In [12] the Pois-
son equation is solved within the boundaries. The solution
indicates the average time that particles starting at a given
point require to reach the boundary by diffusive motion.
These two methods therefore stand in a similar relation than
geodesic metric and diffusion metric. From these descriptors
one can then infer information about the global structure of
the objects like part decomposition and orientation of limbs.

Due to approximations our approach necessarily loses
some of the descriptiveness of the full Gromov-Wasserstein
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Distance. Hence, we will discuss the potential of includ-
ing additional features from such descriptors to improve the
quality of our prior functional while at the same time keep-
ing it computationally feasible.

2.4 Heuristic Bipartite Matching

Though different in their technical origin there are other at-
tempts to tackle matching and registration that in their prac-
tical implementation somewhat resemble our proposal and
thus should be mentioned here. The shape context, intro-
duced in [2], is a local descriptor attached to a point that
consist of histograms capturing the relative distribution of
the rest of the shape. A heuristic registration between two
shapes is then computed based on a similarity measure of the
shape contexts. For the concept of comparing local descrip-
tors based on histograms over feature distributions see also
for example [1]. Such a step to compute pairwise matching
costs between points of two shapes will naturally arise in our
approach in the course of making the model feasible by ap-
proximations. Unlike in prior work, however, our costs are
rigorously derived from the Gromov-Wasserstein Distance
leading to a general framework with favorable properties, as
discussed in Sect. 1.2. The authors of [17] set out to match
two graphs equipped with Euclidean metrics based on their
metric and topological structure. The graphs are extracted
from image data. To improve robustness local features from
the images such as shape context can be included into the
matching. The resulting optimization problem is combina-
torial in nature but still tractable due to small tree-widths of
the underlying graphical models which is owed to the re-
striction to Euclidean metrics.

3 Mathematical Background
3.1 Notation and Setup

In the following (X, dx) and (Y, dy) are discrete, finite met-
ric spaces with the trivial topologies (as induced by the met-
rics) in which all sets are open. P(-) will refer to the set of
Borel-measures on a given space.

A triple (A,da, ta) where (A,d4) is a metric space
and py € P(A) will be called metric measure space [13].
We will rely on this concept to describe shapes: A can be
thought of as the embedding space with internal structure
given by d4 and p4 could for example be interpreted as
measure of certainty as to what regions of A belong to the
shape.

For a measurable map f : A — B and a measure u €
P(A), f:p € P(B) will denote the pushforward measure of
wu via f, defined by (fiu)(op) = w(f~(op)) for all mea-
surable o C B.
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For two non-negative measures 4 € P(A), up € P(B)
with equal mass, 4 (A) = up(B), the set of coupling mea-
sures will be defined as

M(ua, 1) = {1 € P(A x B): (@) = On

u(oa x B) =pua(oa)n
u(A x og)=pug(op)

YV measurable subsets 0 C A x B,

aAgA,aBgB]. 3.1
M(uea, up) is always non-empty as it contains at least the
(normalized) product measure of 4 and up.

An element in u € M(ua, up) can be understood as
multivalued function between the supports of w4 and up,
where an element b € B is assigned to those a € A where
u(a, b) > 0 and the value being a weight of the “strength”
of the assignment. A special role play assignments that are
deterministic, i.e. Ya € A with p4(a) > 0 there is precisely
one element b € B such that u(a, b) > 0 and vice versa. The
existence of such assignments will also be discussed in this
paper.

We will not only be concerned with measuring deviations
between shapes (for which one must optimize over some set
of coupling measures) but also with shape optimization. For
a non-negative measure w4 € P(A) the set of target mea-
sures in a measurable space B will be defined as

Ta(ua) = {p € P(B): 0= up(0p) < log| A up(B)

= 4 (A) Y measurable subsets o C B},
(3.2)

where the constraint 0 < up(op) < |op| ensures that upg
will always correspond to a relaxed indicator function.
When performing shape optimization w.r.t. uwp for fixed
na this is the feasible set for which coupling measures
M(ua, Lp) exist.

3.2 (Gromov-)Wasserstein Distance

Due to space limitations we cannot give a full revision of
the mathematical background and thus need to confine our-
selves to stating the most central definitions. For a compre-
hensive discussion of the Wasserstein Distances see for ex-
ample [29].

Definition 3.1 (Wasserstein Distance) For a given cost
function ¢ : X x ¥ — R and two non-negative measures
ux € P(X), uy € P(Y) with equal mass pux(X) = uy(Y)
define the Wasserstein Distance as follows:

Dw(c, ux, uy) = inf Jw(c, 1) (3.3a)

HEM (1x,ty)
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with
Jwle, w) =) pix, y)elx, y). (3.3b)

X,y

It is a common setup to choose X = Y and investigate
Dw(d?, u1, uz)l/p, 1 < p < 0o where d is a metric on X.

Remark 3.1 If c(x,y) = ¢(x,y) + Ac where Ac is a
constant with respect to x and y then Dw(c, ux, ny) =
Dw(c, ux, uy) + Ac - ux (X).

For an introduction to the Gromov-Hausdorff Distance
and a stepwise motivation and development of the Gromov-
Wasserstein Distance see for example [18]. For our purposes
the following definition is sufficient:

Definition 3.2 (Gromov-Wasserstein Distance) For two
non-negative measures uy € P(X), uy € P(Y) with equal
mass ux(X) = uy(Y) define the Gromov-Wasserstein Dis-
tance as follows:

Dgw (ux, py)’ = inf Jow (1) (3.4a)
nweM(ux,uy)
with
Jow) = Y n,yp,y)
x,x',y,y
x |dx (x,x") —dy(y.y)|" (3.4b)

with 1 < p < 0.

We will denote the explicit dependence of p only in the
rare cases where values for different p are compared. 1 <
p < oo is always assumed from now on.

There is a fundamental difference between the Wasser-
stein Distance and the Gromov-Wasserstein Distance: The
former assigns costs to each transport assignment from X to
Y independently given by c(x, y), the latter to pairs of trans-
port assignments depending on the function I' (x, x', y, y') =
|dx (x,x") — dy(y,y")|P, thus making it computationally
much more complex but at the same time more suitable for
the implementation of invariances: Only the relative position
of assignments will matter.

3.3 Weighted Bipartite Matching

We would like to interpret the optimal coupling measures
that arise from computing the similarity function of two
mm-spaces as assignment between the two shapes. Natu-
rally a deterministic assignment is easiest to interpret. Thus
we will now provide some mathematical background that
will later on allow us to rewrite our optimization problems
in a suitable way to prove that deterministic solutions exist.

For two finite sets X, Y let G(V; E) = G(X,Y; E) the
bipartite graph with disjoint vertex sets X, Y and edges con-
necting each vertex x € X with all vertices y € Y. We as-
sume |Y| > | X| (concerning the plausibility of this assump-
tion see also Remark 4.1). The set of neighbors N(X’) for
any subset X’ C X then satisfies |[N(X’)| > | X’|, implying
existence of a matching covering all points of X (Theorem
of Hall [15, Theorem 10.3]).

Given some weights w € lel assigned to the edges E,
the maximum matching problem asks for a subset E/' C E
of non-incident edges, represented by an edge indicator vec-
tor z € {0, 1}/£!, that maximizes the corresponding weight
Y eck We, i.€. it solves

Z 2. <1 YveV.
ecE(v)

max (w, z),
zeR'f‘

In terms of the incidence matrix A € {0, 1}!VIXIE] of the
graph G, the problem reads

mzax(w, z) st z20, Az=<1y,. 3.5)
According to the theorem of Hoffman and Kruskal [15,
Theorem 5.19], there will be an integral solution z, z, €
{0, 1}, Ve € E, because the incidence matrix A of a bipar-
tite graph is totally unimodular [15, Theorem 5.24] and the
vector on the r.h.s. is integral.

For further reference, we detail the structure of A. We
order the vertex set V = X U Y by adjoining the linearly
ordered set Y to the linearly ordered set X, and then edges
e=xye E,xeX,yeY,byrunning through the set X for
each y € Y. Then A reads

T
A (]l|y| ® Ix) € {0, JIXIHYDXIXIIY]

3.6)
Iy ® 1y,

where ® denotes the Kronecker product [28].
3.4 The Quadratic Assignment Problem

Let
Perm(n)
= {M € {0, l}nxn culy, =1,, MT]]-iz = ]]-n}

be the set of n x n dimensional permutation matrices.
Consider now the Gromov-Wasserstein distance as intro-
duced in Definition 3.2,

Jaw(wy = > T(x.y.x"y)uey) (. y),

x,x',y,y

with l"(x, v, x/, y/) = |dx(x,x/) — dy(y, y/)|p-
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for the following specific discrete case: Let |X| = |Y],
Ux, Ly be the counting measures on X,Y and fix p = 2.
Then, by confining the feasible set to the permutation matri-
ces Perm(| X|) this becomes an instance of a problem class,
known as the Quadratic Assignment Problem (QAP) [5].

It corresponds to the problem of matching weighted
graphs X, Y having the same number of nodes. Let A, B
denote the weighted adjacency matrices of X and Y, respec-
tively, with entries A, v = dx(x,x’), By v =dy(y, y’) then
we find

. ., o
uePérnnquDx X/Xy:y/r(x, y, X,y )M(x,y)u(x ,y)

=inf YT (x, 6 (0,2, 9(x'))

(where we can represent the set of permutation matrices by
the set of bijective assignments ¢ : X <> Y)

=inf - (dx (v, ) + 3 (¢ (), #())

x,x’

—2dx (x, x")dy (¢ (x), ¢(x")))

= inf (c—2(A,uBu")),

" uePerm(X))
where the constant ¢ collects the first two terms that do not
depend on the variation of ¢ and u, respectively. The result-
ing objective, for general A, B defines a QAP problem.

The QAP problem belongs to the most difficult combi-
natorial problems. An established benchmark library along
with ground truth (global optima) exists [6] for problems
whose size is considered as large if the number of nodes
exceeds say |X| = 50. Furthermore, a hierarchy of relax-
ation bounds has been established ranging from simple spec-
tral approaches to advanced and computationally expensive
semidefinite relaxations—cf. [24] and references therein.

4 Approximate Gromov-Wasserstein Distance

Having briefly surveyed the necessary mathematical back-
ground we will now develop our own contributions.

If computational complexity was not an issue, a potential
energy functional for variational image segmentation could
be

E(uy) = Eo(uy) + Dow(ux, tiy) 4.1

with two mm-spaces (X,dx,ux) and (Y,dy,uny).
(X, dx, nx) will play the role of prior knowledge by rep-
resenting a prototype of the shape that we are after. It will
therefore be referred to as template. (Y, dy, uy) will de-
scribe the image and a segmentation proposal therein. The
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function E( will contain other typical components of a seg-
mentation functional (e.g. an appearance model). The den-
sity function of puy can be interpreted as relaxed indica-
tor function thus making the shape representation by mm-
spaces compatible to the region representation by indicator
functions. So all terms in the functional will be functions of
Wy and not require any representation conversion.

Remark 4.1 Inthe course of this paper we will assume |Y| >
|X|. It can be seen here that this is virtually no restriction
for the application of shape segmentation: (Y, dy) represents
the whole image of which the object we are looking for, its
shape described by (X, dx, ux) and its location given by
Wy, only takes up a fraction (if the object was larger than
the image, we could not make out its shape anyway).

Unfortunately computational complexity is in fact a cru-
cial issue. Computing the value of Dgw requires solving a
non-convex optimization problem and it is non-convex as a
function of wy, thus rendering the functional (4.1) unfeasi-
ble. In the following we will propose two suitable approx-
imations to overcome these obstacles while keeping the fa-
vorable properties of the Gromov-Wasserstein Distance like
geometric invariance. We show that for a linear appearance
term Eo(uy) the resulting functional is a modification of the
Wasserstein functional with relaxed Y -marginal constraints.
We prove existence of optimal binary puy with deterministic
optimal coupling measures that provide a bijection between
the template ux and the optimal segmentation region indi-
cated by uy.

It should be noted at this point that the shape prior pro-
posed here does not yet contain a model for non-isometric
shape variations. We feel however that this is something that
can be built on top of the current approach when the more
fundamental problems of convexity and isometry invariance
have been overcome.

Major properties of our approach, including geometric
invariance, absence of the initialization problem, full corre-
spondence, significant noise resistance compared to appear-
ance model alone, will be illustrated in Sect. 5.

4.1 Linear Approximation

Computing the Gromov-Wasserstein Distance implies solv-
ing a non-convex quadratic problem which is unfeasible in
high-dimensional spaces. Here we discuss a way of obtain-
ing an approximate solution by linearizing the functional

properly.

Definition 4.1 (Linear Approximation of Gromov-Wassers-
tein Distance)

(4.2a)

Di(ux, uy) = inf Jilx, wy, 1)

HEM (x,puy)
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with Definition 4.2
Nux.py. )=y pr y)ei(ux, pyix,y)  (42b)  Dyfux.uy) = inf S B(uxopyop)  (43)
P nweM(ux,py)
with

where

c1(ux, Ly; x,y)

— : f / /, / d , / _d , NP
M/e/\/}?ux‘w));y,u (x y>| X(x X) Y(y y)|
(4.2¢)
= Dw(|dx(x,) —dy(y.)|", ux. iy). (4.2d)

Note that Dy (ux, uy) = Dw(c1(ux, iy; - ), X, y).
It can easily be seen that this provides a lower bound to the
exact Gromov-Wasserstein Distance.

Proposition 4.1
Di(px, my) < Dow(px, uy)”.

Proof As

cr(ux. uy:x, y) < Y u(x'y)|dx (x.x") —dy (y.')["

X/‘y/

for € M(ux, ny) one finds Ji(uyx, iy, n) < Jow ()
for £ € M(ux,my) and therefore also Di(ux, iny) <

Dow(ix, iy). O

The relaxation D can be interpreted as follows: For ev-
ery potential assignment x <> y one evaluates how well the
rest of the shapes can be matched with respect to the fixed
assignment x <> y. For all pairs in X x Y these mismatch-
scores are then used as a cost function for a linear Wasser-
stein functional.

We will give some analytical results that allow for effi-
cient numerical implementation of such matching problems
in Sect. 4.4.

4.2 Flexible Y-Marginals

For fixed puy one can easily compute the value of
Di(ux, my). However it is non-convex as a function of py
and thus cannot yet be used in an approach like (4.1). The
non-convexity arises from the dependency of ¢y on puy. We
will now propose a way to estimate a static cost function
with the aid of an appearance model. Let A : P(Y) — R be
a convex function that for a given py rates its plausibility
as a segmentation based on local features (for a review on
potential local features see for example [10]). Then consider
the following definition:

BB Gux, v, ) =Y i(x, y) ealux A Asx,y) - (4.3b)

X,y

where
co(ux; - A x,y)

= inf < inf
ny €Ty (ux)

D1 (. y) - Jdx (x.x)

weMpx.uy)
X'y

—dy(y,y)]" + - A(w)> (4.3¢)
- uye%f(ux)<Dw(|dX(x’ ) —dy (3, 9]", e, 1ty)
+ A A(My)). (4.3d)

Compared to D the relaxation of D, goes one step fur-
ther: For a hypothetical assignment x <> y the best potential
assignment of the rest of the shapes is sought-after. But now
Wy is no longer fixed but is optimized over while taking the
appearance model into account. For D non-convexity is re-
moved by replacing multiple occurences of u by different
variables, in D, this step is extended to puy. The flaw of
these relaxations is that after optimizing the different vari-
ables need no longer be consistent. On the other hand, this
achieves convexity w.r.t. wy which is vital for application in
variational frameworks. Also, D, gives a lower bound for
the Gromov-Wasserstein distance on the basis of Proposi-
tion 4.1 and the following Proposition:

Proposition 4.2

DY 2 (ux, my) < Di(ux, wy) + A - ux(X) - A(uy)

Proof

co(ux; A Asx,y)

= inf (Dw(|dx(x, ) —dy(y, )", ux, iwy)
wy €Ty (ux)
+A- A(ﬂ%)) (4.4a)
< Dw(|dx(x,") —dy(y.)|", ux. py) + A Aluy)
(4.4b)
VYuy € Ty (uy)
=ci(ux, wy; x,y) +r- A(uy) (4.4¢)
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and thus by virtue of Remark 3.1

D5 (ux, py)

(4.4d)
(4.4e)

= Dw(ca(ux; A=A+, ), px, [iy)
< Dw(ci(ux. uy + A+ Aluy):-.-), pux. py)

= Dw(c1(ux, py: - ), px, by ) + A - ux (X) - AQuy)
(4.40)

(4.4g2)
U

=Di(ux, pny) +A - ux(X) - A(uy).

Summarizing all presented approximation steps we con-
clude:

DI (ux, uy) + 21 - Aluy) (4.52)
< Di(ux, uy) + (A1 + px(X) - 22) - Aluy) (4.5b)
< Dow(px, py) + (A1 + px(X) - 12) - A(uy)  (4.5¢)

The approximations (4.5¢) — (4.5b) — (4.5a) are neces-
sary because one cannot even compute the value of (4.5¢),
and (4.5b) is still non-convex in py.

Note that this sequence of bounds holds for any convex
appearance model A.

4.3 Including Appearance and Unique Shape Matching

In this section we combine the presented shape prior func-
tional with a linear appearance model analogous to (4.1)
to illustrate the potential application in variational image
segmentation. For a linear appearance model we prove two
favorable properties: Existence of binary optimal puy and
for them existence of optimal deterministic couplings p €
M(ux, my). This allows the support of the optimal py to
be interpreted as segmented foreground region and the cou-
pling as a bijection between the template and the foreground.

First, with the aid of the mathematical background given
in Sect. 3.3, we extend the convex relaxation approach for
the linear assignment problem to partial assignments be-
tween sets with unequal cardinality and then rephrase the
joint optimization of Dw(c, ux, ny) and A(uy) with re-
spect to py for a given cost function ¢ to match the form of
the problem.

Partial Weighted Bipartite Matching It is well known that
generic solutions to the linear assignment problem

min {(c,u) st w>0, pl,=1,, /’LT]]-n =1,,
HeR}lX}l
w1, =1 (4.6)

for some ¢ € R"" correspond to permutation matrices
as extrem points of the feasible set of doubly stochas-
tic matrices (Birkhoff-von-Neumann Theorem, [15, Corol-
lary 11.3]), hence constitute a one-to-one mapping between
{1, .., n} and itself.
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We next consider the partial assignment problem with up-
per bound constraint

min (c,p) st w>0, pul,=1,, n L,<1L,,
MeRWlXVl
with m < n. “@.7

Proposition 4.3 There are integral solutions [t to the linear
program (4.7): @ € {0, 1}™*".

Proof We show that the constraints (4.7) forms a linear sys-
tem whose matrix has the structure (3.6). Using the vec op-
erator [28] that stacks column vectors when applied to a ma-
trix, and the corresponding relationship for matrices B, C,
X,

vec(CXBT) = (B ® C)vec(X),
we have

vee(uly) = vee(lnuly) = (1, ® In) vec(u) =1L,
(4.8a)

vec(]ljn—,u,) = vec(]l;;,uln) = (In ® ]l;;) vec(u) < 1,. wsh)

vec(u) can be identified with the edge-indicator vector z
in (3.5). The left-hand side corresponds to (3.6), and the
equality sign in (4.8a) restricts the feasible set to a face of
the integral polyhedron Ax < 1, that is also integral. (I

Combining Shape Prior and Linear Appearance Term Re-
call that we confined ourselves to X and Y being discrete
finite metric spaces. The sets of measures thereon thus cor-
respond to the vector spaces RIXI and RI¥!, dimensions in-
dexed by elements x € X and y € Y. Let the template-space
X consist only of points belonging to our sample shape with
ux being the counting measure on X, ux(x) = 1 for all
x € X. Assume also |Y| > | X|, this means the image to be
segmented must at least have | X| pixels, i.e. “that there is
enough space for X in Y.

Consider now, analogous to (4.1), the optimization prob-
lem

inf  E(uy) with
py €Ty (ux)

E(uy) =Dw(c, ux, uy) + - A(uy) (4.92)

where Dw will become the shape prior functional for proper
choice of c. For the appearance model A we choose

Aluy) =Y FO) py () = (f, ) (4.9b)
>

where f(y) > —oo gives the affinity of the pixel y to be part
of the foreground, based on local features (f(y) <0 =y
tends to be part of the foreground).
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Proposition 4.4 Given ux(x) =1forallx € X, |Y| > |X|,
a cost function ¢ : X x Y — R bounded from below and
a function A : P(Y) — R bounded from below, as defined
by (4.9b), the problem defined in (4.92) is equivalent to solv-
ing a partial assignment problem of the form (4.7).

Proof Note first that

inf g(uy)= inf inf

, , 8(u(X %))
wy €Ty (1x) Wy €Ty (ux) peMux,pmy)

for any function g since the inner optimization over
M(ux, ) is trivial as all p therein have the same Y-
marginal on which only the function g depends here. This
double optimization can then again be rewritten as

= inf

= X x -
neT My (ux) g(M( % ))

where we define the feasible set
TMy(ux)
= U Mux.uy)
wy €Ty (ux)
={ePX xY): p() 20 A p(vy x ¥) = px(vx)
=vx| A p(X xvy) < |vyl

YV measurable subsets v C X x Y, vx C X, vy C Y}
(4.10a)

as the set of all possible couplings to wy.
This allows us to rewrite (4.9a) as

inf  Dw(c, ux, ny) +1- A(uy)
uy €Ty (nx)

= inf

_MGTMWX)ZC(X’”“(X’ M +A AKX x ).

X,y
(4.10b)

Plugging in the choice of A yields

B MET}\I}IE(MX)ZC(X, VI, y) +)‘§“(x’ - f)

X,y
(4.10c)
= oot g(c(x, VAL fO)ulx.y).  (4.10d)
We can rewrite the feasible set as
T My (ux) = {p e RXM >0 A piy =1
ATy <1y} (4.10e)

where we have now used the equivalence of P(-) and R/’
for X, Y and the product space and rephrased the conditions
in vector notation. Now the equivalence of (4.10d), (4.10e)

and (4.7) is manifest with an appropriate edge weight vector
c, ) +r-fy).

The edge weights implied by (4.10d) may not be non-
negative but by virtue of the assumptions they are bounded
from below. Hence they can be made non-negative by a con-
stant shift which does not change the minimizing set. (]

This proposition holds for any bounded cost function ¢
and thus applies to ¢ as defined in (4.3c). This implies that
for a linear A the functional (4.5a) has a binary optimizer
and a respective deterministic coupling.

4.4 Radial distribution comparison

For large metric spaces the computation of ¢1(wy, iy; X, y)
or ca(ix, A+ A;x,y) for all x, y can be quite costly. A re-
formulation of ¢ will now be derived that only depends on
the “radial” mass distributions of @y and wy relative to x
and y respectively. Whatever the internal structure of X and
Y might be, ¢ can be computed by solving a mass transport
problem between two subsets of the real line. A similar sim-
plification exists for ¢;. This will give a clear insight about
the nature of the first relaxation step and be particularly im-
portant for efficient numerical implementation.

The results of this section are based on the following
Proposition:

Proposition 4.5 For two discrete sets Sx and Sy and two
measurable maps ¢x : X — Sx, ¢y : Y — Sy denote by ¢
the product map ¢ (x,y) = (¢x(x), ¢y (y)). Then one finds

o M(ux, py) = M(Pxeitx, Py siiy).
Proof For any u € M(ux, ny) get
(@s)(0) = (¢~ (0)) =0
(P (asy x Sy) = ¢y (o5,) x ¥)
= 1x(px ' (050)) = (Dxz1x)(0sy)

and analogous

(Ps) (X X 05y) = (Pypiey)(osy)

for all measurable o C Sy x Sy, o5, € Sx, 05, € Sy. Thus

osM(ux, ny) € M(pxzitx, Py siy). For reasons of read-
ability we have moved the step to show that M(¢x:ux,
oyiny) € ppM(ux, ny) and thus the two sets are in fact
equal to the Appendix. g

This can be applied to simplify the computation of

ci(px, my;x,y) and co(ux,A-Ajx,y)
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as defined in (4.2c), (4.3c). Several new symbols will be
introduced which depend on two non-negative measures
ux € P(X), uy € P(Y) and two elements x € X, y € Y.
We will consider everything that follows for a fixed choice
of wy, iy, x, y and for the sake of legibility will not always
denote the dependence on this choice.

Let

Lx ={dx(x.x’): x’€ X} and
Ly = {dy(y,y/): vy € Y}

be the (discrete) sets of appearing distances in X and Y rel-
ative to the elements x and y. Let [Ty : X — Ly, [Tx(x") =
dx(x,x"yand [Ty : Y — Ly, ITy (y') = dy(y, y) be the cor-
responding maps onto these sets and denote by

4.11a)

IN=1IIx xIly : X xY —>Lx XLy (4.11b)

their product.

For two non-negative measures ux € P(X), uy € P(Y)
and two elements x € X, y € Y define the radial mass distri-
butions

oLy =IIxyux and  pp, =ysuy. (4.11c)

Now we express ¢1(ix, iy; X, y) in terms of the radial
distributions py,, and pr,:

Corollary 4.6 c|(uy, ny; x,y) can be expressed by a com-
parison of the radial distributions py and pp,:
ci(ux, py:x,y)=Dw(l- =17, pry. PLy) (4.12)

Proof By virtue of Proposition 4.5, where we choose
SX/Y = LX/Y, ¢X/y = HX/Y and thus 71 = ¢, we find

I M(uyx, py) = M(px, py).

So one obtains

c1(px, hy; x,y)

— inf d , l —d , | P /7 !
ol D) o)

= inf Iy —ly|P(I1 Ix,!
ueMI&x,uy)l;:YlX v UTzuw)(Ux, ly)

(where the sums [ly,ly range over the sets of distances
Lx,Ly)

= inf
pelly M(ux,iy)

> lix — Iyl plx. Iy)

Ix,ly
= inf lIx —Iyl"p(x.ly)
PEM(pLy . PLy) l;:y
:DW("_'|paIOLX’10Ly)' D
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Corollary 4.6 allows for a transparent interpretation of
the relaxed functional D;: We find

Di(ux, pny)
= Dw/(c1(ux, py; -, ), kx, L) (4.13a)
= DW(DW(| T |p9 pLx(/‘LXa ')7 pLy(l‘LY’ ))’ nx, /"LY)
(4.13b)

= Dw(Dw.p. oLy (x. )aiix. pLy (Ry, dzpy)  (4.13¢)

where Dy, is the Wasserstein Distance on P(R ) with re-
spect to the p™ power of the Euclidean metric on R as cost
function. This means the measures (x and py are trans-
formed into two measures of radial mass distributions in
P(PR4)). We equip this space with the cost function that
is given by the standard p-Wasserstein distance on P(R).
That is, D; measures the deviation in radial distributions be-
tween py and py.
Now we discuss the reformulation of c;:

Remark 4.2 Consider A as defined in (4.9b). Let
(T, Hy(y) = Ty (y), f(y)) and let Fy = {(1, f)y(y") :
y' € Y} be the set of pairs of distances and affinity coeffi-
cients.

Applying Proposition 4.5 with Sy = Fy, ¢y = (11, f)y
and Sy = Lx, ¢x = I1x as before, we find

(MMx x (11, f)Y)ﬁM(MX, ny) = M(px, (1, fysuy).

(4.14a)
So we obtain
co(pux, A Ajx,y)
= WeiTnyfw)(Dw(|dx(x, ) —dy(y. )|’ ux. )
+ - Aluy))

D (ldx(x.x') = dy (v, )]

’ oy
x5y

= inf < inf
ny €Ty (ux) \peM(ux,my)

1 l)
= inf ( inf Z

T Mux,
ny €Ty (ux) \npeM(ux MY)lx,(ly,fy)er

(IIx —1y1?

S ) (T (1 009) ) 0.y )

(where the sum (ly, fy) runs over the set of pairs Fy)

= inf inf
( (H’f)yulty)l Z

LN W (IIx —ty1?
Ky Yy (x 14 PX, X,(lY,fY)EFY

+)»-fy),0(lX»(lefY))>

= inf Z

eS
r Ix,(y,fr)eFy

(le —lyl? + - fY)P(le (y. fr))

(4.14b)
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with S = UuyeTy(uX) M(px, (I, f)yzpy). This is a par-
tial linear assignment problem on Ly x Fy which is a subset
of R x R2.

One can show in a fashion similar to Proposition 4.5 that

S={peP(Lx x Fy): p(0) 20, p(or, x Fy)

= pLy(0Ly), p(Lx X 0F,) < (T, £)}' (R,
for all measurable 0 € Ly x Fy,op, € Ly,

ory C Fy}. (4.14c)

Here the parameter A has a very intuitive interpretation:
When comparing radial distributions (A - (f1 — NP s
the maximal distance |Ix — ly| that mass is transported to
obtain a better feature match f» < fi.

4.5 The Choice of Metric

The choice which metric to impose on the mm-spaces is
crucial as to which geometric invariances should be imple-
mented into the approach. For rigid objects the Euclidean
metric is the obvious option enabling recognition of an ob-
ject in any translated or rotated state. Similarly for articu-
lated objects that may appear in different poses the geodesic
metric can be applied. The shortest paths can quickly be
computed by fast marching algorithms [26]. To increase ro-
bustness to topological noise the diffusion metric might be
considered.

Having said this it must be pointed out that there is a
fundamental issue about the geodesic (and diffusion) metric
in the context of our applications: Reasonably defined the
geodesic metric on Y depends on uy as the measure indi-
cates the actual location of the shape and only within this
the shortest paths are to be routed. This raises the question
how the metric should deal with the facts that iy can might
be non-binary and changes during optimization: Will there
be a threshold for wy (y) above which a point y will be con-
sidered as “path permeable”? Will points with low wy (y)
contribute longer piecewise path lengths? Moreover updat-
ing dy with py will certainly render the optimization prob-
lem unfeasible again. Ad hoc proposals are conceivable to
tackle this. Yet we consider this problem too delicate for at-
tempting to solve it in passing-by and leave a corresponding
more thorough study for future work. In our numerical ex-
periments we present application of the geodesic metric in a
confined setup that allows to circumvent these issues and to
demonstrate its potential up to the mentioned caveat.

4.5.1 Metric Enhancement
In this paper we approximate the quadratic Gromov-Was-

serstein Distance by a linear problem. When computing the
assignment the only remaining interaction between different

pixels is via the constraints. To somewhat make up for this
loss of non-locality we now present a heuristic way to incor-
porate additional geometric information into the matching
process. In this way one can exploit a large class of addi-
tional features.

Let F be a feature space (for example a set of labels)
with a mismatch cost function cr and let px y : X, Y — F
be two functions that assign these features to the elements
in X and Y. This induces an assignment cost function
crlpx (), pr())on X x Y.

One can interpret the linear appearance model A (4.9b)
as a degenerate example of such a function where F =
R, oy (y) = f(y) and cr(px, ¢y) = ¢y solely depends on
@y . But more sophisticated choices are at hand: consider an
object that has different characteristic appearances in differ-
ent regions. One might then consider an appearance term
that depends not only on @y but on the coupling u directly
and thus can incorporate such additional information:

Ay =Y fx, ), y)

X,y

= ZCF((PX(x)v oy (M) u(x, y)

X,y

(4.15)

where cr determines how well the appearance feature
¢y (y) found at y matches the expected appearance ¢y (x)
at x.

The definition of ¢ (1 x, A - A; x, y) can be generalized to
such a A. The simplifications discussed in Sect. 4.4 can be
applied analogously where, by means of Proposition 4.5, for
the computation of the modified c¢> one arrives at a relaxed
optimal transport problem between subsets of Ly x F and
Ly x F with a cost function c((Ix, ¢x), (ly,¢y)) = |lIx —
ly|? 4+ cr(¢x, ¢y). Both the modified cost function ¢, and
A can then be plugged into an approach as (4.9a) and one
will find that Proposition 4.4 still holds.

It should be noted at this point, that this does not sim-
ply imply changing A in the global matching according
to (4.9a). Via the computation of the cost function c¢; these
additional features are also considered in the first term
in (4.9a).

In Sect. 5 we will present two applications of this ex-
tension: the incorporation of an inhomogeneous appearance
model and the usage of the distance transform as an addi-
tional feature to implicitly take into account non-local geo-
metric information.

5 Numerical Examples
In this section we want to demonstrate the potential of the

proposed shape prior functional combined with a linear ap-
pearance model, as discussed in the previous sections, for
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variational image segmentation. We give some numerical
examples to illustrate the favorable properties of our ap-
proach and also the limitations implied by the involved ap-
proximations.

The exact approach 4.1, without approximations, is con-
siderably more general than the QAP problem, in several
ways. In particular, |Y| >> | X| is an essential relation cover-
ing the image segmentation scenario (recall Remark 4.1). As
a consequence, performing ground truth experiments from
the viewpoint of optimization is elusive. Our numerical ex-
periments are merely supposed to demonstrate the extent to
which invariant matching of metric measure spaces can be
enforced by our convex relaxation approach to shape prior
design. A systematic study of further suboptimality bounds
and the application to specific segmentation problems is be-
yond the scope of the present paper.

Before presenting numerical results, the next section de-
scribes technical details of the implementation, in particular
how computational effort can be reduced (including using
the results presented in Sect. 4.4).

5.1 Implementation Details and Computational
Complexity

The prior mm-spaces (X, dx, px) were created from binary
images, depicting the template shapes. All pixels with value
0 were removed from the space. The remaining pixels were
equipped with the Euclidean metric and px was set to be the
counting measure on these points. For a given experiment
(Y, dy) represents the test-image grid with Euclidean metric.
The function f that defines the appearance model A was
constructed from the gray values of the test-image.

To compute the cost function ¢; for some (x,y) one
needs to compute a modified mass transport problem on
Ly x Fy (see Remark 4.2). For this Lx was approximated
by a set of equally sized bins on the real line and Fy by a
set of rectangular bins on R%. While only inflicting a small
discretization error this reduced the involved problem sizes
by several orders of magnitude. This method becomes par-
ticularly efficient when the affinity coefficients f are binary
(e.g. =1, indicating unweighted preference for yes/no only)
and Fy can be approximated by two discretized real lines.
Also, it is straightforward to parallelize the computation of
cp forall (x, y).

For solving the global matching between X and Y we ex-
perimented with constraining the full coupling space X x Y
to smaller subsets to keep the problem size low, while still
solving the global problem. Consider the following mod-
ification to the partial assignment problem (4.7): For any
x € X include only a subset Y, C Y with the lowest assign-
ment costs. Then, for every x, add an additional overflow el-
ement Yof » and a corresponding variable p(x, yof x) whose
assignment cost c(x, Yof,x) is chosen such that c(x, y;) <
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c(x, Yof,x) < c(x,yp) forall y; € Yy, y» € (Y \ Yy). Foreach
x the coupling value u(x, yof.x) will be taken into account
when computing the X -marginal constraint, but there will be
no Y-constraints on any of the yor .. Then for any feasible
coupling p in the original problem that is non-zero outside
of the constrained coupling set, one can create a feasible
coupling in the modified problem with non-zero overflow
variables, which will yield a lower score. This implies that
when solving the restricted partial assignment problem and
one gets an optimizer where ((x, yof,x) = 0 for all x then
one knows to have found an optimizer for the original prob-
lem with the full coupling space X x Y. In “easy” problems
this enabled us to find global minimizers while consider-
ing only <5 % of the coupling space, “harder” problems
were still generally <25 %. In the special case p =1 it is
easy to show that both ¢y, are Lipschitz. Then one can es-
timate a suitable subset of X x Y by subsampling and lower
bounds via the Lipschitz condition without scanning all pos-
sible pairs.

In the presented experiments | X| is of the order 10° and
|Y| up to the order of several 10*. We have set p = 2 but
we did not observe a substantial change of results for other
values p > 1.

5.2 Experiments and Discussion

Approximation Quality Dgw — D1 The purpose of the
first experiment is to gain an insight into the quality of
the relaxation Dgw — D1, see Proposition 4.1. We take a
simple shape, rotate it, distort it by non-isometric but mass
preserving scalings with factors ¢”, ¢ ™" along the vertical
and horizontal axis and then compute the optimal assign-
ment according to D; between the original and the distor-
tion for various n > 0. As an estimate for ground truth we
use the assignment induced by the distortion map (rq, r2) —
(q" - r1,q7 " - r2). The results are summarized in Fig. 2. For
low distortions one can see how Dj is a good measure for
increasing non-isometry, although growing slower than the
functional value of the distortion map. For high n the devi-
ation becomes more significant as D decreases, while the
upper bound grows further. Here one can assume that the
distortion map is no longer the optimal assignment and thus
the estimated “ground truth” is in fact too high. There is
an additional subtlety in this experiment: D was computed
between two rasterizations of a vector graphic, one as is and
one undergoing the distortion transformation. Thus even for
n = 0 (applying only a rotation) the two resulting metric
spaces would not be isometric due to different rasterization.
When estimating the ground truth this rasterization cannot
be taken into account, since it is unclear how to match the
two rasterized graphics. It has thus been estimated on the
vector graphics level. The fact that such problems appear
even for such simple shapes is a clear indicator of how hard
it is to solve the full quadratic problem.
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Fig. 2 Linearization of Dgw: (a) top-left to bottom right: original
shape and three distortions ¢” for n = 2,4,6 and ¢ = 0.95 (dimen-
sions: ~ 60 - 70 - (length units)?). (b) Circles: D; between original
and ¢"-distortion, squares: Gromov-Wasserstein functional evaluated
for assignment induced by distortion map. (¢) Mean metric deviation
between underlying distortion assignment and assignment computed
by D; (averaged over all assigned pairs). For small n <4, D grows
with increasing metric distortion, although slower than the estimated
“true” Gromov-Wasserstein distance. For n > 4, D first starts to de-
crease a little, before eventually growing again. The assignment com-

Linear Appearance Term and Matching We want to go
beyond measuring the distance between two fixed shapes
and perform shape optimization according to the two cri-
teria shape and appearance. The affinity coefficients f(y)
for the linear appearance model A are generated from a
grayscale image: First an imprint of the template shape is
created somewhere in the image and then noise is added
in different levels. For low noise level the shape restorta-
tion works perfectly, without any prior knowledge or the
need for proper initialization. Increasing noise will cause
an increasing number of assignments to become inaccurate,
while remaining roughly correct. Eventually only the coarse
location, but no longer the contours of the shape can be re-
covered (see Fig. 3). In Fig. 4 the influence of the global
weighting parameter A (cf. (4.92)) is demonstrated: For high
values the optimal uy is determined locally by the appear-
ance coefficients, for low values the shape prior becomes
more dominant and leads to a more accurate restoration of
the original contours.

Binary Appearance Term If the appearance coefficients f
are binary, for example £1, indicating unweighted prefer-
ence for fore- or background, one can interpret the region
{yeY: f(y) <0} as a noisy foreground proposal and ex-
tract additional information from this region. An example
for this would be the distance transform (for a noise resis-
tant alternative see [12]). In a scenario with strong appear-
ance classifier one might assume that this preliminary fore-
ground region already resembles the true sought-after re-
gion. Thus the distance transform might yield similar values
in corresponding places of the template and the image and
can therefore be used as a matching criteria as discussed in
Sect. 4.5.1, with gy, ¢y being the distance transformations,
F the real line and cr for example the L norm. The ex-
periment presented in Fig. 5 has been specifically designed

puted by Dj is (up to rasterization errors on the pixel level) identical
to the underlying distortion transformation for n = 1, deviation grows
with increasing non-isometry. From n < 4 we learn that D is a lower
bound that grows with increasing level of non-isometry, which is a fa-
vorable property for the functional. For n > 4 presumingly the distor-
tion map itself is no longer the best distance-preserving assignment
between the two shapes and thus the estimated ground truth value is
in fact too high (note how the triangle transforms from being horizon-
tally elongated to vertically elongated). This is an illustration for the
difficulty of obtaining ground truth data and the need for relaxations

to demonstrate how the local Y-marginal estimation during
the computation of ¢, via the appearance model can fail: For
points near the center of the cross of the template the outer
regions of the “blob” on the right of the input image appear
more suitable than the center of the actually corresponding
cross, where one “arm” has been shortened. By including
the additional information encoded in the distance transform
this mismatches can be fixed.

The setup of Fig. 5 is also well suited to discuss the im-
plications of the convexity of the functional. A major advan-
tage is the independence of initialization. An approach based
on active contours would, if initialized around the blob, be
stuck on the right hand side no matter how bad the matching
cost will be. The contour could not leave the blob and move
through an area without any mass (and thus without reason-
able gradient information). The proposed approach does not
suffer from this issue (up to the discussed level of confusion
caused by approximations of the GW-functional).

The question then arises how the optimal coupling mea-
sure looks like if there are multiple (approximately) equiv-
alent optimal solutions. Up to rasterization artifacts there is
no preferred choice how to map the template cross onto the
input: Eight orientations (rotations, reflections) are equally
possible. Each corresponding to one local extremum for an
active contour approach that one would consider as valid so-
lution. For the proposed approach such symmetries cause
degeneration of the space of optimal couplings, making a
whole facet of the feasible polytop extremal. Interior point
methods then usually do not lead to integer solutions. Integer
solutions exists and applying a simplex algorithm will pro-
duce one. Some may correspond to one of the eight possible
assignments, some may be highly discontinuous (meaning
that adjacent pixels are assigned to very different target pix-
els), but from the viewpoint of the functional they are all
equivalent and the choice is arbitrary.
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Fig. 3 Appearance model and noise: (a) fop row: appearance coeffi-
cients f for the image (bright indicating higher foreground-affinity),
noise increasing from left to right. Bottom row: corresponding optimal
y according to Dj, brightness indicating mass density. (X, dx, ix)
as in Fig. 2, Y-image dimensions: 160 x 120(length units)2. (c) Frac-
tion of computed assignments that is closer than 3 pixels to the un-
derlying transformation (¢) mean metric deviation between true un-
derlying transformation and assignment computed by D, (averaged
over all assigned pairs). For low noise levels the appearance model
in combination with the metric information can compensate for noisy
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appearance data and correctly restore the original shape. Although the
location and orientation of the shape within Y is not known a priori,
the isometry invariant approach can extract the correct transformation.
With higher noise levels the number of assignments that is led astray
increases, starting to erode the shape contours, although the majority
remains correct. Finally, for very high noise levels the relaxation breaks
down completely and hardly any of the assignments are correct, indi-
cating that the local Y-marginal estimation during the computation of
¢2 is no longer powerful enough. Here a more global approach would
be required

(a)

Fig. 4 Influence of the global regularization parameter A: (a) appear-
ance coefficients f, representing a transformed, distorted version of
the original shape (see Fig. 2). (b) From left to right: optimal py for
A =10%, 103, 102. With decreasing A the shape prior becomes more in-
fluential and pushes towards restoration of the original shape. It should
be noted here, that tiny holes or jagged contours in the optimal segmen-

Inhomogeneous Appearance Term  The extension discussed
in Sect. 4.5.1 can also be used to incorporate an inho-
mogeneous appearance model where different regions of
the shape are associated with different characteristic ap-
pearances. See for example Fig. 6: the shape itself is al-
most mirror-symmetric and in fact the noise was chosen
such that the matching purely based on background <«
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(b)

tation regions are not due to numerical instabilities of the optimization
implementation but due to discretization artifacts. Sometimes from, the
metric point of view, it is better to drop single pixels when matching
two different rasterizations of the same shape. Spatial regularity of wy
on the rasterization scale is not enforced by the used functional, so this
does not increase the functional value

“fish” confuses front and back of the schematic fish. As-
sume now from the underlying image data there is addi-
tional information available, like a dedicated detector for
the eye. Then this can be exploited, leading to the desired
effect. Also note that in both cases, corresponding to the
assumed orientation of the fish, the appropriate shape is re-
stored.
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Fig. 5 Breakdown of second approximation step, enhancement by ad-
ditional features: (a) template (top, white indicates mass) and corre-
sponding distance transform. (b) Input: binary appearance coefficients
f (top, white indicates foreground) and distance transform. (¢) Top: op-
timal py according to D, bottom: optimal @y according to matching
according to Sect. 4.5.1 with distance transform as additional feature.

|

Fig. 6 Inhomogeneous appearance model: (a) top: template with fea-
tures, black indicating background, grey — “body” and white —
“eye”; bottom: input image with detected features. (b) Optimal uy
(gray shading bottom) and assignment (black lines, subsampling) of
homogeneous appearance model: distinguish only background <> fish
(=body & eye). Due to the approximate mirror symmetry and the noise
in the image features, front and back are confused (while still “cor-
rectly” reconstructing the edges according to the mixup). (¢) Optimal
pny and assignment with an appearance model that penalizes the match-
ing x <> y between different feature classes (see Sect. 4.5.1). The con-
fusion between back and front is remedied

(a) (b) ()

Geodesic Metric and Pose Invariance The key to recog-
nizing the same object in different poses is to equip shapes
with the geodesic metric. In Figs. 7(a) and 7(b) the geodesic
metric is used to compute the optimal assignments between
two pairs of objects in different poses via Dj. In Sect. 4.5 the
problems were discussed that arise when one wants to port
the concepts of mm-spaces to image segmentation and faces
the involved shape optimization task. The estimation of a
static cost function ¢ can in general not be performed in a
straightforward fashion. Here we demonstrate the potential
of the geodesic metric for a pose invariant shape prior func-
tional in a restricted setup where the aforementioned diffi-
culties can be avoided. Consider binary appearance coeffi-

(a) (b)

In the input image, one arm of the cross has been shortened and the
“blob” on the right-hand side of the input has been designed to con-
fuse the local puy estimation during the ¢, computation, thus causing
faulty assignments. This demonstrates the limitations of the second ap-
proximation step. By including additional information like the distance
transform according to Sect. 4.5.1 this confusion can be resolved

cients, as introduced earlier, and assume that all true fore-
ground pixels are in fact also labeled as foreground by the
appearance model. In addition some false positive detections
are possible, i.e. regions in the test image that are wrong-
fully indicated to be foreground. The template shape and
the apparent foreground region are then equipped with their
respective geodesic metrics, efficiently computed by fast
marching methods [26]. This requires that the false positive
detections are rare enough to keep the geodesic metric of the
underlying true foreground approximately unchanged. Fig-
ure 7(c) shows an image of binary appearance-coefficients
with such superfluous false positive foreground labels and
the computed optimal py via D;. Although the reconstruc-
tion is by no means perfect, the method still tends to neglect
the false positive foreground-detections.

6 Conclusion, Outlook

In this paper we have proposed and developed a novel con-
vex shape prior functional with potential for application in
variational image segmentation and demonstrated its com-
bination with a linear appearance term. The starting point is
the Gromov-Wasserstein Distance which has been applied
successfully in the field of shape recognition and classi-
fication. From this the approach inherits the ability to in-
corporate vast classes of geometric invariances. Since the
Gromov-Wasserstein distance is computationally too com-
plex to be computed, let alone to perform shape optimiza-
tion, we proposed and discussed two successive approxima-
tion steps to overcome these two obstacles.

In combination with a linear appearance model we
proved for the resulting matching problem the existence of
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(a) (b)

Fig. 7 Geodesic metric and pose invariance: (a) assignment between
two different poses of an object, computed by D;. (b) Assignment
between two different poses of a schematic “horse” via Dj. Both as-
signments correctly associate the corresponding parts of the objects.

optimizers that imply a well defined segmentation region
and a bijective assignment to the reference shape. In the final
problem shape optimization and computation of the approx-
imate shape distance are performed in a single pass. Some
analytic results that concern efficient numerical implemen-
tation and help to better understand the approximations were
given. Ways were proposed to counterbalance the loss due
to approximations and even to process additional feature in-
formation. Key aspects of the approach were illustrated and
discussed based on numerical examples.

Future work will include incorporation of the functional
into a full variational segmentation framework. Application
to other types of data that can be described by mm-spaces
(e.g. weighted point data) and a more detailed study of the
potential of the matching enhancement by additional fea-
tures. Also the delicate question as to how the geodesic
framework is best extended to dynamic shapes remains
open.
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Appendix

Step 2 of the Proof of Proposition 4.5 We show by con-
struction for any p € M(¢xsux, ¢y:uy) the existence of
some 1 € M(uyx, py) such that p = ¢4 . For any element
(sx, sy) € Sx x Sy construct the pre-image measure

M(sx,sy) (x,y)

0 if p(sx,sy) =0V (sx,sy) #p(x,y)

mx () py (y)
(Pxzix)(sx) (Pyguy)(sy

P (sx,sy) else

where this element wise definition for each (x,y) is ex-
tended to all subsets of X x Y by

Hsx,sy)(0) = Z M(sy,sy) (X, ).
(x,y)eo
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(¢) Left: modification of the lower horse from (b) by adding additional
false positive foreground detections; right: optimal marginal py for
matching between the modified lower and the original upper horse via
D;. Excess detections are mostly removed at the correct locations

Now consider u =3\ < yesyxsy Hisx.sy): First verify
that it is indeed contained in M (uyx, uy):

u(o) =0

since u(x,y) > 0 for all (x, y). Furthermore

u(ox xY)
_ Z Z px () py (y)
ceoe sk (Dxapx)(sx)(Pyaey)(sy)
ye¥ ¢(x,y)=(sx.5y).
p(sx,sy)>0
x p(sx,sy)
_ Z Z MX(X)(Zyxpy(y):Sy ny ()
T & A @x0@x () @reuy)(sy)

p(px (x),sy)>0
x p(¢x (x), sy)
X x (Drasy) 0
x p(px (x), sy)
_ px (x)
B Z (Pxrx)(Px (x)) Z

Xeoyx Sy:
p(px(x),57)>0

1x (O py @y (sy))
(Pxemx)(@x(x))(Pyepy)(sy)

p(¢x(x), sy)

= Y ux(x) =px(ox)

X€EOoY

and likewise

u(X x oy) = puy(oy)

for all measurable subsetsc C X x Y, ox C X, oy C Y.
Now check whether ¢y = p:

($:1)(0)
=u(¢~' @)=

(x.»)ep~1(0)

n(x,y)
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mx () py (y)

- Z] (Dxgmx)(Px (X)) (Pyiny)(@y(¥))
(x,y)€9™ (0):
P (x,y))>0

x p(o(x, )

= 2 2

wx (xX)uy (y)

S S
(XTI (xoy)edT(nosm) (Dxzix)(sx)(Pyemy)(sy)
p((sx,s7))>0

X p(sx,Sy)
_ (er(p;l(sx) wx (x)) (Zye(p;l(sy) wy ()
- (‘YX%:)@ (Px2x)(5x) (Byzity)(sy)

p((sx,5y))>0
x p(sx,8y)

- ¥

(sx,sy)€0
p((sx,sv))>0

p(sx,sy) = p(o).

Consequently any p € M(¢xsix, pyity) is also con-

tained in ¢y M (1 x, py) and the two sets are equal.
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