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Abstract. Sum-of-Squares polynomial normalizing flows have been pro-
posed recently, without taking into account the convexity property and
the geometry of the corresponding parameter space. We develop two gra-
dient flows based on the geometry of the parameter space of the cone of
SOS-polynomials. Few proof-of-concept experiments using non-Gaussian
target distributions validate the computational approach and illustrate
the expressiveness of SOS-polynomial normalizing flows.
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1 Introduction

Optimal transport has become a central topic for mathematical modelling [24,19]
and for computational approaches to data analysis and machine learning [17].
Wasserstein distances based on various transportation cost functions and their
dual formulations, parametrized by deep networks, provide a framework for gen-
erative data-driven modeling [6].

A current prominent line of research initiated by [21,20] concerns the rep-
resentation and estimation of so-called normalizing flows, in order to model a
data distribution ν in terms of an elementary reference measure µ, typically the
standard Gaussian µ = N (0, In), as pushforward measure ν = T]µ with respect
to a transportation map (diffeomorphism) T . This framework supports a broad
range of tasks like density estimation, exploring a posteriori distributions, la-
tent variable models, variational inference, uncertainty quantification, etc. See
[14,12,16] for recent surveys.

A key requirement is the ability to evaluate efficiently both T and T−1 along
with the corresponding Jacobians. Based on classical work [11], triangular maps
T and their relation to optimal transport, therefore, has become a focus of re-
search [8,4]. While the deviation from optimal transport, as defined by [7], can be
bounded by transportation inequalities [22], merely regarding triangular maps
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T as diffeomorphisms (performing non-optimal transport) does not restrict ex-
pressiveness [3]. Accordingly, triangular maps parametrized by deep networks
are nowadays widely applied.

Contribution, Organization. A basic property that ensures the invert-
ibility of T is monotonicity, which in connection with triangular maps can be
achieved by the coordinatewise integration of nonnegative functions. In a re-
cent paper [10], Sum-of-Squares (SOS) polynomials that are nonnegative by
construction, were used for this purpose, as part of the standard procedure for
training deep networks. However, both the convexity properties and the geome-
try of the parameter space of the cone of SOS polynomials [13,2] were completely
ignored. In this work, we take this geometry into account and devise computa-
tional approaches to the construction of transportation maps T . Specifically, we
contribute:

– We introduce basic notions in Section 2 and specify the parametrization of
triangular transportation maps using SOS polynomials in Section 3.

– Based on this parametrization, two algorithms for learning the parameters
from given data are developed in Section 4. Algorithm 1 directly exploits the
Riemannian geometry of the positive definite matrix cone. Algorithm 2 pulls
back the objective function to the tangent bundle and performs ordinary
gradient descent using a Krylov subspace method for approximating a related
matrix-valued entire function.

– We evaluate both algorithms and the expressiveness of SOS-polynomial flows
in Section 5 using few academical non-Gaussian distributions. To enable a
clear assessment, we do not use a deep network for additional parametriza-
tion.

Our findings regarding the first algorithm are quite positive which stimulates
further research on suitable extensions to large problem dimensions.

Notation. Let n ∈ N, then [n] denotes the set {1, 2, . . . , n}. We denote the
the vector space of real multivariate polynomials in n variables of degree at
most d ∈ N by R[x]d = R[x1, . . . , xn]d. x

α = xα1
1 · · ·xαn

n ∈ R[x]d is a monomial
corresponding to α ∈ Nnd = {α ∈ Nn : |α| =

∑
i∈[n] αi ≤ d}. The vectors

vd(x) = (xα) ∈ Rsn(d), α ∈ Nnd , sn(d) =

(
n+ d

d

)
, (1.1)

that comprise all monomials in n variables of degree not greater than d, form
a basis of R[x]d. The number n of variables is implicitly determined by the
number of arguments, and may vary. For example, if d = 2, then v2(x) =
(1, x1, . . . , xn, x

2
1, x1x2, . . . , x

2
n)> with sn(2) = 1

2 (n + 1)(n + 2). We set tn(d) =
sn−1(d) = dim vd(x1, . . . , xn−1, 0). Sn, Sn+ and Pn denote the spaces of symmet-
ric matrices, of symmetric and positive semidefinite matrices, and of symmetric
and positive definite matrices, respectively, of dimension n × n. 〈a, b〉 = a>b
denotes the Euclidean inner product of a, b ∈ Rn.
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2 Preliminaries

2.1 Normalizing Flows

Let µ and ν denote the reference measure and the target measure supported on
Rn, respectively. Throughout this paper, we assume that µ = N (0, In) is the
standard multivariate Gaussian distribution and that ν is absolutely continuous
with respect to the Lebesgue measure such that

dµ(x) = p(x)dx, dν(y) = q(y)dy (2.1)

with density functions p, q. Our objective is to compute a smooth diffeomorphism
T : Rn → Rn such that ν = T]µ becomes the pushforward (or image) measure of
µ with respect to T , defined by

ν(V ) = µ
(
T−1(V )

)
, V ⊂ Rn, (2.2)

for all measurable subsets V . In terms of the densities (2.1), Eq. (2.1) reads

q(y) = p
(
T−1(y)

)
|det dT−1(y)|, (2.3a)

p(x) = q
(
T (x)

)
|det dT (x)|, y = T (x) (2.3b)

with the Jacobian matrices dT, dT−1. As detailed in Sections 2.2 and 3, we
consider a subclass of diffeomorphisms

TA = {TA ∈ Diff(Rn) : A ∈ Pn,d}, (2.4)

whose elements are defined by (3.5b) and (3.6). Assuming samples

{yi}i∈[N ] ∼ ν (2.5)

from the target distribution to be given, the goal is to determine some TA ∈ TA
such that (2.2) approximately holds. To this end, following [14, Section 4], we
set SA = T−1A and consider the KL divergence

KL
(
(SA)]q‖p

)
= KL

(
q‖(TA)]p

)
= Eq[− log p ◦ SA − log det dSA] + c, (2.6)

where the constant c collects terms not depending on SA. Replacing the expec-
tation by the empirical expectation defines the objective function

J : Pn,d → R, J(A) =
1

N

∑
i∈[N ]

(
− log p

(
SA(yi)

)
− log det dSA(yi)

)
. (2.7)

After detailing the class of maps (2.4) in Sections 2.2 and 3, the Riemannian
gradient flow with respect to (2.7) will induce a normalizing flow of q to p
(Section 4).
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2.2 Triangular Increasing Maps

A mapping T : Rn → Rn is called triangular and increasing, respectively, if each
component function Tk only depends on variables xi with i ≤ k (property (2.8a))
and if each function (2.8b) is increasing in xk.

Tk(x) = Tk(x1, . . . , xk), ∀k ∈ [n] (2.8a)

xk 7→ Tk(x1, . . . , xk), ∀k ∈ [n] (2.8b)

The existence of a triangular map T : C1 → C2 for any two open solid convex
subsets C1, C2 ⊂ Rn was shown by Knothe [11]. More generally, the existence of
a unique (up to µ-equivalence) triangular increasing map T that achieves (2.2),
for any given absolutely continuous probability measures µ, ν, was established
by [3, Lemma 2.1]. Property (2.8a) implies that the Jacobian matrices dT and
dT−1 are triangular, which is computationally convenient in connection with
(2.3) and (2.7).

3 SOS Polynomials and Triangular Increasing Maps

In this section, we adopt the approach from [10] using SOS polynomials for
the construction of increasing triangular maps. The key difference is that we
will exploit the geometry and convexity of the parameter space in Section 4 for
deriving normalizing flows.

Definition 1 (SOS polynomial [13]). A polynomial p ∈ R[x]2d is a sum-of-
squares (SOS) polynomial if there exist q1, ..., qm ∈ R[x]d such that

p(x) =
∑
k∈[m]

q2k(x). (3.1)

We denote the subset of SOS polynomials by Σ[x]2d ⊂ R[x]2d.

The following basic proposition says that each SOS polynomial corresponds to
a parameter matrix A on the positive definite manifold.

Theorem 1 ([2, Thm. 3.39]). A polynomial p(x) =
∑
α∈Nn

2d
pαx

α is SOS if

and only if there exists a matrix A such that

p(x) = 〈vd(x), Avd(x)〉, A ∈ Psn(d). (3.2)

Note that p(x) ≥ 0, ∀x ∈ Rn, by construction. Next, we use (2.8) and the
representation (3.2) in order to define a family (2.4) of increasing triangular
maps. Based on (3.2), define the sequence of SOS polynomials

p[k](x) := p[k](x1, . . . , xk) = 〈vd(x1, . . . , xk), A[k]vd(x1, . . . , xk)〉 (3.3a)

∈ Σ[x1, . . . , xk]2d, A[k] ∈ Psk(d), k ∈ [n] (3.3b)
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and the sequence of linear forms

〈c[k], vd(x1, . . . , xk−1, 0)〉, c[k] ∈ Rtn(d), k ∈ [n] (3.4)

that are parametrized by symmetric positive definite matrices A[k] and vectors
c[k], respectively. We collectively denote these parameters by

A := {c[1], . . . , c[n], A[1], . . . , A[n]} ∈ Pn,d (3.5a)

Pn,d := Rt1(d) × · · · × Rtn(d) × Ps1(d) × · · · × Psn(d). (3.5b)

Then the map

TA ∈ Diff(Rn), x 7→ TA(x) =
(
T[1](x1), . . . , T[n](x1, . . . , xn)

)>
(3.6a)

T[k](x1, . . . , xk) = 〈c[k], vd(x1, . . . , xk−1, 0)〉 (3.6b)

+

∫ xk

0

p[k](x1, . . . , xk−1, τ) dτ (3.6c)

is triangular and increasing due to the nonnegativity of the SOS polynomials p[k].

The inverse maps SA = T−1A have a similar structure and could be parametrized
in the same way. The objective function (2.7) therefore is well defined.

4 Riemannian Normalizing Flows

In this section, we will develop two different gradient descent flows with respect to
the objective function (2.7) that take into account the geometry of the parameter
space Pn,d (3.5b). Either flow is supposed to transport the target measure ν
that is only given through samples (2.5), to the reference measure µ. This will
be numerically evaluated in Section 5.

Section 4.1 works out details of the Riemannian gradient flow leading to
Algorithm 1. Section 4.2 develops a closely related flow using different numerical
techniques, leading to Algorithm 2. In what follows, the tangent space to (3.5b)
at A is given and denoted by

Sn,d = TAPn,d = Rt1(d) × · · · × Rtn(d) × Ss1(d) × · · · × Ssn(d). (4.1)

4.1 Riemannian Gradient

Consider the open cone of positive definite symmetric n × n matrices Pn. This
becomes a Riemannian manifold [1] with the metric

gA(U, V ) = tr(A−1UA−1V ), U, V ∈ TAPn = Sn. (4.2)

The Riemannian gradient of a smooth function J : Pn → R reads

grad J(A) = A (∂AJ(A))A, (4.3)
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where ∂J(A) denotes the Euclidean gradient. The exponential map is globally
defined and has the form

expA(U) = A
1
2 expm(A−

1
2UA−

1
2 )A

1
2 , A ∈ Pn, U ∈ Sn, (4.4)

with the matrix exponential function expm(B) = eB , B ∈ Rn×n. Discretizing
the flow using the geometric explicit Euler scheme with step size h and iteration
counter t ∈ N yields

At+1 = expAt

(
− h grad J(At)

)
(4.5a)

= A
1
2
t expm

(
− hA

1
2
t ∂AJ(At)A

1
2
t

)
A

1
2
t , t ∈ N, A0 ∈ Pn. (4.5b)

Applying this discretization to the respective components of (3.5) yields the
following natural gradient flow for the objective function (2.7):

Algorithm 1: Riemannian SOS Flow

Initialization
Choose A0 ∈ Pn,d such that T[1] ≈ id.
while not converged do

(A[k])t+1 =

(A[k])
1
2
t expm

(
− h(A[k])

1
2
t ∂A[k]

J(At)(A[k])
1
2
t

)
(A[k])

1
2
t , ∀k ∈ [n],

(c[k])t+1 = (c[k])t − h ∂c[k]
J(At), ∀k ∈ [n].

4.2 Exponential Parameterization

Consider again first the case of a smooth objective function J : Pn → R. We
exploit the fact that the exponential map (4.4) is globally defined on the en-
tire tangent space Sn of (Pn, g), which does not generally hold for Riemannian
manifolds. Using

expI(U) = expm(U), U ∈ Sn, (4.6)

we pull back J to the vector space Sn,

J̃ : Sn → R, J̃(U) = J ◦ expm(U), (4.7)

and perform ordinary gradient descent:

Ut+1 = Ut − h∂J̃(Ut), t ∈ N, U0 ∈ Sn. (4.8)

Denote the canonical inner product on Sn by 〈U, V 〉 = tr(UV ). Then the gradient

of J̃(U) is given by the equation

d

dτ
J̃(U + τV )

∣∣
τ=0

= 〈∂J̃(U), V 〉 = dAJ ◦ dU expm(V ), ∀V ∈ Sn, (4.9)

where A = expm(U).
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It remains to evaluate the differential of the matrix exponential on the right-
hand side of (4.9). Using the vectorization operator vec(.), that turns matrices
into vectors by stacking the column vectors, and we have the identity

vec(CXB>) = (B ⊗ C) vec(X). (4.10)

Thus, by [9, Thm. 10.13], we conclude

vec
(
dU expm(V )

)
= K(U) vec(V ) (4.11a)

K(U) = (I ⊗ eU )ψ
(
U ⊕ (−U)

)
, (4.11b)

where ⊗ denotes the Kronecker matrix product [23], ⊕ denotes the Kronecker
sum

A⊕B = A⊗ In + In ⊗B, (4.12)

and ψ denotes the matrix-valued function given by the entire function

ψ =
ex − 1

x
(4.13)

with matrix argument x. Applying vec(·) to the left-hand side of (4.9) and
substituting (4.11) in the right-hand side gives〈

vec(∂J̃(U)), vec(V )
〉

=
〈

vec(∂J(A)),K(U) vec(V )
〉
, ∀V ∈ Sn. (4.14)

Hence, taking into account the symmetry of K(U),

∂J̃(U) = vec−1
(
K(U) vec(∂J(A))

)
. (4.15)

As a result, (4.8) becomes

Ut+1 = Ut − h vec−1
(
K(U) vec

(
∂J(At)

))
, At = expm(Ut), U0 ∈ Sn.

(4.16)
In order to evaluate iteratively this equation, the matrix K(U) given by (4.11b)
is never computed. Rather, based on [18], the product K(U) vec

(
∂J(At) is com-

puted by approximating the product ψ
(
U ⊕ (−U)

)
∂J(At) as follows. Using the

shorthands

C = U ⊕ (−U), b = ∂J(At) (4.17)

one computes the Krylov subspace

Km(C, q1) = span{q1, Cq1, . . . , Cm−1q1}, q1 =
b

‖b‖
(4.18)

using the basic Arnoldi iteration with initial vector q1, along with a orthonormal
basis Vm = (q1, . . . , qm) of Km(C, q1). This yields the approximation

ψ
(
U ⊕ (−U)

)
∂J(At) ≈ ψ(C)b ≈ ‖b‖Vmψ(Hm)e1, Hm = V >mCVm, (4.19)
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where e1 = (1, 0, . . . , 0)> denotes the first canonical unit vector. The right-hand
side of (4.19) only involves the evaluation of ψ for the much smaller matrix Hm,
which can be savely done by computing

ψ(Hm)e1 =

(
Im 0
0 0

)
expm

(
Hm e1
0 0

)
em+1 (4.20)

and using any available routine [15] for the matrix exponential. Putting together,
the iteration (4.8) is numerically carried out by computing

Ut+1 = Ut − h vec−1
(
‖∂J(At)‖

(
I ⊗ expm(Ut)

)
Vmψ(Hm)e1

)
(4.21a)

At = expm(Ut), t ∈ N, U0 ∈ Sn. (4.21b)

In view of (4.6), we replace the overall parametrization (3.5a) by

U := {c[1], . . . , c[n], U[1], . . . , U[n]} ∈ Sn,d (4.22a)

Sn,d := Rt1(d) × · · · × Rtn(d) × Ss1(d) × Ssn(d). (4.22b)

Consequently, analogous to (4.7), we denote the pulled back objective function

(2.7) by J̃(U). Applying the procedure worked out above to each positive definite
component of the overall parametrization (4.22) results in Algorithm 2.

Algorithm 2: Exponential SOS Flow

Initialization
Choose A0 ∈ Pn,d such that T[1] ≈ id.
U[k] = logm(A[k]), ∀k ∈ [n].
while not converged do

(A[k])t = expm
(
(U[k])t

)
(U[k])t+1 = (U[k])t − h vec−1

(
K
(
(U[k])t

)
vec
(
∂A[k]

J(At)
))

(c[k])t+1 = (c[k])t − h ∂c[k]
J(At), ∀k ∈ [n].

Remark 1 (polymomial basis). The framework outlined above does not depend
on the specific choice of a monomial basis (1.1). For example, replacing vd(x) by

Qvd(x), Q ∈ GL
(
sn(d); R

)
(4.23)

for some linear regular transformation Q, provides a viable alternative. For in-
stance, a polynomial basis that is orthogonal with respect to a weighted L2 inner
product makes sense, especially if prior information about the support supp ν of
the target measure is available.

4.3 Application: Sampling from the Target Measure

In this section, we consider the objective function (2.7) for the specific case
µ = N (0, In) and the task to generate samples y = TA(x) ∼ ν from the estimated
target measure, using samples x ∼ µ that are simple to compute.
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Taking into account the specific form of µ and the triangular structure of
SA, the objective function (2.7) simplifies to

J(A) =
1

N

∑
i∈[N ]

∑
k∈[n]

(1

2

(
S[k](yi,1, . . . , yi,k)

)2−log ∂kS[k](yi,1, . . . , yi,k)
)
. (4.24)

Both Algorithm 1 and 2 can be used to minimizer (4.24) numerically. The eval-
uation of the map TA = S−1A makes use of the triangular structure of in order
to solve the equations

SA(y) =


S[1](y1)
S[2](y1, y2)
...
S[n](y1, ..., yn)

 = x. (4.25)

for y = TA(x) by computing recursively

yk =
(
S[k](y1, ..., yk−1, .)

)−1
(xk), k ∈ [n]. (4.26)

Each step involves few iterations of the one-dimensional Newton method that
converges to the unique solution, thanks to the monotonicity of the triangular
maps that holds by construction – cf. (3.6).

5 Numerical Experiments

In this section, we report numerical results as proof of concept and discuss the
following two aspects:

– Expressiveness of polynomial SOS maps for measure transport and genera-
tive modeling (Sections 5.2 and 5.3);

– performance and comparison of the two geometric flows approximated by
Algorithms 1 and 2 (Section 5.4).

We point out that unlike the paper [10], no deep network was used for additional
parametrization which would obscure the influence of the SOS-polynomial maps.

5.1 Implementation Details.

We used the three two-dimensional densities open-ring, closed-ring and mixture
of two Gaussians for this purpose (Figure 5.1), that play the role of the data
measure ν. A sample set yi ∼ ν, i ∈ [N ], with N = 2.000, was generated as
input data.

Next, either algorithm was applied in order to estimate numerically the SOS-
parameters A given by (3.5a), by minimizing the objective function (4.24). We
used SOS-polynomials of degrees 2d ∈ {2, 4, 6} for parametrizing the maps
TA(x). Taking into account the symmetry of the matrices the corresponding
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Fig. 5.1: Three non-Gaussian distributions used to evaluate Riemannian SOS-
polynomial normalizing flows. From (left to right): open ring, closed ring and
mixture of two Gaussians distributions.

numbers of variables to be determined are 12, 31, 70. Finally, samples xi ∼ µ
were generated and the map TA = S−1A was computed (Section 4.3) in order to
generate samples yi = TA(xi). Corresponding kernel density estimates can then
be compared to the plots depicted by Figure 5.1.

Both Algorithms 1 and 2 were modified in a stochastic gradient descent like
manner: Every update was performed using the gradient with respect to a single
random index i ∈ [N ] of the objective (4.24), such that each index i was visited
after N updates. Thus, even though the considered problem sizes are small,
we modified both geometric gradient descent algorithms such that they remain
efficient for larger problem sizes [5].

5.2 Riemannian SOS-Polynomial Normalizing Flows

Figure 5.2 displays recovered densities using the procedure described in Sec-
tion 5.1. See also the figure caption. The low-degree SOS polynomials used to
parametrize and estimate the transportation maps TA suffice to generate sam-
ples yi = T (xi) by pushing forward samples xi ∼ N (0, In) such that sample yi
follow the ground-truth densities ν depicted by Figure 5.1 quite accurately.

We also checked the influence of changing the polynomial basis according
to Remark 1 (page 8). Specifically, Hermite polynomials that are orthogonal
with respect to a weighted L2 inner product were used instead of the canonical
monomial basis. Figure 5.4 illustrates that this did not affect the process in a
noticeable way. Neither did the result for the Gaussian mixture density show
any noticeable effect.

5.3 Exponential SOS-Polynomial Normalizing Flows

We repeated all experiments reported in Section 5.2 using Algorithm 2, instead
of Algorithm 1, that is based on the parametrization detailed in Section 4.2. The
results are shown by Figure 5.3.

We generally observed fairly good density approximations even for low-degree
polynomial parametrizations, that do not achieve the accuracy of the results
obtained using the Riemannian flows, however (cf. Figure 5.2). In particular, we
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Fig. 5.2: Riemannian SOS-Polynomial Normalizing Flows. Kernel density esti-
mate plots based on N = 2000 samples yi = TA(xi) = S−1A (xi) generated by
the transportation maps TA corresponding to the densities shown by Figure 5.1
and samples xi ∼ N (0, In). The columns correspond from (left to right) to the
degrees 2d ∈ {2, 4, 6} of the SOS-polynomials that were used to compute the
increasing triangular maps TA. Except for the mixture of two Gaussians density,
low-degree SOS-polynomals suffice to recover the densities quite accurately.

Fig. 5.3: Exponential SOS-Polynomial Normalizing Flows. Results of the exper-
iments obtained using Algorithm 2 using the same data as for the experiments
illustrated by Figure 5.2. In comparison to the former results, the approximation
accuracy deteriorated slightly. In addition, choosing larger polynomial degrees
may not improve the result. We attribute this finding to the fact that Algorithm
2 is based on approximating the geometry of the parameter space in various
ways (see text).
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Fig. 5.4: Riemannian SOS-Polynomial Normalizing Flows using Hermite poly-
nomials, rather than the canonical monomial basis, and using the same data as
for the experiments illustrated by Figure 5.2.

observed that increasing the polynomial degree did not systematically improve
the approximation.

We attribute this negative finding to two facts: Firstly, Algorithm 2 does not
exactly respect the geometry of the parameter space Pn,d (3.5b). Secondly, the
Krylov subspace approximation underlying the updates (4.21) may also affect
the approximation accuracy. We leave a more detailed analysis for future work.

5.4 Comparison Between Riemannian and Exponential SOS Flow

Comparing the results discussed in Sections 5.2 and 5.3 suggests that Rieman-
nian SOS-polynomial normalizing flows should be preferred.

A striking difference concerns the dependency on the polynomial degree.
While the Riemannian SOS flow generally yield improved density approxima-
tions when the degree is increased, this is hardly the case when using the expo-
nential parametrization. Possible reasons were discussed in the preceding section.

In both cases, however, even small polynomial degrees enable to represent
densities by transportation maps quite accurately.

6 Conclusion

We studied transportation maps for generative modeling using Sum-of-Squares
polynomials for the construction of increasing triangular maps. Two parametriza-
tions were studied along with two numerical algorithms for estimating the pa-
rameters by minimizing a sample-based objective function.

Experiments show that low-degree polynomials suffice to recover basic non-
Gaussian distributions quite accurately. Riemannian SOS-polynomial flows that
fully respect the geometry of the parameter space perform best, whereas approx-
imations of the geometry may cause detrimental effects.

We merely regard the reported preliminary experimental results as proof of
concept, conducted with low-degree parametrizations and small dimension of the
underlying domain. Our future work will be devoted to geometric methods for
taming the complexity of large degree parametrizations and the representation
of high-dimensional generative models.
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