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ABSTRACT. At the present time Optical Coherence Tomography (OCT) is among the most commonly used
non-invasive imaging methods for the acquisition of large volumetric scans of human retinal tissues and vascu-
lature. The substantial increase of accessible highly resolved 3D samples at the optic nerve head and the macula
is directly linked to medical advancements in early detection of eye diseases. To resolve decisive information
from extracted OCT volumes and to make it applicable for further diagnostic analysis, the exact identification
of retinal layer thicknesses serves as an essential task be done for each patient separately. However, the manual
examination of multiple OCT scans in a row is a demanding and time consuming task, which results in a lengthy
qualification process and is frequently confounded in the presence of tissue-dependent speckle noise. Therefore,
the elaboration of automated segmentation models has become an important task in the field of medical image
processing.

We propose a novel, purely data driven geometric approach to order-constrained 3D OCT retinal cell layer
segmentation which takes as input data in any metric space and comes along with basic operations that can
be effectively computed in parallel. As opposed to many established retina detection methods, our presented
formulation avoids the use of any shape prior and accomplishes the natural order of the retina in a purely
geometric way, while maintaining the high level of accuracy. This makes the approach unbiased and hence
suited for the detection of local anatomical changes of retinal tissue structure. To demonstrate robustness of the
proposed approach, we compare two different choices of features on a data set of manually annotated 3D OCT
volumes of healthy human retina. The quality of computed segmentations is compared to the state of the art
in terms of mean absolute error and the Dice similarity coefficient. Visualizations of segmented volumes are
also provided. The results indicate a great potential for applying our method to the classification of diseased
retina and opens a new research direction regarding the joint segmentation of retinal cell layers and blood vessel
structures.
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4. Ordered Layer Segmentation 13
4.1. Ordering Constraint 13
4.2. Ordered Assignment Flow 16
5. Experimental Results 17
5.1. Data, Competing Approaches, Performance Measures 17
5.1.1. OCT-Data 17
5.1.2. Reference Methods 17
5.1.3. Performance Measures 19
5.2. Feature Extraction 19
5.2.1. Region Covariance Descriptors 19
5.2.2. Prototypes on Pd 20
5.2.3. CNN Features 21
5.3. Segmentation via Ordered Assignment 22
5.4. Evaluation 24
6. Discussion 32
6.1. Ground Truth Generation 32
6.2. Feature Locality 32
7. Conclusion 33
Acknowledgement 34
ORCID iDs 34
References 34

1. INTRODUCTION

1.1. Overview, Motivation. Optical Coherence Tomography (OCT) is a non-invasive imaging technique
which measures the intensity response of back scattered light from millimeter penetration depth and pro-
vides information about retinal tissue structure in vivo to understand human eye functionalities, see Figure
1.1 for a more descriptive anatomical explanation. OCT devices record multiple two-dimensional B-scans in
rapid succession and combine them to a single volume in a subsequent alignment step. We focus specifically
on the application of OCT in ophthalmology for the aquisition of high-resolution volume scans of the human
retina. Taking an OCT scan only takes minutes and can help detect symptoms of pathological conditions
such as glaucoma, diabetes, multiple sclerosis or age-related macular degeneration. The relative ease of data
acquisition also enables to use multiple OCT volume scans of a single patient over time to track the progres-
sion of a pathology or quantify the success of therapeutic treatment. As a consequence of the technological
progress in OCT imaging which was made over past few decades since its invention in 1991 [HSL+91],
more expertise for extraction of manual annotations is required which in the presence of big volumetric data
sets is difficult to access.

To better leverage the availability of retinal OCT data in both clinical settings and empirical studies, much
work is focused on the analysis of appropriate automatic feature extraction techniques. In particular, the ac-
cess to such methods is especially crucial for achieving enhanced effectiveness of existing quantitative retinal
multi cell layer segmentation approaches, and for increasing their clinical potential in real life applications,
such as detection of fluid regions and reconstruction of vascular structures. The difficulty of these tasks lies
in the challenging signal-to-noise ratio which is influenced by multiple factors including mechanical eye
movement during registration and the presence of speckle noise.

In this paper, we extend the approach [ÅPSS17] for labeling data on graphs to automatic cell layer seg-
mentation in OCT data. After a feature extraction step, each voxel is labeled by smoothing local layer
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FIGURE 1.1. Schematic illustration designed by [Kjp] of human eye functionality: The light enters the Cornea
5 though the vitreous humour 6 towards retina 4 and choroid 3 which are located around the fovea 1 .

decisions and jointly leveraging a global geometric invariant – the natural order of cell layers along the
vertical axis of each B-scan, as shown in the third row of Figure 1.2. We are able to produce high-quality
segmentations of OCT volumes by using local features as input for a purpose-built assignment flow vari-
ant which serves to incorporate global context in a controlled way. This is in contrast to common machine
learning approaches which use essentially full B-scans as input. By incorporating global context into the
feature extraction process, the latter methods are at increased risk of overfitting training data and potentially
missinterpreting unseen pathologies.

Our segmentation approach is a smooth image labeling algorithm based on geometric numerical integra-
tion on an elementary statistical manifold. It can work with input data from any metric space, making it
agnostic to the choice of feature extraction and suitable as plug-in replacement in diverse pipelines. In ad-
dition to respecting the natural order of cell layers, the proposed segmentation process has a high amount of
built-in parallelism such that modern graphics acceleration hardware can easily be leveraged. We compare
the effectiveness of our novel approach between a selection of input features ranging from traditional covari-
ance descriptors to convolutional neural networks. Figure 1.2 shows one specific example of an segmented
OCT-volume with clearly visible difficulties of speckle noise and jagged patterns followed by an labeled
(2D) cutout which is a typical result our novel approach.

1.2. Related Work. Effective segmentation of OCT volumes is a very active area of research. Here, we
briefly review the current state of the art approaches originating from the broad research fields of graphical
models, variational methods and machine learning.

1.2.1. Graphical Models. The first mathematical access to the problem is provided by the theory of graph-
ical models which transforms the segmentation task into an optimization problem with hard pairwise inter-
action constraints between voxels. Starting with Li et. al. [KXCS06] and Haeker [HAW+07], simultaneous
retina layer detection attempts were made by finding an s-t minimum graph cut. Garvin et. al. [GAW+09]
further extended this approach with a shape prior modeling layer boundaries. The methods benefit from
low computational complexity, but are lacking of robustness in the presence of speckle and therefore require
additional preprocessing steps. Along this line of reasoning, B.J. Anthony et. al [AAL+10] used a two stage
segmentation process by applying anisotropic diffusion in a preprocessing step and consequently segment-
ing outer retina layers using graphical models. Similarly, Kafieh et. al. [KRAS13] proposed to use specific
distances based on diffusion maps which are computed by coarse graining the original graph. However, in-
creased performance for noisy OCT data gained by regularizing in this way comes at the cost of introducing
bias in the preprocessing step which in turn inpairs robustness in settings with medical pathologies.
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Motivated by [SBG+13], Dufour et. al. [DCA+13] comes up with a circular shape prior for segmen-
tation of 6 retinal layers by incorporating soft constraints which are more suitable for the robust detection
of pathological retina structures. Chiu. et al. [CAM+15] relies on a graphical model approach as a post-
processing step after applying a supervised kernel regression classification with features extracted according
to [QLD+10]. Rathke et. al. [RSS14] reduced the overall complexity by a parallelizable segmentation
approach based on probabilistic graphical models with global low-rank shape prior representing interacting
retina tissues surfaces. While the global shape prior works well for non-pathological OCT data, it cannot
be adapted to the broad range of variations caused by local pathological structure resulting in a inherent
limitation of this approach.

(a)

(b)

(c)

FIGURE 1.2. (a): 3D OCT volume scan dimension 512× 512× 256 of healthy human retina with ambiguous
locations of layer boundaries with normalized view on the right. (b): The resulting segmentation of 11 layers
displaying the order preserving labeling of the proposed approach. Boundary surfaces between different seg-
mented cell layers are illustrated. (c): Typical result of the proposed segmentation approach for a single B-scan
of healthy retina. Left: raw OCT input data. Middle: segmentation by locally selecting the label with maximum
score for each voxel after feature extraction. Right: segmentation by the proposed assignment flow approach
using the same extracted features.

1.2.2. Variational Methods. Another category of layer detection methods focus on minimizing of energy
functional to express the quantity of interest as the solution to an optimization problem. To this class of
methods for retina detection level set approaches have proven to be particularly suitable by encoding each
retina layer as the zero level sets of a certain functional. Yazdanpanah et. al. [YHSS11] introduces a level
set method for minimizing an active contour functional supported by a multiphase Chan Vese model [CV01]
as circular shape prior, to avoid limitations of hard constraints as opposed to graphical model proposed by
[GAW+09]. Duan et. al. [DTG+15] suggests the approach to model layer boundaries with a mixture of
Mumford Shah and Vese and Osher functionals by first preprocessing the data in the Fourier domain. A
capable level set approach for joint segmentation of pathological retina tissues was reported in [NVd+17].
However, due to the involved hierarchical optimization, their method is computationally expensive. One
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common downside of the above algorithms are their inherent limitations to only include local notions of
layer ordering, making their extension to cases with pathologically caused retina degeneracy a difficult task.

1.2.3. Machine Learning. Much recent work has focused on the use of deep learning to address the task of
cell layer segmentation in a purely data driven way. The U-net architecture [RFB15] has proven influential
in this domain because of its good predictive performance in settings with limited availability of training
data. Multiple modifications of U-net have been proposed to specifically increase its performance in OCT
applications [RCK+17, LCF+19]. The common methods largely rely on convolutional neural networks to
predict layer segmentations for individual B-scans which are subsequently combined to full volumes. These
methods have also been used as part of a two-stage pipeline where additional prior knowledge such as local
regularity and global order of cell layers along a spatial axis is incorporated through graph-based methods
[FCW+17] or a second machine learning component [HCL+19]. However, because global context is already
used in feature extraction, the risk of overfitting remains and unseen pathologies may result in unpredictable
behavior.

1.3. Contribution, Organization. We propose a geometric assignment approach to retinal layer segmen-
tation. By leveraging a continuous characterization of layer ordering, our method is able to simultaneously
perform local regularization and incorporate the global topological ordering constraint in a single smooth la-
beling process. The segmentation is computed from a distance matrix containing pairwise distances between
data for each voxel and prototypical data for each layer in some feature space. This highlights the ability to
extract features from raw OCT data in a variety of different ways and to use the proposed segmentation as a
plug-in replacement for other graph-based methods.

As a result of the proposed method, it becomes possible to compute high-quality cell layer segmentations
of OCT volumes by using only local features for each voxel. This is in contrast to competing deep learning
approaches which commonly use information from an entire B-scan as input. In addition, the exclusive use
of local features combats bias introduced through limited data availability in training and makes incorpora-
tion of three-dimensional information easily possible without limiting runtime scalability. To demonstrate
this, we implement two feature extraction approaches. The first is based on identifying each datum with a
covariance descriptor and finding prototypical descriptors as cluster centers. For each voxel, Riemannian
distances to the prototypical descriptors are used as input for subsequent segmentation. The second is based
on training a convolutional neural network to classify small voxel patches of raw OCT data. Predicted class
scores for each voxel are subsequently used as input for the proposed segmentation method.

The final pipeline enables robust cell layer segmentation for raw OCT volumes at scale, labeling an entire
OCT volume in the time frame between 30 seconds and several minutes on a single GPU and in general leads
to increased performance in the case of more informative features. This is without using any prior knowledge
other than local regularity and order of cell layers. In particular, no global shape prior is used thus making
our proposed approach suited for retina detection in OCT volumes with observable pathological patterns.

Our paper considerably elaborates the conference version [SBS20] and is organized as follows. The
assignment flow approach is summarized in Section 2 and extended in Section 4 in order to take into account
the order of layers as a global constraint. In Section 3, we consider the Riemannian manifold Pd of positive
definite matrices as a suitable feature space for local OCT data descriptors. Various Riemannian metrics
are discussed with regard to computational efficiency of clustering. The resulting features are subsequently
compared to local features extracted by a convolutional network in Section 5. Performance measures for
OCT segmentation will be reported for our novel approach and for two other state-of-the-art methods with
available standalone software, that were evaluated in detail as summarized in Section 5. In Section 6, we
shortly discuss the access to appropriate ground truth data and the impact of feature locality underlying our
approach.
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2. ASSIGNMENT FLOW

We summarize the assignment flow approach introduced by [ÅPSS17] and refer to the recent survey
[Sch20] for more background and a review of recent related work.

2.1. Assignment Manifold. Let (F , dF ) be a metric space and

Fn = {fi ∈ F : i ∈ I}, |I| = n (2.1a)

given data. Assume that a predefined set of prototypes

F∗ = {f∗j ∈ F : j ∈ J }, |J | = c (2.1b)

is given. Data labeling denotes the assignments

j → i, f∗j → fi (2.2)

of a single prototype f∗j ∈ F∗ to each data point fi ∈ Fn. The set I is assumed to form the vertex set of an
undirected graph G = (I, E) which defines a relation E ⊂ I × I and neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (2.3)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i). We require these neighborhoods to
satisfy the symmetry relation

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ I. (2.4)
The assignments (labeling) (2.2) are represented by matrices in the set

W∗ = {W ∈ {0, 1}n×c : W1c = 1n} (2.5)

with unit vectors Wi, i ∈ I, called assignment vectors, as row vectors. These assignment vectors are
computed by numerically integrating the assignment flow below (2.24) in the following geometric setting.
The integrality constraint of (2.5) is relaxed and vectors

Wi = (Wi1, . . . ,Wic)
> ∈ S, i ∈ I, (2.6)

that we still call assignment vectors, are considered on the elementary Riemannian manifold

(S, g), S = {p ∈ ∆c : p > 0} (2.7)

with the probability simplex ∆c =
{
p ∈ Rc+ :

∑c
i=1 = 〈1, p〉 = 1

}
, the barycenter

1S =
1

c
1c ∈ S, (barycenter) (2.8)

tangent space
T0 = {v ∈ Rc : 〈1c, v〉 = 0} (2.9)

and tangent bundle TS = S × T0, the orthogonal projection

Π0 : Rc → T0, Π0 = I − 1S1> (2.10)

and the Fisher-Rao metric

gp(u, v) =
∑
j∈J

ujvj

pj
, p ∈ S, u, v ∈ T0. (2.11)

Based on the linear map

Rp : Rc → T0, Rp = Diag(p)− pp>, p ∈ S (2.12)

that satisfies
Rp = RpΠ0 = Π0Rp, (2.13)
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exponential maps and their inverses are defined by

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉
, (2.14a)

Exp−1
p : S → T0, q 7→ Exp−1

p (q) = Rp log
q

p
, (2.14b)

expp : T0 → S, expp = Expp ◦Rp, (2.14c)

exp−1
p : S → T0, exp−1

p (q) = Π0 log
q

p
. (2.14d)

Applying the map expp to a vector in Rc = T0 ⊕ R1 does not depend on the constant component of the
argument, due to (2.13).

Remark 2.1. The map Exp corresponds to the e-connection of information geometry [AN00], rather than
to the exponential map of the Riemannian connection. Accordingly, the affine geodesics (2.14a) are not
length-minimizing. But they provide a close approximation [ÅPSS17, Prop. 3] and are more convenient for
numerical computations.

The assignment manifold is defined as

(W, g), W = S × · · · × S. (n = |I| factors) (2.15)

We identifyW with the embedding into Rn×c

W = {W ∈ Rn×c : W1c = 1n and Wij > 0 for all i ∈ [n], j ∈ [c]}. (2.16)

Thus, points W ∈ W are row-stochastic matrices W ∈ Rn×c with row vectors Wi ∈ S, i ∈ I that represent
the assignments (2.2) for every i ∈ I. We set

T0 := T0 × · · · × T0 (n = |I| factors). (2.17)

Due to (2.16), the tangent space T0 can be identified with

T0 = {V ∈ Rn×c : V 1c = 0}. (2.18)

Thus, Vi ∈ T0 for all row vectors of V ∈ Rn×c and i ∈ I. All mappings defined above factorize in a natural
way and apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn
) etc.

2.2. Assignment Flow. Based on (2.1a) and (2.1b), the distance vector field

DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)>
, i ∈ I (2.19)

is well-defined. These vectors are collected as row vectors of the distance matrix

DF ∈ Sn+, (2.20)

where Sn+ denotes the set of symmetric and entrywise nonnegative matrices.

Remark 2.2. In this paper, we build upon two different types of features to determine vectors (2.19) which
are serving as input before mapping the assembled matrix (2.20) onto the assignment manifold as explained
below. Hereby, the first class of features access our model by calculating distance to prototypes (2.1) with
metric introduced in section (3.2) while the second feature class directly possess the form of (2.20) as argued
in section (5.2.3).

The likelihood map and the likelihood vectors, respectively, are defined as

Li : S → S, Li(Wi) = expWi

(
− 1

ρ
DF ;i

)
=

Wie
− 1
ρ
DF;i

〈Wi, e
− 1
ρ
DF;i〉

, i ∈ I, (2.21)
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where the scaling parameter ρ > 0 is used for normalizing the a-prior unknown scale of the components of
DF ;i that depends on the specific application at hand.

A key component of the assignment flow is the interaction of the likelihood vectors through geometric
averaging within the local neighborhoods (2.3). Specifically, using weights

ωik > 0 for all k ∈ Ni, i ∈ I with
∑
k∈Ni

wik = 1, (2.22)

the similarity map and the similarity vectors, respectively, are defined as

Si : W → S, Si(W ) = ExpWi

( ∑
k∈Ni

wik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I. (2.23)

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the argument inside the

brackets of the right-hand side would just be the negative Riemannian gradient with respect toWi of center of
mass objective function comprising the points Lk, k ∈ Ni, i.e. the weighted sum of the squared Riemannian
distances between Wi and Lk [Jos17, Lemma 6.9.4]. In view of Remark 2.1, this interpretation is only
approximately true mathematically, but still correct informally: Si(W ) moves Wi towards the geometric
mean of the likelihood vectors Lk, k ∈ Ni. Since ExpWi

(0) = Wi, this mean precisely is Wi if the
aforementioned gradient vanishes.

The assignment flow is induced on the assignment manifoldW by the locally coupled system of nonlinear
ODEs

Ẇ = RWS(W ), W (0) = 1W , (2.24a)

Ẇi = RWiSi(W ), Wi(0) = 1S , i ∈ I, (2.24b)

where 1W ∈ W denotes the barycenter of the assignment manifold (2.15). The solution W (t) ∈ W is
numerically computed by geometric integration [ZSPS20] and determines a labeling W (T ) ∈ W∗ for suf-
ficiently large T after a trivial rounding operation. Convergence and stability of the assignment flow have
been studied by [ZZS20].

3. OCT DATA REPRESENTATION BY COVARIANCE DESCIPTORS

In this section, we work out the basic geometric notation for representation of OCT data by means of co-
variance descriptors [TPM06]. Specifically, the metric data space (F , dF ) underlying (2.1) will be identified
with the Riemannian manifold (Pd, dg) of positive definite matrices of dimension d × d, with Riemannian
metric g and Riemannian distance dg as specified in section 5. In particular regarding the computation of cor-
responding prototypes (2.1b), an important aspect concerns the trade-off between respecting the Riemannian
distance dg of the matrix manifold Pd and approximating surrogate distance functions, that enable to com-
pute more efficiently Riemannian means of covariance descriptors while adopting their natural geometry.
We review and discuss various choices in Section 3.2 after reviewing few required concepts of Riemannian
geometry in Section 3.1.

3.1. The Manifold Pd. We collect few concepts related to data p ∈M taking values on a general Riemann-
ian manifold (M, g) with Riemannian metric g; see, e.g., [Lee13, Jos17] for background reading. Then we
apply these concepts to the specific manifold (Pd, g) and the corresponding distance dg, keeping the symbol
g for the metric for simplicity. We refer to, e.g., [Bha07, Bha13, PFAE06, MB06] for further reading and to
the references in Section 3.2.

Let γ : [0, 1] → M a smooth curve connecting two points p = γ(0) and q = γ(1). The Riemannian
distance between p and q is given by

dg(p, q) = min
γ : γ(0)=p,γ(1)=q

L(γ) (3.1a)
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with

L(γ) =

∫ 1

0
‖γ̇(t)‖γ(t) dt =

∫ 1

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt . (3.1b)

Assume the minimum of the right-hand side of (3.1a) is attained at γ. Then the exponential map at p is
defined on some neighborhood Vp ⊆ TpM of 0 in the tangent space toM at p by

expp : Vp ⊇ TpM → Up ⊆M, v 7→ expp(v) := γ(1). (3.2)

This mapping is a diffeomorphism of Vp and its inverse exp−1
p : Up → Vp exists on a corresponding open

neighborhood Up. Let X (M) denote the set of all smooth vector fields onM, i.e. X ∈ X (M) evaluates
to a tangent vector Xp ∈ TpM smoothly depending on p. The set of all smooth covector fields (one-forms)
is denoted by X ∗(M), and df(X) denotes the action of the differential df ∈ X ∗(M) of a smooth function
f : M→ R on a vector field X . The Riemannian gradient of f is the vector field grad f ∈ X (M) defined
by

g(grad f,X) = df(X) = Xf, ∀X ∈ X (M). (3.3)
We now focus on the following problem: Given a set of points {pi}i∈[N ] ⊂ M, compute the weighted

Riemannian mean as minimizer of the objective function

p = arg min
q∈M

J(q), J(q) =
∑
i∈[N ]

ωid
2
g(q, pi), ωi > 0, ∀i,

∑
i∈[N ]

ωi = 1. (3.4)

The Riemannian gradient of this objective function is given by [Jos17, Lemma 6.9.4]

grad J(p) = −
∑
i∈[N ]

ωi exp−1
p (pi). (3.5)

Hence the Riemannian mean p is determined by the optimality condition∑
i∈[N ]

ωi exp−1
p (pi) = 0. (3.6)

A basic numerical method for computing p is the fixed point iteration

q(t+1) = expq(t)

( ∑
i∈[N ]

ωi exp−1
q(t)

(pi)
)
, t = 1, 2, . . . (3.7)

that may converge for a suitable initialization q(0) to p.
We now focus on the specific manifold (Pd, g)

Pd = {S ∈ Rd×d : S = S>, S is positive definite} (3.8)

equipped with the Riemannian metric

gS(U, V ) = tr(S−1US−1V ), U, V ∈ TSPd = {S ∈ Rd×d : S> = S}. (3.9)

The Riemannian distance (3.1a) is given by

dPd(S, T ) =
(∑
i∈[d]

(
log λi(S, T )

)2)1/2
, (3.10)

whereas the exponential map (3.2) reads

expS(U) = S
1
2 expm(S−

1
2US−

1
2 )S

1
2 , (3.11)

and expm(·) denotes the matrix exponential. Finally, given a smooth objective function J : Pd → R, the
Riemannian gradient is given by

grad J(S) = S
(
∂J(S)

)
S ∈ TSPd, (3.12)
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where the symmetric matrix ∂J(S) denotes the Euclidean gradient of J at S. SincePd is a simply connected,
complete and nonpositively curved Riemannian manifold [BH99, Section 10], the exponential map (3.11) is
globally defined and bijective, and the Riemannian mean always exists and is uniquely defined as minimizer
of the objective function (3.4), after substituting the Riemannian distance (3.10).

3.2. Computing Prototypical Covariance Descriptors. In this section, we focus on the computational dif-
ferential geometric framework required for extraction of prototypes (2.1b) as Riemannian means from a set
of covariance descriptors assembled from OCT data. Application details are reported in Section 5. Particu-
larly with regard to more efficient handling present volumetric data and to reduce the computational costs,
a surrogate metrics and distances are reviewed in Sections 3.2.2 and 3.2.3. Their qualitative comparison is
reported in Section 5.

3.2.1. Computing Riemannian Means. Given a set of covariance descriptors

SN = {(S1, ω1), . . . , (SN , ωN )} ⊂ Pd (3.13)

together with positive weights ωi, we next focus on the solution of the problem (3.4) for specific geometry
(3.8),

S = arg min
S∈Pd

J(S;SN ), J(S;SN ) =
∑
i∈[N ]

ωid
2
Pd(S, Si), (3.14)

with the distance dPd given by (3.10). From (3.11), we deduce

U = exp−1
S ◦ expS(U) = S

1
2 logm

(
S−

1
2 expS(U)S−

1
2
)
S

1
2 (3.15)

with the matrix logarithm logm = expm−1 [Hig08, Section 11]. As a result, optimality condition (3.6) reads∑
i∈[N ]

ωiS
1
2 logm

(
S
− 1

2SiS
− 1

2
)
S

1
2 = 0. (3.16)

Applying the corresponding basic fixed iteration (3.7) has two drawbacks, however [CABM15]: Conver-
gence is not theoretically guaranteed and if the iteration converges, than at a linear rate only. Since each
iterative step requires nontrivial numerical matrix decomposition that has to be applied multiple times to
every voxel (vertex) of a 3D gridgraph, this results in an overall quite expensive approach, in particular when
larger data sets are involved as is the case for highly resolved 3D OCT volumetric scans.

The following variant proposed by [BI13] is guaranteed to converge at a quadratic rate assuming the
matrices {S1, . . . , SN} to pairwise commute. Using the parametrization

S = LL> (3.17)

corresponding to the Cholesky decomposition replacing the map of fixed point iteration (3.7) with its lin-
earization leads to the following fixed point iteration

Fτ (L;SN ) = LL> − τ
∑
i∈[N ]

ωiL
> logm(L−>S−1

i L−1)L, τ > 0, (3.18)

with damping parameter τ . Comparing to (3.16) shows that the basic idea is to compute the Riemannian
mean S as fixed point of the iteration

S = lim
t→∞

S(t), S(t+1) = F (S(t);SN ). (3.19)

Algorithm 1 provides a refined variant of this iteration including adaptive stepsize selection. See [CABM15]
for alternative algorithms that determine the Riemannian mean.
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Algorithm 1: Fixed Point Iteration for Computing the Riemannian Matrix Mean.
Initialization
ε (termination threshold)
t = 0, S(0) = LL>, with S(0) solving (3.21).

c0 =
λmax(S(0))

λmin(S(0)))
, {α0, β0} =

[ log(c0)
c0−1 , c0

log(c0)
c0−1

]
(condition number and step size selection parameters)

τ0 = 2
α0+β0

S(1) = Fτ (L;SN ) (iterative step)

ε1 =
∥∥∑

i∈[N ] ωi logm(S
1
2

(1)S
−1
i S

1
2

(1)

∥∥
F
, t = 1

while εt > ε do
S(t) = LL>

ct =
λmax(S(t))

λmin(S(t))

if ct = 1 then
stop

{αt, βt} = {∑t
k=0

log(ck)
ck−1 , ck

log(ck)
ck−1 }

τt = 2
αt+βt

S(t+1) = Fτt(L;SN )

εt+1 :=
∥∥∑

i∈[N ] ωi logm(S
1
2

(t+1)S
−1
i S

1
2

(t+1))
∥∥
F
, t← t+ 1

3.2.2. Log-Euclidean Distance and Means. A computationally cheap approach was proposed by [AFPA07]
(among several other ones). Based on the operations

S1 � S2 = expm
(

logm(S1 + logm(S2)
)
), (3.20a)

λ · S = expm
(
λ logm(S)

)
, (3.20b)

the set (Ps,�, ·) becomes isomorphic to the vector space where � plays the role of addition. Consequently,
the mean of the data SN given by (3.13) is defined analogous to the arithmetic mean by

S = expm
( ∑
i∈[N ]

ωi logm(Si)
)
. (3.21)

While computing the mean is considerably cheaper than integrating the flow (3.12) using approximation
Algorithm 1, the critical drawback of relying on (3.21) is not taking into account the (curved structure)
of the manifold Pd. Therefore, in the next section, we additionally consider another approximation of the
Riemannian mean that better respects the underlying geometry but can still be evaluated more efficiently
than the Riemannian mean of Section 3.2.1.

3.2.3. S-Divergence and Means. A general approach to the approximation of the objective function (3.4) is
to replace the squared Riemannian d2

g(p, q) distance by a divergence function

D(p, q) ≈ 1

2
d2
g(p, q) (3.22)

that satisfies

D(p, q) ≥ 0 and D(p, q) = 0 ⇔ p = q, (3.23a)

∂2
1D(p, q) � 0, ∀p ∈ domD(·, q). (3.23b)
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We refer to, e.g., [CZ97, BB97] for a complete definition. Property (3.23b) says that, for any feasible p,
the Hessian with respect to the first argument is positive definite. In fact, suitable divergence functions D
recover in this way locally the metric tensor of the underlying manifoldM, in order to qualify as a surrogate
for the squared Riemannian distance (3.22).

For the present case M = Pd of interest, Sra [Sra16] proposed the divergence function, called Stein
divergence

Ds(S1, S2) = log det
(S1 + S2

2

)
− 1

2
log det(S1S2), S, S1, S2 ∈ Pd. (3.24)

Regarding the task of evaluating the Riemannian distance (3.10), which is required for the second term of
problem (3.14) for subsequential extraction of prototypes (2.1b) in Section (5), while avoiding to solve the
numerically involved numerical generalized eigenvalue problem, we replace (3.14) by

S = arg min
S∈Pd

Js(S;SN ), Js(S;SN ) =
∑
i∈[N ]

ωiDs(S, Si). (3.25)

The resulting Riemannian gradient flow reads

Ṡ = − grad Js(S;SN )
(3.12)
= −S∂J(S;SN )S (3.26a)

= −1

2

(
SR(S;SN )S − S

)
, R(S;SN ) =

∑
i∈[N ]

ωi

(S + Si
2

)−1
. (3.26b)

Discretizing the flow using the geometric explicit Euler scheme with step size h,

S(t+1) = expS(t)

(
− h grad Js(S(t);SN )

)
(3.27a)

(3.11)
= S

1
2

(t) expm
(h

2

(
I − S

1
2

(t)R(S(t);SN )S
1
2

(t)

))
S

1
2

(t) (3.27b)

and using the log-Euclidean mean (3.21) as initial point S(0), defines Algorithm 2 as listed below.

Algorithm 2: Computing the Geometric Matrix Mean Based on the S-divergence.
Initialization
ε (termination threshold)
t = 0, S(0) solves (3.21)
ε0 > ε (any value ε0)
while εt > ε do

LL> = S(t)

LiL
>
i =

S(t)+Si
2 for i ∈ [N ]

U = I − S
1
2

(t)

(∑
i∈[N ] ωi(LiL

>
i )−1

)
S

1
2

(t)

S(t+1) = S
1
2

(t) expm(h2U)S
1
2

(t)

εt+1 := ‖U‖F , t← t+ 1
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4. ORDERED LAYER SEGMENTATION

In this section, we work out an extension of the assignment flow (Section 2) which is able to respect the
order of cell layers as a global constraint while remaining in the same smooth geometric setting. In particular,
existing schemes for numerical integration still apply to the novel variant.

4.1. Ordering Constraint. With regard to segmenting OCT data volumes, the order of cell layers is crucial
prior knowledge. In this paper we focus on segmentation of the following 11 retina layers: Retinal Nerve
Fiber Layer (RNFL), Ganglion Cell Layer (GCL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL),
Outer Nuclear Layer (ONL), two photoreceptor layers (PR1, PR2) separated by the External Limiting Mem-
brane (ELM) and the Retinal Pigment Epithelium (RPE) together with the Choroid Section (CS). Figure 4.1
also contains positions for the Internal Limiting Membrane (ILM) and Brunch Membrane (BM).

CS
CC
BM
RPE
PR2
PR1
ELM
ONL
OPL
INL
IPL
GCL
RNFL
ILM

Retina Layers

2 ︸︷︷︸

3

︸
︷︷

︸

1

︸
︷︷

︸

A-Scan B-Scan

FIGURE 4.1. OCT volume acquisition: 1© is the A-scan axis (single A-scan is marked
yellow). Multiple A-scans taken in rapid succession along axis 2© form a two-dimensional
B-scan (single B-scan is marked blue). The complete OCT volume is formed by repeating
this procedure along axis 3©. A list of retina layers that we expect to find in every A-scan is
shown on the left.

To incorporate this knowledge into the geometric setting of Section 2, we require a smooth notion of
ordering which allows to compare two probability distributions. In the following, we assume prototypes
f∗j ∈ F , j ∈ [n] in some feature space F to be indexed such that ascending label indices reflect the
physiological order of cell layers.

Definition 4.1 (Ordered Assignment Vectors). A pair of voxel assignments (wi, wj) ∈ S2, i < j within a
single A-scan is called ordered, if wj − wi ∈ K = {By : y ∈ Rc+} with the matrix

B =


−1
1 −1

1
. . .
. . . −1

1 −1

 ∈ Rc×c . (4.1)

This new continuous ordering of probability distributions is consistent with discrete ordering of layer
indices in the following way.
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Lemma 4.2. Let wi = el1 , wj = el2 , l1, l2 ∈ [c] denote two integral voxel assignments. Then wj − wi ∈ K
if and only if l1 ≤ l2.

Proof. B is regular with inverse

B−1 = −Q, Qi,j =

{
1 if i ≥ j
0 else

(4.2)

and wj − wi ∈ K ⇔ B−1(wj − wi) ∈ Rc+. It holds

B−1(wj − wi) = Qel1 −Qel2 =

c∑
k=l1

ek −
c∑

k=l2

ek (4.3)

such that B−1(wj − wi) has nonnegative entries exactly if l1 ≤ l2. �

The continuous notion of order preservation put forward in Definition 4.1 can be interpreted in terms of a
related discrete graphical model. Consider a graph consisting of two nodes connected by a single edge. The
order constrained image labeling problem on this graph can be written as the integer linear program

min
W∈{0,1}2×c,M∈Π(wi,wj)

〈W,D〉+ θ〈Q− I,M〉 (4.4)

where Π(wi, wj) denotes the set of coupling measures for marginalswi,wj and θ � 0 is a penalty associated
with violation of the ordering constraint. By taking the limit θ → ∞ we find the more tightly constrained
problem

min
W∈{0,1}2×c,M∈Π(wi,wj)

〈W,D〉 s.t. 〈Q− I,M〉 = 0 . (4.5)

Its feasible set has an informative relation to Definition 4.1 examined in Proposition 4.4.

Lemma 4.3. LetM ∈ Rc×c be an upper triangular matrix with non-negative entries above the diagonal and
non-negative marginals

M1c ≥ 0, M>1c ≥ 0 . (4.6)
Then there exists a modified matrix M1 with the same properties such that M1 ≥ 0.

Proof. (4.6) directly implies M11 ≥ 0 and Mcc ≥ 0 because M is upper triangular. For row indices l 6= m
and column indices q 6= r, define the matrix Olm,qr with

Olm,qrij =


−1 if (i, j) = (l, q) ∨ (i, j) = (m, r)

1 if (i, j) = (l, r) ∨ (i, j) = (m, q)

0 else
. (4.7)

Then Olm,qr1 = (Olm,qr)>1 = 0. Adding a matrix Olm,qr to M does therefore not change its marginals,
but it redistributes mass from the positions (l, q) and (m, r) to the positions (l, r) and (m, q). Due to (4.6),
it is possible to choose scalars αklr ≥ 0 such that

M +
∑

2≤k≤c−1

∑
l<k
r>k

αklrO
lk,kr ≥ 0 . (4.8)

�

Proposition 4.4. A pair of voxel assignments (wi, wj) ∈ S2 within an single A-scan is ordered if and only
if the set

Π(wi, wj) ∩ {M ∈ Rc×c : 〈Q− I,M〉 = 0} (4.9)
is not empty.
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Proof. ”⇐ ” Suppose there exists a measure M ∈ Rc×c with marginals wi, wj and 〈Q− I,M〉 = 0. Then

wj − wi = By ⇔ Q(M −M>)1 = y . (4.10)

It suffices to show that no entry of y is negative. Define the shorthand ζ = (M −M>)1. Further, let M·,k
denote the k-th column of M and let Mk,· denote the k-th row of M . ζ has entries

ζl = (M −M>)1|l = 〈Ml,· −M·,l,1〉 =

c∑
k=l

Ml,k −
l∑

k=1

Mk,l, l ∈ [c] . (4.11)

By (4.10), the entries of y read

yr =
r∑
q=1

ζq . (4.12)

We can now inductively show that yr ≥ 0 for all r ∈ [c]. The cases r = 1 and r = c are immediate:

y1 = ζ1 =

c∑
k=1

M1,k −M1,1 =

c∑
k=2

M1,k ≥ 0 (4.13)

yc = 〈ζ,1〉 = 〈M −M>, 11>〉 =
∑
i,j∈[c]

Mi,j −
∑
i,j∈[c]

M>i,j = 0 . (4.14)

For r ∈ {2, . . . , c− 1} we make the hypothesis that

yr =
r∑
q=1

ζq =
c∑

k=r+1

(M1,k + . . .+Mr,k) ≥ 0 (4.15)

which is consistent with the result for r = 1 in (4.13). It follows

yr+1 =

r+1∑
q=1

ζq (4.16)

= ζr+1 +
c∑

k=r+1

(M1,k + . . .+Mr,k) (4.17)

=

c∑
k=r+1

Mr+1,k −
r+1∑
k=1

Mk,r+1 +

c∑
k=r+1

(M1,k + . . .+Mr,k) (4.18)

=
c∑

k=r+2

Mr+1,k +
c∑

k=r+2

(M1,k + . . .+Mr,k) (4.19)

=
c∑

k=r+2

(M1,k + . . .+Mr,k +Mr+1,k) (4.20)

where we used (4.15) in (4.17). This completes the inductive step and thus shows y ≥ 0.

”⇒ ” Let (wi, wj) be ordered. Following Definition (4.1), it holds

B−1(wj − wi) = Q(wi − wj) ∈ Rc+. (4.21)

We show the existence of a transport plan M ≥ 0 satisfying

M1 = wi, M>1 = wj (4.22)
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as well as the ordering constraint 〈Q− I,M〉 = 0 by direct construction. For c = 2,

M =

(
(wj)1 (wi)1 − (wj)1

0 1− (wi)1

)
(4.23)

satisfies these requirements. Now, let c > 2 and define the mapping

Cc−1
1 : ∆c → ∆c−1 (4.24)

w 7→ w̃ = (w2, . . . , wc) +
w1

c− 1
1c−1. (4.25)

If (wi, wj) ∈ ∆2
c is ordered, then (w̃i, w̃j) := (Cc−1

1 (wi), C
c−1
1 (wj)) ∈ ∆2

c−1 is ordered as well because

Q(w̃i − w̃j) = Q(w̄i − w̄j) +
(wi)1 − (wj)1

c− 1
Q1 ≥ 0 (4.26)

where w̄i denotes the vector ((wi)2, . . . , (wi)c). Suppose a transport plan M̃ ∈ R(c−1)×(c−1) exists such that

M̃1c−1 = w̃i M̃>1c−1 = w̃j , M̃ ≥ 0. (4.27)

To complete the inductive step, we consider the matrix

M0 :=

(
(wj)1 s>

0 M̃ − (wi)1
c−1 I

)
, s =

(wi)1 − (wj)1

c− 1
1c−1 (4.28)

which satisfies (4.22) as well as 〈Q− I,M0〉 = 0. By Lemma 4.3, M0 can be modified to yield a transport
plan with the desired properties. �

Proposition 4.4 shows that transportation plans between ordered voxel assignments wi and wj exist which
do not move mass from wi,l1 to wj,l2 if l1 > l2. This characterizes order preservation for non-integral
assignments as put forward in Definition 4.1.

4.2. Ordered Assignment Flow. Likelihoods as defined in (2.21) emerge by lifting −1
ρDF regarded as

Euclidean gradient of −1
ρ〈DF ,W 〉 to the assignment manifold. It is our goal to encode order preservation

into a generalized likelihood matrix Lord(W ). To this end, consider the assignment matrix W ∈ SN for a
single A-scan consisting of N voxels. We define the related matrix Y (W ) ∈ RN(N−1)×c with rows indexed
by pairs (i, j) ∈ [N ]2, i 6= j in fixed but arbitrary order. Let the rows of Y be given by

Y(i,j)(W ) =

{
Q(wj − wi) if i > j

Q(wi − wj) if i < j
. (4.29)

By construction, an A-scan assignment W is ordered exactly if all entries of the corresponding Y (W ) are
nonnegative. This enables to express the ordering constraint on a single A-scan in terms of the energy
objective

Eord(W ) =
∑

(i,j)∈[N ]2, i 6=j
φ(Y(i,j)(W )) . (4.30)

where φ : Rc → R denotes a smooth approximation of δRc+ . In our numerical experiments, we choose

φ(y) =

〈
γ exp

(
−1

γ
y

)
, 1

〉
(4.31)
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with a constant γ > 0. Suppose a full OCT volume assignment matrix W ∈ W is given and denote the set
of submatrices for each A-scan by C(W ). Then order preserving assignments consistent with given distance
data DF in the feature space F are found by minimizing the energy objective

E(W ) = 〈DF ,W 〉+
∑

WA∈C(W )

Eord(WA) . (4.32)

We consequently define the generalized likelihood map

Lord(W ) = expW (−∇E(W )) = expW

−1

ρ
DF −

∑
WA∈C(W )

∇Eord(WA)

 (4.33)

and specify a corresponding assignment flow variant.

Definition 4.5 (Ordered Assignment Flow). The dynamical system

Ẇ = RWS(Lord(W )), W (0) = 1W (4.34)

evolving onW is called the ordered assignment flow.

By applying known numerical schemes [ZSPS20] for approximately integrating the flow (4.34), we find a
class of discrete-time image labeling algorithms which respect the physiological cell layer ordering in OCT
data. In chapter 5, we benchmark the simplest instance of this class, emerging from the choice of geometric
Euler integration.

5. EXPERIMENTAL RESULTS

5.1. Data, Competing Approaches, Performance Measures.

5.1.1. OCT-Data. In the following sections, after introducing key terminology in volumetric OCT data we
describe experiments performed on a set of OCT volumes depicting the intensity of light reflection in chori-
oretinal tissues centered around the fovea. The scans were obtained using a spectral domain OCT device
(Heidelberg Engineering, Germany) for multiple patients at a variety of resolutions by averaging various
registered B-scan which share same location to reduce the speckle noise. This is representative of the fact
that different resolutions may be desirable in clinical settings at the preference of medical practitioners. In
the following, we always assume an OCT volume in question to consist of NB B-scans, each comprising
NA A-scans with N voxels and use the term surface to represent the set of voxels located in the interface
of two retina layers. See Figure 4.1 for a schematic acquisition illustration of retina layers and separating
membranes.

In this publication we use OCT volumes of size (N ×NA×NB) = (498×768×61) with a approximate
resolution of 3.87 µm/voxel alongN ,NA direction and with a resolution of 11.11 µm/voxel onNB axis. The
volume set was divided into training set and the testing set where the latter consists of 8 volumes extracted
from different patients without any observable pathological retina changes. Figure (5.1) provides a view
on a Bscan located in the OCT volume on which the ordered assignment flow is validated. The right plot
depicts the noisy signal along an A-scan indicated by a yellow vertical line which underpins the difficulty of
segmenting the underlying data sets.

5.1.2. Reference Methods. To assess the segmentation performance of our proposed approach we compare
ourselves to state of the art retina segmentation methods presented in Rathke [RSS14] and Li [KXCS06]
which are applicable for both healthy and pathological patient data. In particular, we prefer these reference
methods over [DCA+13], [SBG+13] and [GAW+09] because available implementations of the latter are
limited to the segmentation of up to 9 retina layers.
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FIGURE 5.7. Left: En-face view on the volumetric OCTA data with red line indicating the location of the
B-scan shown in the center image. Right: The gray value intensity of one vertical A-scan within the B-Scan
displayed in the center. The enlarged view indicates the difficulty of application indicating typical artifacts such
as shadow regions and speckle noise. TODO: crop pictures (a) and (b) to matching aspect ratio. Replace (c) to
have same size and readable caption.

(Section 5.2.1) or class scores predicted by a CNN (Section 5.2.3) are computed for segmenting the retina
layers with ordered assignment flow which we in the following abbreviate as OAF (A) and OAF (B) respec-
tively. In the former case, a set of k = 400 prototypical cluster centers on the positive definite cone has been
determined offline for each cell layer. These are compared to descriptors extracted from the unseen volume
by computing pair-wise Stein divergence. The smallest such value for each pair of voxel i ∈ [n] and cell
layer j ∈ [c] is noted as entry dij of a distance matrix Dcov, i.e. for every voxel i the distance to optimal
fitting representative to layer j is given by

(Dcov)ij := min
k∈[400]

DS(Si, S̃
k
j ). (5.15)

In the latter case, class scores C ∈ Rn×c predicted by the network are transformed into a distance matrix
Dcnn = −C simply by switching their sign.

A naive way to segment the volume in accordance to the data is by choosing arg minj∈[c]Dij for each
voxel i. However, due to the challenging signal-to-noise ratio in real-world OCT data, classes will not usu-
ally be well-separated in the feature space at hand. The resulting uncertainty pertaining to the assignment of
classes using exclusively local features is encoded into each distance matrix. To assess the segmentation per-
formance of our proposed approach, we first compared to the state of the art graph-based retina segmentation
method of 10 intra-retinal layers developed by the Retinal Image Analysis Laboratory at the Iowa Institute
for Biomedical Imaging [KXCS06, AGS10, GAW+09], also referred to as the IOWA Reference Algorithm.
We quantify the region agreement with manual segmentation regarded as gold standard.

(b)
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FIGURE 5.1. Left: En-face view on the volumetric OCTA data with red line indicating the location of the
B-scan shown in the center image. Center: The enlarged view depicts typical artifacts such as shadow regions
and speckle noise. Right: The gray value intensity of one vertical A-scan within the B-Scan represented by
yellow line in the center image. The noisy intensity plot indicates the difficulty of application to segment the
OCT-volume accurately while respecting layer ordering.

IOWA Reference Algorithm: A well-known graph-based approach to segmentation of macular volume
data was developed by the Retinal Image Analysis Laboratory at the Iowa Institute for Biomedical Imaging
[KXCS06, AGS10, GAW+09]. The problem of localizing cell layer boundaries in 3D OCT volumes is posed
and ultimately transformed into a minimum st-cut problem on a non-trivially constructed graph G. To this
end, a distance tensorDk ∈ RNB×NA×N is formed in a feature extraction step for each boundary k ∈ [c−1].
This encodes c − 1 separate binary segmentation problems on a geometric graph Gk spanning the volume.
In each instance, voxels are to be classified as either belonging to boundary k or not belonging to boundary
k. By utilizing a (directed) neighborhood structure on each Gk, smoothness constraints are introduced and
regulated via user-specified stiffness parameters. To model interactions between different boundaries, the
graphs Gk are combined to a global graph G, introducing additional edges between them. The latter set up
constraints on the distance between consecutive boundaries within each A-scan which can be used to enforce
physiological ordering of cell layers. On G, the problem of optimal boundary localization takes the form
of minimal closed set construction which is in turn transformed into a minimum st-cut problem for which
standard methods exist. Their standalone software is freely available for research purposes1.

Probabilistic Model: Rathke et al. [RSS14] proposed a graph-based probabilistic approach for segment-
ing OCT volumes for given data y by leveraging the Bayesian ansatz

p(y, s, b) = p(y|s)p(s|b)p(b) . (5.1)

Here, the tensor b ∈ RNB×NA×(c−1) contains real-valued boundary positions between retina layers and s
denotes discrete (voxel-wise) segmentation. The appearance terms p(y|s), p(s|b) and p(b) represent data
likelihood, Markov random field regularizer and global shape prior respectively. In order to approximate the
desired posterior

p(b, s|y) =
p(y|s)p(s|b)p(b)

p(y)
, (5.2)

a variational inference strategy is employed. This aims to find a tractable distribution q decoupled into

q(b, s) = qb(b)qs(s) (5.3)

1see https://www.iibi.uiowa.edu/oct-reference

https://www.iibi.uiowa.edu/oct-reference
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which is close to p(b, s|y) in terms of the relative entropy KL(q | p). The shape prior p(b) is learned offline
by maximum likelihood estimation in the space of normal distributions using a low-rank approximation of
the involved covariance matrix. Ordering constraints

1 ≤ s1,ij ≤ s2,ij ≤ · · · ≤ sc−1,ij , ij ∈ [NB]× [NA] (5.4)

are enforced for the discrete segmentation s and are not enforced for the continuous boundaries b. This is in
contrast to the proposed model which integrates the ordering of retina layers by adding a cost function (4.9)
penalizing the overall deviation of soft assignments by integrating (2.24) from the subspace of probability
distributions satisfying (4.1). The method comes along with a standalone software free available under 2.

5.1.3. Performance Measures. We will evaluate the computed segmentations by their direct comparison
with manual annotations regarded as gold standard which were realized by an medical expert. Respective
metrics are suitable for segmentation tasks that involve multiple tissue types [CCH06]. Specifically, we
report the mean DICE similarity coefficient [Dic45] for each segmented cell layer.

Definition 5.1. (DICE) Given two sets A,B the DICE similarity coefficient is defined as

DSC(A,B) :=
2|A ∩B|
|A|+ |B| =

2TP

2TP + FP + FN
∈ [0, 1], (5.5)

where {TP, FN,FP} denotes the number of true positives, false negatives and false positives respectively.

The DICE similarity coefficient quantifies the region agreement between computed segmentation results
and manually labeled OCT volumes which serve as ground truth. High similarity index DSC(A,B) ≈ 1
indicates large relative overlap between the sets A and B. This metric is well suited for average performance
evaluation and appears frequently in the literature (e.g. [CAM+15], [YHSS11] and [NVd+17]). It is closely
related to the positively correlated Jaccard similarity measure [Jac08] which in contrast to (5.5) is more
strongly influenced by worst case performance.

In addition, we report the mean absolute error (MAE) of computed layer boundaries used in [RSS14] and
[GAW+09] to make our results more directly comparable to these references.

Definition 5.2. (Mean Absolute Error) For a single A-scan indexed by ij ∈ [NB]×[NA], let eij := |gij−pij |
denote the absolute difference between a layer boundary position gij in the gold standard segmentation and
a predicted layer boundary pij . The mean absolute error (MAE) is defined as the mean value

MAE(g, p) =
1

NBNA

∑
ij∈[NB ]×[NA]

ei . (5.6)

5.2. Feature Extraction.

5.2.1. Region Covariance Descriptors. To apply the geometric framework proposed in Section 3 we next
introduce the region covariance descriptors [TPM06] which have been widely applied in computer vision
and medical imaging, see e.g. [CS16, TS16, DFVDVM14, SSR15]. We model the raw intensity data for a
given OCT volume by a mapping I : D → R+ where D ⊂ R3 is the underlying spatial domain. To each
voxel v ∈ D, we associate the local feature vector f : D → R10,

f : D → R10 (5.7)

v 7→ (I(v),∇xI(v),∇yI(v),∇zI(v),
√

2∇xyI(v),
√

2∇yzI(v),∇xxI(v),∇yyI(v),∇zzI(v))> . (5.8)

assembled from the intensity I(v) as well as first- and second-order responses of derivative filters capturing
information from larger scales following [HS87]. To improve the segmentation accuracy we combine the

2 https://github.com/FabianRathke/octSegmentation

https://github.com/FabianRathke/octSegmentation
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derivative filter responses from various scales in an computationally efficient way we first normalize the
derivatives of the input volume I(v) at every scale σs by convolution each dimension with a 1D window:

∇xĨσs(v) = σ2
s

∂

∂x
G̃(v, σs) (5.9)

where G̃(v, σs) is an approximation to Gaussian window
(
G(v, σs) ∗ I

)
(v) at scale σs as in detail described

in [HS87]. Subsequently we follow the idea presented by [Lin04] by taking local maxima over scales

∇xĨ(v) = max
σs
∇xĨσs(v), (5.10)

which are serving for the mapping (5.7).
By introducing a suitable geometric graph spanning D, we can associate a neighborhood Ni of fixed size

with each voxel i ∈ [n] as in (2.23). For each neighborhood, we define the regularized region covariance
descriptor

Si :=
∑
j∈Ni

θij(fj − fi)(fj − fi)T + εI, fi =
∑
k∈Ni

θikfk, (5.11)

as a weighted empirical covariance matrix with respect to feature vectors fj . The small value 1� ε > 0 acts
as a regularization parameter enforcing positive definiteness of Si. Diagonal entries of each covariance ma-
trix Ci are empirical variances of feature channels in (5.7) while the off-diagonal entries represent empirical
correlations within the region Ni.

5.2.2. Prototypes on Pd. In view of the assignment flow framework introduced in Section 2, we interpret
region covariance descriptors (5.11) as data points in the metric space Pd of symmetric positive definite ma-
trices and model each retina tissue indexed by l ∈ [c] with a random variable Sl taking values in Pd. Suppose
we draw Nl samples {Skl }

Nl
k=1 from the distribution of Sl. The most basic way to apply assignment flows to

data in Pd is based on computing a prototypical element of Pd for each tissue layer, e.g. the Riemannian
center of mass of {Skl }

Nl
k=1. This corresponds to directly choosing Pd as feature space F in (2.1a). We find

that superior empirical results are achieved by considering a dictionary of Kl > 1 prototypical elements for
each layer l ∈ [c]. This entails partitioning the samples {Skl }

Nl
k=1 into Kl disjoint subsets Ŝjl ⊆ {Skl }

Nl
k=1,

j ∈ [Kl] with representatives S̃jl determined offline.
To find a set of representatives which captures the structure of the data, we minimize expected loss mea-

sured by the Stein divergence (3.24) leading to the K-means like functional

Epl(S̃l) =

Kl∑
j=1

p(j)
∑
Sil∈Ŝ

j
l

p(i|j)
p(j)

DS(Sil , S̃
j
l ), p(i, j) =

1

Nl
, pl(j) =

Nj

Nl
. (5.12)

A hard partitioning is achieved by applying Lloyd’s algorithm in conjunction with algorithm 2 for mean
retrieval. We additionally employ the more common soft K-means like approach for determining prototypes
by employing the mixture exponential family model based on Stein divergence to given data

p(Sil ,Γl) =

K∑
j=1

πjl p(S
i
l , S̃

j
l )), (5.13)

where the parameters

Γl = {(πjl }Kj=1, {S̃jl }Kj=1), (π1
l , · · · , π

|J |
l ) ∈ S (5.14)
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have to be adjusted to given data. The prototypes are recovered as mean parameters Sj,Tl though an itera-
tive process commonly refered to as expectation maximation (EM) defined by alternation of the following
iterations

pl(j|Sil ,Γtl) =
π

(j,t)
l e−DS(Sil ,S̃

(j,t)
l )∑

k=1 π
(k,t)
l e−DS(Sil ,S̃

(k,t)
l )

, (Expectation step) (5.15)

followed by updating the marginals at each time step up to final time T

π
(j,t+1)
l =

Nj∑
i=1

pl(j|Sil ,Γtl)S̃j,t (5.16)

S̃j,t+1
l = argminS∈Pd

( n∑
i=1

p(j|Γti)DS(Sil , S)
)
, (Maximization step). (5.17)

The decision to approximate the Riemannian metric on Pd by the Stein divergence (3.24) can be backed
up empirically. To this end, we randomly select descriptors (5.11) representing the nerve fibre layer in
real-world OCT data and compute their Riemannian mean as well as their mean w.r.t. the Log-Euclidian
metric (3.20) and Stein divergence (3.24). Figure 5.3 illustrates that Stein divergence approximates the
full Riemannian metric more precisely than the Log-Euclidian metric while still achieving a significant
reduction in computational effort. Furthermore to evaluate the classification we extracted a dictionary of 200
prototypes for representing each retina tissue for different choice of metric and subsequently evaluated the
resulting segmentation accuracy by assigning each voxel to a class containing the prototype with smallest
distance using a cropped OCT Volume of size 138× 100× 40 taken from the testing set.

Figure 5.2 visualizes the correct classification matches for retina layers ordered by color according to
Figure 4.1. In particular, we inspect a notable gain of correct matches while respecting the Riemannian
geometry (first column) as opposed to Log-Euclidean setting (third column). Regarding the approximation
of (3.10) by (3.24), we are observing more effective detection of outer Photoreceptor Layer (PR1), Inner
Nuclear Layer (INL) and Retinal Pigment Epithelium (RPE). Furthermore, taking a closer look at (OPL) and
(ONL) we note a typical tradeoff between the number of prototypes and detection performance indicating
superior retina to voxel allocation by applying (3.20), whereas the surrogate divergence metric (3.24) has the
tendency to improve the accuracy while increasing the size of evaluated prototypes in contrast to flattening
curves when relying on (3.21).

This illustrates a tradeoff between computational effort and labeling performance, cf. Figure 5.3. Note
that prototypes are computed offline, making runtime performance less relevant to medical practitioners.
However, building a distance matrix involves computing n

∑
l∈[c]Kl Riemannian distances resp. Stein di-

vergences to prototypes. This still leads to a large difference in (online) runtime since evaluation of the
Riemannian distance (3.10) involves generalized eigendecomposition while less costly Cholesky decompo-
sition suffices to evaluate the Stein divergence (3.24).

Summarizing the discussed results concerning the application of Algorithm 1 and Algorithm 2, we point
out that respecting the Riemannian geometry leads to superior labeling results providing more descriptive
prototypes.

5.2.3. CNN Features. In addition to the covariance features in Section 5.2.1, we compare a second approach
to local feature extraction based on a convolutional neural network architecture. For each node i ∈ [n], we
trained the network to directly predict the correct class in [c] using raw intensity values in Ni as input. As
output, we find a score for each layer which can directly be transformed into a distance vector suitable as
input to the ordered assignment flow (4.34) via (4.33). The specific network used in our experiments has a
ResNet architecture comprising four residually connected blocks of 3D convolutions and ReLU activation.
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FIGURE 5.2. Top: Metric classification evaluated on thin layers (IPL,INL,OPL,PR2). Bottom: Analogous
metric evaluation for (GCL,ONL,PR1,RPE). From left to right: The number of true outcomes after direct
comparison with ground truth, for the choice of the exact Riemannian geometry of Pd, Stein divergence and
Log-Euclidean distance for geometric mean computation. The results of first two columns indicate higher
detection performance while respecting the Riemannian geometry of a curved manifold. Enlarging the set of
prototypical covariance descriptors leads to increased matching accuracy which is in contrast to the observed
flattening of matching curves when using the Log-Euclidean distance.
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FIGURE 5.3. Left: Deviation of the geometric means computed using the Log-Euclidian metric and Stein di-
vergence, respectively, from the true Riemannian mean. Right: Runtime for geometric mean computation using
the different metrics. All evaluations were performed on a randomly chosen subset of covariance descriptors
representing the retinal nerve fibre layer in a real-world OCT scan. Both graphics clearly highlight the advan-
tages of using Stein the divergence in terms of approximation accuracy and efficient numerical computation.

Model size was hand-tuned for different sizes of input neighborhoods, adjusting the number of convolutions
per block as well as corresponding channel dimensions. In particular, labeling accuracy is increased for the
detection of RPE and PR2 layers, as illustrated in the last row of Figure 5.7.

5.3. Segmentation via Ordered Assignment. By numerically integrating the ordered assignment flow
(4.5) parametrized by the distance matrix D, an assignment state W is evolved on W until mean entropy
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FIGURE 5.4. Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: Probabilistic approach (5.1) proposed in [RSS14]. Right: OAF based on CNN
features. See Table 2 for mean and standard deviations. Direct comparison shows a notably higher detection
performance for segmenting the intraretinal layers using OAF (B).
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FIGURE 5.5. Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: IOWA reference algorithm [GAS]. Right: OAF based on CNN features. See Table 3
for mean and standard deviations. Exploiting OAF (B) for retina tissue classification results in improved overall
layer detection performance, especially for the PR2-RPE region.
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FIGURE 5.6. Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: OAF (A). Right: OAF (B). The OAF based on CNN features yields improved
segmentations for all retina layers.

of pixel assignments is low. We specifically use geometric Euler integration steps on TW with a constant
step-length of h = 0.1 (see [ZSPS20] for details of this process). Geometric averaging with uniform weights
leads to local regularization of assignments which smooths regions in which the features do not conclusively
point to any label. More global knowledge about the ordering of cell layers is incorporated into Eord which
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addresses more severe inconsistencies between local features and global ordering. In all experiments, the
neighborhood of each voxel i ∈ [n] is choosen as the voxel patch of size 5 x 5 x 3 centered at i.

5.4. Evaluation. To benchmark our novel segmentation approach, we first extract local features for each
voxel from a raw OCT volume. As described above, either region covariance descriptors (Section 5.2.1) or
class scores predicted by a CNN (Section 5.2.3) are computed for segmenting the retina layers with ordered
assignment flow which we in the following abbreviate as OAF (A) and OAF (B) respectively. In the former
case, a set of k = 400 prototypical cluster centers on the positive definite cone (3.8) has been determined
offline for each cell layer. These are compared to descriptors extracted from the unseen volume by computing
the pair-wise distance with respect to the metric induced by Stein divergence (3.2.3). The minimum value
corresponding to the lowest of all the distances for each pair of voxel i ∈ [n] and cell layer j ∈ [c] is noted
as entry dij of the distance matrix Dcov, i.e. for every voxel i the distance to optimal fitting representative to
layer j is given by

(Dcov)ij := min
k∈[400]

DS(Si, S̃
k
j ). (5.18)

In the latter case, class scores C ∈ Rn×c predicted by the neuronal network (5.2.3) are transformed into a
distance matrix Dcnn = −C simply by switching their sign followed by adjusting the parameter (2.21) to
weight the data relevance in the likelihood matrix.

A naive way to segment the volume in accordance to the data is by choosing arg minj∈[c]Dij for each
voxel i. However, due to the challenging signal-to-noise ratio in real-world OCT data, classes will not usu-
ally be well-separated in the feature space at hand. The resulting uncertainty pertaining to the assignment
of classes using exclusively local features is encoded into each distance matrix. To assess the segmentation
performance of our proposed approach, we first compared to the state of the art graph-based retina segmen-
tation method of 10 intra-retinal layers developed by the Retinal Image Analysis Laboratory at the Iowa
Institute for Biomedical Imaging [KXCS06, AGS10, GAW+09], also referred to as the IOWA Reference
Algorithm. We quantify the region agreement with manual segmentation regarded as gold standard. Since
both the augmented volumes and the compared reference methods determine boundary locations of retina
layers intersections, we first transfer the retina surfaces to a layer mask by rounding to the voxel size and
assign to voxels within each A-scan the associated layer label, starting from the observed boundary to the
location of the next detected intersection surface of two neighboring layers.

Specifically, we calculate the DICE similarity coefficient [Dic45] and the mean absolute error for seg-
mented cell layers within the pixel size of 3.87 µm compared to human grader by segmenting 8 OCT vol-
umes consisting of 61 B-scans. We first directly compare the performance accuracy of using the local features
given by the covariance descriptor (5.2.1) by constructing a dictionary with 400 prototypes for each retina
layer using the iterative clustering with (5.13) against the features extracted from an CNN net (5.2.3).

The experimental results discussed next illustrate the relative influence of the covariance descriptors (5.11)
and regularization property of the ordered assignment flow, respectively. Throughout, we fixed the grid con-
nectivity Ni for each voxel i ∈ I to 3× 5× 5. Figure 5.7 illustrates real-world labeling performance based
on extracting a dictionary of 400 prototypes per layer by minimizing (5.12) and employing Algorithm 2 for
mean retrieval. Second row in Figure 5.7, illustrates a typical result of nearest neighbor assignment and the
volume segmentation without ordering constraints. As inspected, the high texture similarity between the
choroid and GCL layer yields wrong predictions resulting in violation of biological retina ordering through
the whole volume which cannot be resolved with the based assignment flow approach given in Section 2.
On the other side using pairwise correlations captured by covariance matrices provides accurate detection
of large signal intensity internal limiting membrane (ILM) with its characteristic highly reflective boundary
as well to meaningful segmentation of light rejecting fiber layers RNFL, PR1 and RPE. For the particularly
challenging inner layers such as GCL, INL and ONL that are mainly comprised of weakly reflective neuronal
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(a)

(b)

(c)

(d)

FIGURE 5.7. From top to bottom: Row (a): One B-scan from a OCT-volume showing the shadow effect, with
ground truth plot on the right. Row (b): Local nearest neighbor assignments based on prototypes by minimizing
(5.12) computed with Stein divergence, with the result of the segmentation returned by the basic assignment
flow (Section 2) on the right. Row (c): Proposed layer-ordered volume segmentation based on covariance
descriptors. From left to right: ordered volume segmentation for different γ = 0.5, γ = 0.1 (cf. Eq. (4.31)).
Row (d): Local rounding result extracted from Res-Net on the left and the result of the ordered assignment flow
on the right.

cell bodies, regularization by imposing (4.30) is required. In the third row of Figure 5.7, we plot the ordered
volume segmentation by stepwise increasing the parameter γ defined in (4.31), which controls the ordering
regularization by means of the novel generalized likelihood matrix (4.33). The direct comparison with the
ground truth remarkably shows how the ordered labelings evolve on the assignment manifold while simul-
taneously giving accurate data-driven detection of RNFL, OPL, INL and the ONL layer. For the remaining
critical inner layers, the local prototypes extracted by (5.12) fail to segment the retina layers properly and
are still revealing artifacts due to the presence of vertical shadow regions caused by existing blood vessels,
which contribute to a loss of the interference signal during the scanning process of the OCT-data, as shown
in Figure 5.7.

After segmentation of the test data set, the mean and standard deviation were calculated for better assess-
ment of the retina layer detection accuracy of the proposed segmentation method, according to the perfor-
mance measures (5.6) and (5.5). The evaluation results for each retina tissue as depicted in Figure 4.1, are
detailed in Table 1. The first row of Figure 5.12 clearly shows the superior detection accuracy of utilizing
the Ordered Assignment Flow for the first outer retina layers (RNFL, GCL, IPL, INL) and the (PR2-RPE)
region in connection with local features extracted from an CNN net (5.2.3). Nonetheless, the covariance
descriptor achieves comparable results for characterization of the outer plexiform layer (OPL) and exhibits
increased retina detection regarding the photoreceptor region (PR1,PR2) and outer nuclear region (ONL).
Additionally, Table 1 includes the evaluation based on DICE similarity which is less sensitive to outliers and
serves as an appropriate metric for calculating the performance measures across large 3D volumes. To obtain
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FIGURE 5.8. From top to bottom: Row (a): Three sample B-Scans extracted for different locations from
a healthy OCT volume with 61 scans, with the fovea centered OCT scan visualized in the middle column.
Row (b): The associated augmented labeling. Row (c): OAF (A) segmentation using a dictionary of covariance
descriptors determined by (5.13). Row (d): OAF (B) segmentation using features determined the CNN network.
In contrast to to results achieved by OAF (A), the above visualization indicates more accurate detection of retina
boundaries using OAF (B), in particular near the fovea region (middle column).

a consistent and clear comparability between the involved features on which we rely to tackle the specific
problem of retina layer segmentation, the corresponding results are visualized in Figure 5.6. The graphic
illustrates higher Dice similarity and relative small standard deviation when incorporating features (5.2.3) as
input to our model, which characterizes their superior informative content. According to the left plot, the
covariance descriptor performs well for detecting the prototypical textures of the internal limiting membrane
(ILM), the (ONL) and (PR1) layers as well as the RPE boundary to the choroid section. Especially this
highlights the ability of using gradient based features for accurate detection of retina tissues indicating sharp
contrast between the neighboring layers, as is the case for ONL and PR1.

On the contrary, the decrease of effective detection regarding the remaining layers reflects the present
high texture variability, which can by tackled by increasing the size of prototypes on the cost of efficient
computation of the generalized likelihood (4.33). In general, the more robust retina detection features from
an CNN net can be attributed to the underlying manifold geometry of symmetric positive definite matrices
where the data partition is performed linearly by hyperplanes. This further indicates the nonlinear structure
of the acquired volumetric OCT data. Figure 5.8 presents typical labelings of a B-scan for different loca-
tions in the segmented healthy OCT-volume obtained with the proposed approach. Direct comparison with
the ground truth, as depicted in row (b), demonstrate higher accuracy and smoother boundary transitions by
using CNN features instead of covariance descriptors. In particular, for the challenging segmentation of the
ganglion cell layer (GCL) with a typical thinning near the macular region (middle scan), we report a Dice
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FIGURE 5.9. Illustration of retina layer segmentation results listed in Table (3). Row (a): Ground truth label-
ing. Row (b-c): Labeled retina tissues using the proposed approach based on covariance descriptors and CNN
features, respectively. Row (d): The resulting segmentation obtained using the IOWA reference algorithm. Vi-
sual comparison with manually annotated retina layers (a) shows that segmentation with OAF (B) leads to more
reliable layer thickness of regions concentrated near the fovea region (middle column), as opposed to IOWA
reference method.

index of 0.8373± 0.0263 µm as opposed to the result 0.6657± 0.1909 µm. The remaining numerical exper-
iments are focusing on the validation of OAF against the retina segmentation methods serving as reference,
as summarized in Section 5.1.2.

To access a quantitative direct comparison with the IOWA reference algorithm, the tested OCT volumes
were imported into OCTExplorer 3.8.0 and segmented using the predefined Macular-OCT IOWA software
after properly adjusting the resolution parameters. Additionally, we preprocessed each volume by removing 2
B-scans from each side to get rid of boundary artifacts. We calculated and compared the segmentation results
for layers consistent with available OCT volumes which were augmented by a medical expert. As before, we
use the mean average error and the Dice index after segmenting the 8 volumes with no observable intraretinal
diseases which are reported in Table (3). Figure 5.5 provides a statistical illustration of the Dice index which
reveals the high performance accuracy for methods which is in accordance with the mean average error
shown in the last row of Figure 5.12. In particular, we observe a notable increase of performance using the
OAF for detection of the ganglion cell layer with overall accuracy of 0.8546± 0.0281 µm, see Figure 5.9
for visualized segmentations of 3 B-scans.

Next, we provide a visual and statistical comparison of the proposed approach and the probabilistic state
of the art retina segmentation approach [RSS14] underlying Eq. (5.1). As before, to achieve a direct com-
parison with the proposed approach, we first adopted the OCT volumes to match the shape and parameters
given in [RSS14]. Subsequently, we removed the boundary between the GCL and IPL layers to obtain one
characteristic layer which has to be detected. Figure 5.10 displays the labeling accuracy. Both methods
perform well by accurately segmenting flat shaped retina tissues, as shown in the first and last columns.
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FIGURE 5.10. From top to bottom: Row (a): Ground truth for the augmented retina layer corresponding to
Table 2. Row (b) and (c): Segmentation results of the OAF based on manifold valued features and on CNN
features, respectively. Row (d): Segmentation results achieved by the probabilistic graphical model approach
[RSS14]. Both methods provide extraordinary performance for flat retina detection whereas our method is more
accurate regarding the photoreceptor layers (below PR1).

However, closer inspection of the second column reveals a more accurate detection of layer thickness for
the (PR2-RPE) and (INL) regions below the concave curved fovea region by using OAF(B). This is mainly
due to the connectivity constraints imposed on boundary detection in [RSS14]. By contrast, our method
is capable to deal with rapidly decreasing layer thickness near the fovea region, as observed for GCL and
IPL layers in the middle column of Figure 5.10 after visual comparison against the manual delineations (first
row). This observation is supported by missing connectivity constraints for retina boundaries of the proposed
method, as opposed to the Gaussian shape prior model in [RSS14], and only relying on layer ordering en-
tirely included within the Fisher Rao geometry that underlies the assignment manifold. Therefore, the OAF
is amenable for extension to layer detection on pathological volumes with vanishing retina boundaries, as for
vitreomacular traction or diabetic macular edema. Figure 5.11 additionally provides a 3D view on detected
retina surfaces for each evaluated reference method used in this publication. The corresponding performance
measures given in Table 2 underpin the notably higher Dice similarity for (PR2-RPE) and (INL) layers with
overall accuracy (0.8606± 0.0706) µm and (0.8690± 0.0396) µm, respectively. The statistical plots for the
mean average error and the Dice similarity index are given in Figures (5.4) and (5.12), clearly showing the
superiority of OAF (B) with both the higher Dice index and the mean average errors for all layers. In partic-
ular, following Table 2, small error rates are observed among all the segmented layers, except for the (ILM)
boundary which is detected by all methods with high accuracy. We point out that in general our method is
not limited to any number of segmented layers, if ground truth is available.

Concluding the validation, both methods accurately detect the RNFL layer width whereas for the remain-
ing retina tissues the layer extraction with the ordered assignment flow indicates the smallest mean absolute
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error supported by the highest Dice similarity index. This demonstrates the superior performance of order
preserving labeling regarding accuracy and robustness, in view of segmenting the retina layer for classifying
volumetric OCT data.

(a)

(b)

(c)

FIGURE 5.11. Row (a): From left to right: 3D retinal surfaces determined using OAF (A) (left column) and
OAF (B) (middle column). The last column depicts ground truth. Row (b): From left to right: Segmentation
of retinal tissues with the IOWA reference algorithm (left column) with the proposed approach (middle column).
Row (c): Visual comparison of the probabilistic method [RSS14] (left column) left and the OAF (B) (middle
column). Our approach OAF (B) leads to accurate retina layer segmentation with smooth layer boundaries, as
observed in the middle column.
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FIGURE 5.12. Performance measures per layer in terms of the mean average error based on the segmentation
of 10 healthy OCT volumes. Top row: Error bars for retina layers separated by the external limiting membrane
(ELM) corresponding to OAF (A) and OAF (B). Middle row: Comparison of the mean errors of OAF (B) and
the probabilistic method [RSS14]. Bottom row: Comparison of mean average errors of OAF (B) and the the
IOWA reference algorithm.
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OAF Cov DICE index Mean absolute error

ILM 0.8837± 0.2564 −
RNFL 0.6963± 0.1998 1.3590± 0.4114
GCL 0.6657± 0.1909 2.5426± 0.7819
IPL 0.5853± 0.1773 3.0183± 1.0682
INL 0.6671± 0.1773 2.6160± 1.1294
OPL 0.7018± 0.2013 1.6080± 0.5120
ONL 0.8575± 0.2523 1.6342± 0.7174
PR1 0.8199± 0.2407 0.6995± 0.2467
PR2 0.6787± 0.1976 0.6320± 0.2442
PR2-RPE 0.6313± 0.1821 1.7244± 0.6038
RPE-CS 0.8606± 0.2469 2.1354± 1.0836

OAF CNN DICE index Mean absolute error

ILM 0.9739± 0.0189 −
RNFL 0.8842± 0.0313 0.8856± 0.3513
GCL 0.8373± 0.0263 1.4767± 0.5589
IPL 0.8151± 0.0367 1.6082± 1.5291
INL 0.8414± 0.0035 1.5004± 0.8652
OPL 0.8442± 0.0437 1.6220± 1.0786
ONL 0.9254± 0.0486 1.8853± 1.3951
PR1 0.8717± 0.0441 0.7500± 0.3216
PR2 0.8330± 0.0516 0.8458± 0.4914
PR2-RPE 0.8213± 0.0835 1.2850± 1.3660
RPE-CS 0.9445± 0.0488 2.8613± 2.5612

TABLE 1. Mean and standard deviations of the Dice index and mean absolute errors in pixels (1 pixel =
3.87µm). Left: Errors of the proposed approach based on covariance descriptors (OAF (A)). Right: Errors
of the proposed approach based on CNN features (OAF (B)).

[RSS14] DICE index Mean absolute error

ILM 0.9972± 0.0006 −
RNFL 0.8841± 0.0125 1.3080± 0.6039
GCL+IPL 0.8735± 0.0152 2.9180± 1.0303
INL 0.7501± 0.0292 5.1853± 1.3642
OPL 0.7651± 0.0124 4.8489± 1.5898
ONL+PR1 0.9312± 0.0068 4.1490± 1.2310
PR2 0.7416± 0.0395 5.7281± 1.5411
PR2-RPE 0.7945± 0.0271 5.2757± 1.6452
RPE-CS 0.9858± 0.0073 −

OAF CNN DICE index Mean absolute error

ILM 0.9953± 0.0011 −
RNFL 0.8954± 0.0208 2.0256± 0.7660
GCL+IPL 0.9250± 0.0180 1.9267± 0.7975
INL 0.8690± 0.0396 3.7660± 2.3101
OPL 0.8680± 0.0048 3.7010± 2.3561
ONL+PR1 0.9485± 0.0622 2.7209± 2.3594
PR2 0.8647± 0.0592 3.2810± 2.0854
PR2+RPE 0.8606± 0.0706 4.6270± 3.1891
RPE-CS 0.9743± 0.0484 −

TABLE 2. Mean and standard deviations of the Dice index and mean absolute errors in pixels (1 pixel =
3.87µm). Left: Errors of the probabilistic approach [RSS14]. Right: Errors of the proposed approach OAF
(B). These numbers demonstrate the superior performance of our novel order-preserving labeling approach.

IOWA DICE index MAE

ILM 0.9837± 0.0043 −
RNFL 0.8323± 0.0236 2.7799± 0.9485
GCL 0.7757± 0.0334 2.0561± 0.4978
IPL 0.7860± 0.0189 3.1970± 1.1408
INL 0.8434± 0.0269 2.7583± 1.3776
OPL 0.8024± 0.0311 3.0330± 1.2837
ONL+ELM+PR1 0.8893± 0.0182 4.4292± 1.5052
PR2-RPE 0.7120± 0.0756 7.3738± 3.2031
RPE-CS 0.9667± 0.0167 −

OAF CNN DICE index MAE

ILM 0.9795± 0.0130 −
RNFL 0.8717± 0.0277 2.8470± 1.0758
GCL 0.8546± 0.0281 1.9683± 0.6678
IPL 0.8370± 0.0313 3.4000± 1.5535
INL 0.8587± 0.0320 3.2094± 1.6950
OPL 0.8613± 0.0387 3.1217± 1.7875
ONL+ELM+PR1 0.9482± 0.0465 2.3842± 1.6869
PR2+RPE 0.9021± 0.0648 3.2296± 1.9627
RPE-CS 0.9605± 0.0362 −

TABLE 3. Mean and standard deviations of the Dice index and mean absolute errors in pixels (1 pixel =
3.87µm). Left: Errors of the IOWA reference algorithm [KXCS06]. Right: Errors of the proposed approach
OAF (B). These numbers demonstrate the superior performance of our novel order-preserving labeling approach.
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6. DISCUSSION

We discuss additional aspects pertaining to the data used for training feature extractors as well as the
locality of extracted features.

6.1. Ground Truth Generation. The training and evaluation of supervised models for feature extraction
requires a sizeable amount of high-quality labeled ground truth data. This presents a commonly encountered
challenge in 3D OCT segmentation [DCA+13, KXCS06], because the process of manually labeling every
voxel of a 3D volume is extremely laborious. The desire to account for inter-observer variability in manual
segmentations further compounds this problem. OCT volumes used for testing purposes in the present
paper were initially segmented by an automatic procedure based on hand-crafted features. In a subsequent
step, each B-scan segmentation was manually corrected by a medical practitioner. The automatic method
used for initial segmentation only explicitly regularizes on each individual B-scan, leading to irregularity
between consecutive B-scans (see Figure 6.1). Manual correction of initial automatic segmentations leads to

FIGURE 6.1. Left: Initial automatic segmentation of individual B-scan based on hand-crafted features. Right:
Section of the same automatically segmented volume orthogonal to each B-scan.

a noticeable reduction of irregularity but does not completely remove it. We therefore cannot rule out that
a small bias towards the initial automatic segmentation based on hand-crafted features may still be present
in the ground truth segmentations that we used to quantify segmentation performance of novel methods as
well as baseline methods in this paper. During feature extraction, deep learning models may be capable of
discovering the specific hand-crafted features used for initial automated segmentation which may in turn lead
to exploitation of any bias towards them. In contrast, because the reference methods are not trained on the
same data, they can not exploit any such bias, putting them at a possible disadvantage.

6.2. Feature Locality. The ordered assignment flow segmentation approach can work with data from any
metric space and is hence completely agnostic to the choice of preliminary feature extraction method. In
this paper, we chose to limit the field of view of deep networks such that features with local discriminative
information are extracted. This makes empirical results directly comparable between features based on co-
variance descriptors and features extracted by these networks. In addition, we conjecture that local features
may generalize better to unseen pathologies. Specifically, if a pathological change in retinal appearance
pertains to the global shape of cell layers, local features are largely uneffected and therefore significant for
detecting irregularly shaped retina boundaries on unhealthy OCT data. In this way, we expect segmentation
performance to be relatively consistent on real-world data. Conversely, widening the field of view in feature
extraction should be accompanied by a well-considered training procedure in order to achieve similar gener-
alization behavior, by employing e.g. extensive data augmentation. While raw OCT volume data has become
relatively plentiful in clinical settings, large volume datasets with high-quality gold-standard segmentation
are not widely available at the time of writing. Therefore, by representing a given OCT scan locally as op-
posed to incorporating global context at every stage, it is our next hypothesis that superior generalization can
be achieved in the face of limited data availability. Similarly, although based on local features, the method
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proposed by [RSS14] combines local knowledge in accordance with a global shape prior. This again limits
the methods ability to generalize to unseen data if large deviation from the expected global shape seen in
training is present.

7. CONCLUSION

In this paper we presented a novel, fully automated and purely data driven approach for retina segmen-
tation in OCT-volumes. Compared to methods [KXCS06] [DCA+13] and [RSS14] that have proven to be
particularly effective on tissue classification with a priory known retina shape orientation, our ansatz merely
relies on local features and yields ordered labelings which are directly enforced through the underlying ge-
ometry of statistical manifold (2.15). To address the task of leveraging 3D-texture information, we proposed
two different feature selection processes by means of region covariance descriptors (5.11) and the output
obtained by training a CNN network (5.2.3), which are both based on the interaction between local feature
responses.

As opposed to other machine learning methods developed for segmenting human retina from volumetric
OCT data, the proposed method only takes the pairwise distance between voxels and prototypes (2.1b) as
input. As a direct consequence our approach can be applied in connection with broader range of features
living in any metric space and additionally provides the incorporation of outputs from trained neuronal con-
volution networks interpreted as image features, where a particular instance of such type was demonstrated
in Section (5.2.3). Even in view of the moderate result achieved after segmentation using OAF (A) in con-
nection with covariance descriptors, we observe the importance of our automatic algorithm by its high level
of regularization. Compared to the approach presented in [CAM+15] which employs a higher number of
input features but still requires postprocessing steps to yield order preserving labeling, our approach provides
a way to perform this tasks simultaneously.

Using locally adapted features for handling volumetric OCT data sets from patients with observable patho-
logical retina changes is in particular valuable to suppress wrong layer boundaries predictions caused by prior
assumptions on retinal layer thicknesses typically made by graphical model approaches as in [DCA+13] and
[SBG+13]. Our method overcomes this limitation by mainly avoiding any bias towards using priors to
global retina shape and instead only relies on the natural biological layer ordering, which is accomplished
by restricting the assignment manifold to probabilities that satisfy the ordering constraint presented in Sec-
tion (4). The experimental results reported in Section 5, and the direct comparison to the state of the art
segmentation techniques [GAS] and [RSS14] by using common validation metrics, underpin a notable per-
formance and robustness of the geometric segmentation approach introduced in Section 2, that we extended
to order-preserving labeling in Section 4. Furthermore, the results indicate that the ordered assignment flow
successfully tackles problems in the field of retinal tissue classification on 3D-OCT data which are typi-
cally corrupted by speckle noise, with achieved performance comparable to manual graders which makes
it to a method of choice for medical image applications and extensions therein. We point out that our ap-
proach consequently differs from common deep learning methods which explicitly aim to incorporate global
context into the feature extraction process. In particular, throughout the experiments we observed higher
regularization resulting in smoother transitions of layer boundaries along the B-scan acquisition axis similar
to the effect in [RSS14] where the used smooth global Gaussian prior leads to limitations for pathological
applications.

To reduce the reliance of manually segmented ground truth for extracting dictionaries of prototypes, our
method can easily be extended to unsupervised scenarios in the context of [ZZPS20]. To deal with highly
variable layer boundaries another possible extension of our method is to predict weights for geometric aver-
aging (2.22) in an optimal control theoretic way, to cope with the linearized dynamics of the assignment flow
[ZSPS20] as in detail elaborated in [HSPS20]. Consequently, by building on the feasible concept of spatially
regularized assignments [Sch20], the ordered flow (4.5) possesses the potential to be extended towards the
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detection of pathological retina changes and vascular vessel structure. We expect that the joint interaction of
retina tissues and blood vessels during the segmentation with the assignment flow will lead to more effective
layer detection, which is the objective of our current research.
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