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Abstract

We develop a concept for the median filtering of tensor data. The main part of this

concept is the definition of median for symmetric matrices. This definition is based on the

minimisation of a geometrically motivated objective function which measures the sum of

distances of a variable matrix to the given data matrices. This theoretically well-founded

concept fits into a context of similarly defined median filters for other multivariate data.

Unlike some other approaches, we do not require by definition that the median has to be

one of the given data values. Nevertheless, it happens so in many cases, equipping the

matrix-valued median even with root signals similar to the scalar-valued situation.

Like their scalar-valued counterparts, matrix-valued median filters show excellent capa-

bilities for structure-preserving denoising. Experiments on diffusion tensor imaging, fluid

dynamics and orientation estimation data are shown to demonstrate this. The orientation

estimation examples give rise to a new variant of a robust adaptive structure tensor which

can be compared to existing concepts.

For the efficient computation of matrix medians, we present a convex programming

framework.

By generalising the idea of the matrix median filters, we design a variety of other

local matrix filters. These include matrix-valued mid-range filters and, more generally,

M-smoothers but also weighted medians and α-quantiles. Mid-range filters and quantiles

allow also interesting cross-links to fundamental concepts of matrix morphology.

Keywords

tensor image processing, local image filter, median filtering, adaptive structure tensor,

convex optimisation
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1 Introduction

In contemporary image processing, images whose values are second-order tensors

represented by symmetric matrices gain increasing importance. They appear as

physical quantities which are measured e.g. by diffusion tensor magnetic resonance

imaging DTI [26], or computed, as in computational fluid dynamics, or as derived

quantities like the structure tensor [16] which plays an important role in fields

like motion detection, texture analysis or segmentation. Fields of application also

include geophysics, material science and civil engineering.

Degradation of measured or computed tensor fields by noise calls for the design of

efficient matrix-valued denoising filters that do not destroy essential image features.

A natural approach to this is to generalise existing filters for scalar-valued images.

Median filters lend themselves as a good choice because of their simplicity, efficiency

and robustness. However, the straightforward approach to apply a scalar filter to

the matrix components separately, which works fine for linear filters like Gaussian

convolution, is not viable for non-linear filters like median filters. In [36], a matrix-

valued median filter has been introduced which is based on the principal idea of

abandoning rank orders in favour of a minimality condition as defining property of

medians. The same approach was used to provide mid-range filters and the more

general class of M-smoothers for matrix data in [37]. As an important algorithmic

improvement for the computation of matrix-valued medians and mid-range filters,

convex optimisation techniques were proposed in [35] and [6].

The present paper summarises the previous work and extends it by adding re-

lated techniques and a broader theoretical foundation. It presents the median defini-

tion, numerical techniques and applications from [36, 35, 37] as well as the mid-range

filter and M-smoothers for matrix-valued data introduced in [35, 37]. New material

includes the use of the nuclear norm in these filter definitions, a more detailed study

of relevant properties like semidefiniteness preservation, and the adaptation of the

numerical methods to the new filter variants. We also introduce here for the first

time matrix-valued weighted median filters and matrix quantile filters. We also

discuss the relations of our mid-range and quantile filters to the supremum- and

infimum-based matrix field filtering techniques which were established in [11, 12].

For the mid-range case, a short mention of this link has already been made in [37].
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The paper is organised as follows. In Sec. 2 matrix-valued median filters are

defined, important properties discussed and illustrated by experiments on DTI and

fluid dynamics data sets. Sec. 3 is devoted to numerical techniques. An application

to robust structure estimation is the topic of Sec. 4. The following sections 5–7

describe matrix-valued M-smoothers, weighted median and quantile filters. Sec. 8

summarises the results.

Related work. Denoising techniques for tensor data have been under intensive

investigation recently, mainly in connection with DTI data, see the linear approaches

by Westin et al. [38] or the nonlinear ones by Hahn et al. [20]. Nonlinear filters

need to take into account the inherent relations of data matrices, either by channel

coupling as in Tschumperlé and Deriche [31], or by working on derived quantities

like eigendecompositions [27, 31] or fractional anisotropy [25].

Median filtering in signal processing has been established by Tukey [32] and has

now become a standard technique in image processing, see Dougherty and Astola

[15] or Klette and Zamperoni [22]. The matrix-valued median definition given by

Welk et al. in [36] stands in the context of earlier attempts to vector-valued median

filtering, see e.g. [3], [23]. In an image processing context, we mention Astola et al.

[1] and Caselles et al. [13]. Both definitions are built on the property of the median to

be one of the given vectors, with a slight extension by admitting also their arithmetic

mean in [1]. This property is also required in [4] by Barni et al. who otherwise use

Euclidean distance sum minimisation similar to [36]. Surprisingly, for 2-D vectors

already Austin’s 1959 paper [2] proposes the exact analog of the definition given

in [36]. Austin also gives a graphical algorithm which can be considered a direct

predecessor of the gradient descent algorithm in [36]. Seymour’s 1970 reply [29]

to Austin discusses algorithmical difficulties and improvements of this procedure.

Moreover, vector-valued medians and mid-range values (often by the name of 1-

centres) have also been investigated in the literature on facility location problems,

see the papers by Megiddo [24], Fekete et al. [17] and the references therein.

The convex programming method discussed in this paper relies on concepts

which can e.g. be found in the book by Boyd and Vandenberghe [7]. For applications

in image processing contexts we mention Keuchel et al. [21].

The structure tensor has been established by Förstner and Gülch [16]. It is
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constructed by Gaussian smoothing of the outer product matrices ∇u∇uT of the

image gradient. To adapt better to orientation discontinuities, a modification called

nonlinear structure tensor has been proposed by Weickert and Brox [34, 8]. Here,

Gaussian smoothing is replaced by a nonlinear diffusion process. Nonlinear struc-

ture tensors have proven their use in texture segmentation [8, 28] and motion anal-

ysis [10]. Another way to introduce structure adaptivity into the structure tensor

has been opened by van den Boomgaard and van der Weijer [33] who proposed a

concept of robust structure tensor which is also linked to matrix-valued medians.

For both adaptive structure tensor concepts, see also [9].

2 Median Filtering of Tensor-Valued Data

2.1 Scalar-Valued Median Filters

Given a finite set of real numbers, their median is defined as the middle element

in the sequence that contains these numbers ordered according to size. It can be

considered as a robust average since it is insensitive to outliers in the given data

set. The median operation commutes with monotone transformations of the data.

Without any reference to ordering, the median of the n-tuple S = (a1, . . . , an)

can be characterised as the minimiser of the convex function

ES(x) :=
n

∑

i=1

|x − ai| (1)

where |x − a| is the Euclidean distance of real numbers.

The median concept gives rise to a local image filter with interesting properties.

Median filtering requires the specification of a neighbourhood for each pixel which is

commonly chosen either as a (2k+1)× (2k+1) square or a discretely approximated

disc centred at the pixel. The new grey-value of a pixel is obtained as the median

of the old grey-values within the neighbourhood. Median filtering can be iterated

and so constitutes a discontinuity-preserving denoising process. The insensitivity

of medians to outliers enables median filtering to cope even with extreme types of

noise like uniform or impulse noise. Unlike Gaussian smoothing, median filtering

possesses non-constant steady states called root signals.

For a space-continuous variant of median filtering, Guichard and Morel [19] have
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proven that it approximates mean curvature flow, thereby establishing a remarkable

link between a nonlinear local filter and a PDE-based image evolution.

2.2 Matrix-Valued Median Filters

Pollution of tensor image data with noise makes it a desideratum to provide a

discontinuity-preserving and robust denoising filter for such data. To meet this

need, we want to generalise median filtering to matrix-valued images. The main

task in doing so is to give an appropriate notion of medians for matrices since the

construction of the local image filter by applying the median to input values from

a neighbourhood transfers straightforward.

While not all properties of scalar-valued medians can be retained by such a

generalisation, the following requirements are essential from the modeling viewpoint:

Preservation of symmetry. The median of symmetric matrices must again be a

symmetric matrix.

Scaling invariance. For a real number λ, the median med should satisfy

med (λA1, . . . , λAn) = λ med (A1, . . . , An)

for arbitrary input matrices A1, . . . , An.

Rotational invariance. Rotating all input matrices by the same rotation matrix

R should result in equal rotation of the median:

med(RTA1R, . . . , RTAnR) = RT med(A1, . . . , An) R .

Embedding of scalar-valued median. If all input matrices are scalar multiples

of the same non-zero matrix A, the median should reduce to the scalar median:

med(λ1A, . . . , λnA) = med(λ1, . . . , λn) A .

Preservation of positive semidefiniteness. Since positive semidefiniteness is an

indispensable property of some sorts of matrix data, such as DTI or structure

tensor fields, a sensible filter for such data should not destroy it.

Since matrices lack a linear ordering, a rank-order approach to defining matrix

medians is impractical. Instead, we generalise the minimising property (1).
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Definition 1 Given a tuple S = (A1, . . . , An) of d × d matrices, the minimiser of

ES(X) =

n
∑

i=1

‖X − Ai‖ (2)

where ‖·‖ is a matrix norm is called median of S and denoted by med(S).

While ES is convex for any norm ‖·‖, rotational invariance and semidefiniteness

preservation restrict the choice of ‖·‖. Before discussing possibilities, we notice one

property of the median which is independent of the norm.

Lemma 1 Let X = med(A1, . . . , An). If each Ai is replaced by A′
i := X + ki(Ai −

X) with real ki > 0, then X is also the median of A′
1, . . . , A

′
n.

Accordingly, the matrices Ai can be shifted along the rays from X to Ai without

affecting the median. The statement follows directly from the scaling property

‖kA‖ = |k| ‖A‖, k ∈ IR. It can be considered a restricted form of the independence

on outliers known from the scalar-valued median.

2.2.1 Choice of possible norms

We consider three norms for d×d matrices. All are constructed from the eigenvalues

λ1(A), . . . , λd(A) of A, which guarantees rotational invariance.

• The first norm is the so-called nuclear norm which is given by

‖A‖(1) =

d
∑

j=1

|λj(A)|

For positive semidefinite matrices, we have ‖A‖(1) = tr(A). Typically, how-

ever, even when the Ai are positive semidefinite, the differences X−Ai aren’t.

• Second, we consider the Frobenius norm which can also be computed directly

from the matrix entries ajk, j, k = 1, . . . , d, of A,

‖A‖(2) =

√

√

√

√

d
∑

j=1

|λj(A)|2 =

√

√

√

√

d
∑

j,k=1

a2
jk .

• Third, we have the spectral norm

‖A‖(∞) = max
j=1,...,d

|λj(A)| .
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We remark that these norms are examples of the family of norms

‖A‖(p) =





d
∑

j=1

|λj(A)|
p





1/p

, p ≥ 1

which includes the spectral norm as limit case p → ∞.

For brevity, we shall refer to medians defined via these norms as nuclear median

med1, Frobenius median med2 and spectral median med∞. We turn now to study

their further properties.

2.2.2 Properties of the Frobenius median

We start our discussion of the Frobenius median with a simple observation.

Proposition 2 The Frobenius median med2(S) of a tuple S = (A1, . . . , An) of d×d

matrices is a convex combination of A1, . . . , An.

Proof. The Frobenius norm coincides with the Euclidean norm if the d×d matrices

are interpreted as vectors in IRd2

. We identify therefore matrices with vectors and

denote by 〈·, ·〉 the corresponding Euclidean scalar product. Assume now that X

is a matrix outside the convex hull of A1, . . . , An. Then a hyperplane h separates

X from A1, . . . , An. Let Y be the orthogonal projection of X onto h, i.e. X − Y is

perpendicular to h. Then 〈X − Y , Y − Ai〉 is positive for i = 1, . . . , n. Hence,

〈X − Ai, X − Ai〉 − 〈Y − Ai, Y − Ai〉 = 〈X, X〉 − 2〈X, Ai〉 − 〈Y, Y 〉 + 2〈Y, Ai〉

= 2〈X − Y , Y − Ai〉 + 〈X − Y , X − Y 〉 > 0

which proves that X is not the minimiser of (2). �

Since convex combinations of positive semidefinite matrices are positive semidef-

inite, the following corollary is obvious.

Corollary 3 The Frobenius median med2(S) of a tuple S = (A1, . . . , An) of posi-

tive semidefinite symmetric d × d matrices is positive semidefinite.

The matrix–vector identification used in the proof of Prop. 2 shows that this me-

dian definition is not restricted to square matrices but works equally on non-square

matrices, including vectors. For IR2, Austin’s bivariate median [2] is recovered.
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This simple planar Euclidean case of 2-dimensional vectors allows us to illustrate

simple geometric properties of our median concept. Three points in the plane which

span a triangle with all angles smaller than 120 degrees have as their median the

so-called Fermat–Torricelli or Steiner point. From this point, each connecting line

between two of the given points appears under a 120 degree angle. If instead one

angle of the triangle is larger or equal 120 degrees, then its vertex is the median. In

the case of four points spanning a convex quadrangle, the median is the intersection

point of the diagonals. The median of four points whose convex hull is a triangle

is the one of the points which is not a corner of this triangle. Combinatorial and

geometric complexity prevents similar elementary geometric considerations for more

points or higher dimensions. It is evident, though, that although our definition does

not force the median to be one of the given data points, this still happens to be

true in many generic cases. Only if none of the given values is located sufficiently

well in the middle of the data set, a new value is created.

2.2.3 Properties of the nuclear median

With the nuclear norm, the energy (2) displays non-strict convexity in a broader

range of configurations, leading to non-unique minimisers. Our result on semidefi-

niteness is therefore weaker than before.

Proposition 4 Let a tuple S = (A1, . . . , An) of positive semidefinite d×d matrices

be given, and consider the objective function ES with the nuclear norm. If ES is

minimised by a matrix which is not positive semidefinite, then there exists also a

positive semidefinite argument for which ES attains the same value.

Proof. We consider a symmetric matrix X whose smallest eigenvalue µ is negative.

The difference matrix X−Ai for any Ai has two eigenvalues λ1 ≥ λ2 where λ2 ≤ µ.

The matrix X−µI−Ai has the same eigensystem as X−Ai, with both eigenvalues

shifted by µ. From λ2 ≤ µ it follows that

‖X − µI − Ai‖(1) = |λ1 − µ| + |λ2 − µ| ≤ |λ1| + |µ| + |λ2| − |µ| = ‖X − Ai‖(1) .

This proves the statement of the proposition. �

As another remarkable property of the nuclear median, we mention that it re-

veals an insensitivity w.r.t. outliers which goes beyond the one described in Lemma 1
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and is in fact close to the corresponding property of its scalar-valued counterpart.

Lemma 5 Let X = med1(A1, . . . , An). Assume that for the data matrix Ai, the

difference X −Ai is positive or negative definite. If Ai is replaced by some other A′
i

for which X − A′
i has the same (positive or negative) definiteness as X − Ai, then

X is also the nuclear median of A1, . . . , A
′
i, . . . , An.

A disadvantage of this behaviour is that the orientation of the median X depends

exclusively on those Ai for which X − Ai is indefinite.

2.2.4 Properties of the spectral median

The spectral median deviates from the previously discussed variants in that it does

not always preserve positive semidefiniteness. The three positive definite 2×2 matri-

ces

(

2.95 0.42

0.42 0.07

)

,

(

2.95 −0.42

−0.42 0.07

)

,

(

4 0

0 0.01

)

form a counter-example since

their spectral median

(

2.95 + 0.07
√

3 0

0 0.07 − 0.07
√

3

)

≈

(

3.0712 0

0 −0.0512

)

is

indefinite.

For symmetric 2× 2 matrices, the following statement can be proven by explicit

calculation of the stationarity conditions.

Lemma 6 Let n symmetric 2× 2-matrices A1, . . . , An be given whose spectral me-

dian is X. Assume that Ai =

(

ai ci

ci bi

)

, i = 1, . . . , n, and X =

(

x z

z y

)

. Then

the following are true:

• The trace of X is a scalar median of the traces of A1, . . . , An (in the sense

that it minimises (1)).

• The vector (x − y, 2z)T is the bivariate median w.r.t. Euclidean norm of the

vectors (ai − bi, 2ci), i = 1, . . . , n.

2.2.5 Examples

To demonstrate the denoising capabilities of median filtering we use two test images.

First, we show in Fig. 1 (a, b) a 2-D slice from a diffusion tensor magnetic resonance

data set and a noisy version of it where 30 % of all matrices have been replaced by

noise matrices. The eigenvector orientations of the noise matrices are uniformly
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Figure 1: 2-D DTI data median filtering. Top, left to right: (a) One slice from

a DTI brain scan. Only tensor components belonging to the cut plane are shown.

(b) 30 % of the matrices of (a) have been replaced with uniform noise (uniform in

directions and uniform in both eigenvalues). (c) Image (b) filtered by Frobenius

median, 3×3 stencil, 1 iteration. Middle, left to right: (d) Frobenius median, 3×3

stencil, 5 iterations. (e) 25 iterations. (f) 125 iterations. Bottom, left to right: (g)

Frobenius median, 7 × 7 stencil, 25 iterations. (h) Nuclear median, 7 × 7 stencil,

25 iterations. (i) Spectral median, 7 × 7 stencil, 25 iterations.

distributed on the circle while the eigenvales are uniformly distributed over an

interval [0, M ] that covers the eigenvalue range of the original measurements.

In the grey-value visualisation each sub-image shows the values of one matrix

component over the whole image. A middle grey-tone represents zero. Note that

the upper right and lower left sub-images are equal because of the symmetry of
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Figure 2: 2-D DTI data and median filtering results visualised by ellipses (see text).

Left to right: (a) Corpus callosum detail from original image. (b) Same from noisy

image. (c) Frobenius median, 3 × 3 stencil, 1 iteration. (d) 5 iterations.

Figure 3: Frobenius median filtering of a tensor field containing indefinite matrices.

The data are deformation tensors originating from a fluid dynamics simulation. Left

to right: (a) Initial data, 124× 101 pixels. (b) 10 iterations, 3× 3 stencil. (c) 100

iterations. From [37].

the matrices. For positive semidefinite tensor data such as DTI, the main diagonal

entries in the upper left and lower right sub-image contain only nonnegative values

while the off-diagonal entries can be of either sign but have smaller variation.

Fig. 1 (c–i) shows results of iterated median filtering. The top row illustrates the

effect of increasing numbers of iterations with a 3×3 stencil. Note that the third and

fourth image hardly differ, evidence that root signals occur also in matrix-valued

median filtering. The second row shows the progressive simplification of shapes by

increasing stencil size. It also demonstrates that the shape of objects in the median-

filtered images depends not seriously on the particular norm chosen in the median

computation. However, under spectral median filtering the matrices tend to higher

magnitudes (higher contrast in the main diagonal entries) and faster reduction of

anisotropy (low contrast in off-diagonal parts).

An alternative visualisation is used in Fig. 2 which shows detail views from
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the original and median-filtered images. Here each matrix is represented by an

ellipse whose principal axis directions coincide with the eigenvector directions of the

matrix. The principal axis lengths are proportional to the eigenvalues. However,

each ellipsis as a whole has been rescaled such that the areas are proportional to the

third roots of the determinants, instead of the determinants themselves. Compared

to a representation with constant scale for all matrices, we achieve so a better

representation of matrices with large variations in magnitude within the image,

without reducing eccentricities.

Our second example in Fig. 3 uses a deformation tensor set from computational

fluid dynamics. Here, the eigenvalues of the tensors are of different signs. The

structure-preserving smoothing effect of the median filter is again visible.

3 Algorithms for Computing Matrix Medians

Only in simple cases it is possible to compute matrix medians directly. In general

numerical approximation methods are required. We discuss two approaches.

3.1 Computation by Gradient Descent

In computing Frobenius medians of matrices, the convexity of ES(X) and its differ-

entiability except at X = Ai motivate the use of gradient descent techniques. One

difficulty has to be overcome: Since the gradient vector ∇‖Ai − X‖(2) has equal

length for all X 6= Ai, it lacks any information about the distance to Ai. This de-

ficiency is inherited by the gradient of ES . Though clearly indicating the direction

for descent, it is useless in determining how far to go in one step. A remedy for this

is to use an adaptive step-size control which uses information from the over- and

undershoots encountered during iteration.

The algorithm starts by identifying the Aj ∈ S with the smallest ES(Aj). If for

this Aj , we have
∥

∥∇
∑

i6=j

‖Ai − Aj‖
∥

∥ ≤ 1, then Aj is also the global minimiser, so

we stop. Otherwise we choose an arbitrary initial step size s0 > 0 and proceed by

gradient descent in the direction of −∇ES(X). After each iteration step, the step

size is adapted as follows. Assume that the matrix Xk−1 has been replaced in step

k by Xk = Xk−1 − sk∇ES(Xk−1). We compare now the projection of ∇ES(Xk)
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onto ∇ES(Xk−1) to detect over- and undershoots. Our indicator is the quotient

r :=
〈∇ES(Xk−1),∇ES(Xk)〉

〈∇ES(Xk),∇ES(Xk)〉
.

If r < 0, an overshoot has occurred, while r >0 signals an undershoot. The ratio

r is then used in two ways. First, the step size for the next step is adapted by

a rule like sk+1 = sk/(1 − r). In practice, one limits the adaptation factor per

iteration step e.g. to [1/2, 2]. Second, in case of extreme overshoots, i.e. r < rcrit

with rcrit ∈ (−1, 0), step k is rolled back and repeated with the new step size.

3.1.1 Adaptation to the nuclear and spectral median

While the Frobenius norm is differentiable everywhere except at zero, the spec-

tral norm displays additional singularities along the hypersurfaces of matrices with

multiple eigenvalues. Similarly, the nuclear norm is non-differentiable at singu-

lar matrices. As a consequence, also ES(X) for the nuclear or spectral median

possesses these hypersurface-singularities which arise from the maximum opera-

tion applied on two differentiable functions f1(X) and f2(X) (absolute values of

different eigenvalues for the spectral norm, an eigenvalue and its negative for the

nuclear norm). By replacing max(f1(X), f2(X)) with wf1(X)+(1−w)f2(X) where

w = w(f1(X)−f2(X)) is a smoothed Heaviside function, we achieve differentiability

everywhere outside the Ai. The gradient descent algorithm then works as before.

3.2 A Convex Optimisation Approach

Another attractive method to compute matrix medians which bypasses elegantly

the difficulties of the gradient descent starts directly from the optimisation form of

our definition. By a chain of transformations, the median definition is translated

into a convex optimisation problem that admits the use of established and efficient

algorithms. This approach has been described in [35] and, more detailed, in [6].

3.2.1 Frobenius median

First we develop the framework in the case of the Frobenius median. In the definition

med2(A1, . . . , An) := argmin
X∈Sd

n
∑

i=1

‖X − Ai‖(2) , (3)
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we identify again matrices from the space of symmetric d × d matrices, Sd, with

vectors in IRd2

. By introducing a vector t = (t1, . . . , tn)T of additional variables the

problem (3) can be rewritten as

inf
X∈IRd2

,t∈IRn

(t1 + . . . + tn), ‖X − Ai‖(2) ≤ ti, i = 1, . . . , n .

Note that each vector (XT, ti)
T varies within a convex constraint set Ci which can

be written as a translated convex cone,

Ci =







Ai

0






+ Ld2+1 , Ld2+1 :=

{

x ∈ IRd2+1

∣

∣

∣

∣

xd2+1 ≥
√

x2
1 + . . . + x2

d2

}

.

With the weight vector e = (1, . . . , 1)T we finally formalise our optimisation problem

as

inf
X∈IRd2

,t∈IRn

〈e, t〉,







X

t






∈

n
⋂

i=1

Ci . (4)

Since the intersection of convex sets is again convex, and the objective function is

linear, this is a convex optimisation problem.

We continue by transforming this problem into a convex program that allows

the application of a numerical interior-point algorithm.

With the n(d2 + 1) × (d2 + n)-matrix F and the vector g ∈ IRn(d2+1) given by

F :=













F1

...

Fn













, g :=













g1

...

gn













,

Fi :=







Id2 0d2×n

01×d2 ei






, gi :=







Ai

0






, i = 1, . . . , n

where Im denotes a m × m unit matrix and ei = (0, . . . , 0, 1, 0, . . . , 0) the i-th unit

row vector, we can rewrite (4) as

inf
X∈IRd2

,t∈IRn

〈e, t〉, F







X

t






− g ∈ K . (5)

Here, the convex cone K is given by K =
(

Ld2+1
)n

. The problem (5) is a convex

conic program.

In general, a convex conic program

inf
x∈IRm

〈c, x〉 , Fx − g ∈ K
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with some cone K ⊂ IRm corresponds to the dual conic program

sup
y
〈g, y〉 , FTy = c, y ∈ K∗

where K∗ is the dual cone for K. If at least one of the problems – the original or the

dual one – is bounded and strictly feasible, then {x, y} is a pair of optimal solutions

if and only if the duality gap 〈c, x〉 − 〈g, y〉 is zero.

In (5) the cone is self-dual, K = K∗. The dual conic problem thus reads

sup
Yi∈IRd2

n
∑

i=1

〈Yi, Ai〉,
n

∑

i=1

Yi = 0, ‖Yi‖(2) ≤ 1, i = 1, . . . , n .

By virtue of 〈
n
∑

i=1

Yi, X〉 = 0 the objective function can be rewritten as
n
∑

i=1

〈Yi, Ai −

X〉. The vanishing of the duality gap yields

n
∑

i=1

‖X − Ai‖(2) =

n
∑

i=1

〈Yi, Ai − X〉

which together with the constraints ‖Yi‖(2) ≤ 1 directly lead to the solution

Yi =
Ai − X

‖Ai − X‖(2)

, i = 1, . . . , n ,

which after substitution into
n
∑

i=1

Yi = 0 reproduces the stationarity condition known

from the previous sections

n
∑

i=1

X − Ai

‖X − Ai‖(2)

= 0 .

3.2.2 Spectral median

The definition of the spectral median,

med∞(A1, . . . , An) := argmin
X∈Sd

n
∑

i=1

‖X − Ai‖(∞) , (6)

is treated analogously by introducing a vector t ∈ IRn of auxiliary variables and the

corresponding constraints

‖X − Ai‖(∞) ≤ ti, i = 1, . . . , n .

In this case, the constraints can be decomposed into the requirements

tiId − (X − Ai) ∈ Sd
+, tiId + (X − Ai) ∈ Sd

+, , i = 1, . . . , n,

that must be satisfied simultaneously. Note that X, Ai are to be read as matrices

here. One finds that again each (XT, ti)
T is confined to a convex set obtained from
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intersecting the affine set from the left-hand side with the convex cone of positive

definite symmetric d × d-matrices Sd
+. Abbreviating these constraint sets by Ci,+,

Ci,−, i = 1, . . . , n, (6) is transformed into

inf
X∈Sd,t∈IRn

〈e, t〉 ,







X

t






∈

n
⋂

i=1

(Ci,+ ∩ Ci,−) (7)

which is easily identified as a convex optimisation problem because of its convex

constraint set and linear objective function.

If positive semidefinite data are processed, Ai ∈ Sd
+, i = 1, . . . , n, the constraints

represented by the Ci,− constitute no restriction and can therefore be discarded.

The conditions can again be cast into a conic program formulation

inf
X∈Sd,t∈IRn

〈e, t〉 , F







X

t






− G ∈ Sn×d2

+ ,

F (X, t) = diag(. . . , tiId − X, . . . , tiId + X, . . .)

G = diag(. . . ,−Ai, . . . , +Ai, . . .) .

3.2.3 The nuclear median

Similarly like the Frobenius median, the nuclear median defined by

med1(A1, . . . , An) := argmin
X∈Sd

n
∑

i=1

‖X − Ai‖(1) (8)

is translated into the optimisation problem

inf
X∈Sd,t∈IRn

〈e, t〉 , ‖X − Ai‖(1) ≤ ti, i = 1, . . . , n .

The constraint sets are easily checked to be convex again such that we have a convex

optimisation problem.

4 Robust Structure Estimation

As a discontinuity-preserving matrix smoother, the matrix median can be used to

smooth orientation information that is extracted from textured images via structure

tensors. This application has been exposed in [35, 6].

Structure tensors [16] are computed by Gaussian smoothing of the outer product

matrices ∇u∇uT of an image u. They encode local orientation estimation integrated

within a neighbourhood on the scale of the Gaussian which is used.
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Table 1: Average angular errors (AAE) measured in orientation estimation.

Method-specific parameters in brackets include stencil diameter and iteration count

for median, m and s (see [33]) for Boomgaard–Weijer tensor.

Method AAE AAE AAE

undisturbed impulse noise Gaussian noise

gradient direction 3.387◦ 20.612◦ 31.429◦

Frobenius median 1.591◦ (7, 1) 1.914◦ (9, 4) 3.207◦ (9, 5)

Frobenius median, norm. 1.312◦ (7, 1) 1.655◦ (5, 5) 3.434◦ (15, 4)

Boomgaard–Weijer 1.634◦ (0.1, 3) 1.489◦ (0.05, 5) 3.657◦ (0.05, 9)

A matrix median filtering step can now be employed for a robust filtering of

these structure tensors. This is demonstrated by Fig. 4. Pursuing this idea further,

the Gaussian smoothing can even be omitted; one then applies the median filtering

directly to the rank one outer product matrices. When processing structure informa-

tion from images with no or moderate noise, see e.g. Fig. 5 a favourable smoothing

is achieved which keeps discontinuities in the orientation field fairly sharp.

For images contaminated with stronger noise, see Fig. 6, the quality of the

results is still less satisfactory. Improvements of the orientation estimation are made

using two modifications which can be used separately or combined. First, since we

are only interested in directional information, the gradients (or, equivalently, the

outer product matrices) can be normalised before median filtering. Second, median

filtering itself can be iterated. The experiments in Fig. 7 reveal that in case of

impulse noise, each of these ideas is capable of sharpening the discontinuity. For

Gaussian noise, iterated median filtering gives the greater gain in performance. The

combination in this case does not pay off significantly. Table 1 juxtaposes quality

measurements based on average angular errors for the different methods.

To end this section, we want to point out another aspect. The classical structure

tensor smoothes outer product matrices by means of the Gaussian scale space which

is simple and efficient but insensitive to features. In [34], compare also [9], Weickert

and Brox have replaced Gaussian smoothing, which is in fact a linear diffusion

process, by a feature-preserving nonlinear diffusion process, yielding a nonlinear

structure tensor. Assigning the role of the smoothing process to iterated median
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Figure 4: Left to right: (a) Image containing oriented texture with inhomogeneities.

(b) Structure tensors computed by smoothing the outer products ∇u∇u> with

15 × 15 Gaussian. Gradients have been calculated by 3 × 3 derivative-of-Gaussian

filtering. The final matrix field has been subsampled for visualisation. (c) Result

of Frobenius median filtering of (b) with 7 × 7 stencil, subsampled. From [35].

Figure 5: Left to right: (a) Synthetic image with oriented textures, inspired by [33].

(b) Local orientations computed via derivatives of Gaussians. Orientations have

been mapped to grey-values. Note that the orientations represented by black and

white are close neighbours. (c) Orientations after median filtering of the orientation

matrices with Frobenius norm and a disk-shaped structure element of diameter 7.

(d) Same with structure element of diameter 9. (e) Spectral norm median filtering,

diameter 9. From [35].

filtering, which also constitutes a scale space, stands in analogy to this procedure

and can be seen as construction of a robust structure tensor.

The notion of robust structure tensor has also been used by Boomgaard and

Weijer in [33], see also [9]. They propose the minimisation of an objective function

which leads to a (noniterated) weighted median, compare Sec. 6 below. Since the

weights are defined by a Gaussian, the Boomgaard–Weijer tensor in fact combines

median and diffusion operations in one filter. We include orientation estimates with

the Boomgaard–Weijer tensor in Fig. 7 and Table 1.
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Figure 6: Top, left to right: (a) Test image with 20 % impulse noise. (b) Orientation

field of (a). (c) Structure tensor orientation obtained by Gaussian smoothing of the

outer product matrices with standard deviation 19. (d) Same after median filtering

with Frobenius norm and disk-shaped structure element of diameter 9. (e) Median

filtering of (a) with Frobenius norm and disk-shaped structure element of diameter

19. Bottom, left to right: (f) Test image perturbed by Gaussian noise of standard

deviation 0.2 (where grey-values vary between 0 and 1). (g) Orientation field of

(f). (h) Structure tensor orientation as in (c). (i) Median filtering as in (d). (k)

Median filtering as in (e). From [35].

5 Matrix M-Smoothers and Mid-Range Filters

The minimisation approach underlying the matrix median definition can easily be

extended to a larger class of local image filters, cf. [37].

5.1 Mid-Range Values and Mid-Range Filters

Given a set S of real numbers, its mid-range value is simply the arithmetic mean

of their maximum and minimum. A mid-range filter is then obtained by taking the

mid-range value of the grey-values within a suitable neighbourhood of a pixel. Mid-

range filters are rarely used for denoising purposes since they perform reasonably

only in fairly special situations (noise distributions with “thin tails”). They can,

however, be used in the construction of more relevant filters.

A generalisation to matrix data is easily derived from the observation that the

scalar mid-range value minimises the convex function

ES(x) = max
i=1,...,n

|x − ai| .
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Figure 7: Top row: Modified local orientation filtering for the impulse-noise image,

Fig. 6 (a). Left to right: (a) Frobenius median filtering of normalised outer prod-

uct matrices with disk-shaped stencil of diameter 9. (b) As (a) but with stencil

of diameter 19. (c) Four iterations of the median filter from Fig. 6 (d). (d) Five

iterations of median filter with normalisation, stencil diameter 5. (e) Orientation

estimate from the Boomgaard–Weijer robust structure tensor, parameters (see [33])

m = 0.05, s = 5. Bottom, left to right: Filtering of Fig. 6 (f). (f) Frobenius

median filtering with normalisation and stencil of diameter 9. (g) Same with diam-

eter 19. (h) Median filtering as in Fig. 6 (i), five iterations. (i) Four iterations of

median filter with normalisation, stencil diameter 15. (k) Boomgaard and Weijer’s

robust structure tensor, m = 0.05, s = 9. From [35].

The generalisation is then straightforward.

Definition 2 Given a tuple S = (A1, . . . , An) of symmetric matrices, its mid-range

value midr(S) is the minimiser of the convex function

ES(X) = max
i=1,...,n

‖X − Ai‖ (9)

with a matrix norm ‖·‖.

Based on similar requirements as for the median, suitable choices include once

more nuclear, Frobenius and spectral norm. An example of a mid-range filtered

image is shown in Fig. 8.
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Figure 8: Left to right: (a) Frobenius mid-range filtering of Fig. 1 (a). (b) M-

smoothing of Fig. 1 (a) with Frobenius norm and p = 0.1. Global minimisers have

been searched by grid search.

5.2 M-Estimators and M-Smoothers

Replacing the distances |x − ai| in the function (1) by their p-th powers, p > 0,

yields a more general class of nonlinear averages for real numbers. Minimisers of

ES(x) :=

n
∑

i=1

|x − ai|
p

are called M-estimators [5]. Like the median and mid-range value, M-estimators

give rise to local image filters which are denoted as M-smoothers [30, 39].

Special cases of M-estimators include the median for p = 1 but also, in the least-

squares case p = 2, the arithmetic mean. As limit case for p → ∞, the mid-range

value as well fits into the framework. M-estimators for p < 1 are more difficult to

handle since their objective functions are not longer convex – instead, they have

local minima at all input values and are strictly concave in the remainder of the real

line. Nevertheless, the corresponding M-smoothers display attractive properties for

applications since they exceed the median filter in robustness and are able even to

enhance edges.

Definition 3 Let S = (A1, . . . , An) be a tuple of symmetric d × d matrices, and p

a positive real number. A symmetric matrix which minimises the convex function

ES(X) :=

n
∑

i=1

‖X − Ai‖
p

with some matrix norm ‖·‖ is a matrix-valued M-estimator for S.

Clearly, the matrix-valued median is recovered for p = 1. For p > 1, there exists

a unique minimiser for ES because of the strict convexity of that function. As in
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the scalar case, one faces a more complex situation for p < 1 which we discuss here

exemplarily for the Frobenius norm. First of all, we note that each of the given ma-

trices Ai is a local minimum of ES . Second, there can now exist additional minima

of the objective function. A remarkable fact is that these keep a minimum distance

to the Ai. Since the gradient magnitude
∣

∣∇(‖X − Aj‖
p
)
∣

∣ grows over all limits when

S approaches the singularity at Aj , there exists a radius % = %(p, S) which de-

pends on the exponent p and the data set S such that the gradient ∇(‖X − Aj‖
p)

dominates the sum
∑

i6=j

∇(‖X − Aj‖
p
) within the %-neighbourhood of each Aj , thus

preventing any additional minimum to come closer than % to any Aj .

Because of the non-convexity, proper selection of the minimum is an important

issue for p < 1. In Fig. 8 (c,d) we show the result of a grid search for the global

minimum. Alternatively one can also think of a down-focussing strategy starting

from the unique median, see [37].

5.3 Algorithmic Aspects

For M-smoothers with 1 < p < ∞, the gradient descent algorithm can be applied

similarly as for the median, taking care of the necessary regularisations in case of

the spectral norm. Since the gradient magnitude for p > 1 contains information on

the distance to the minimum, the step-size control mechanism can be replaced.

In the case of the mid-range filter, the maximum operation applied to the norms

‖X − Ai‖ induces additional singularities of the objective function that require an

analogous regularisation as in the case of the spectral norm. Moreover, the step-size

control mechanism is indispensable in this case.

A representation of the mid-range operator by a convex optimisation problem

works along the lines described for the spectral median, with the difference that

only a scalar auxiliary variable is needed. For details we refer to [6].

6 Matrix-Valued Weighted Median Filters

As demonstrated before, matrix median filtering allows an efficient and edge-pre-

serving denoising. However, fine details which are smaller than the stencil size

still experience a degradation even by a single iteration of median filtering. When
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denoising images which contain only moderate amounts of noise, the preservation

of small details can be improved.

We achieve this by using weighted medians. Unweighted scalar median filtering

changes each pixel which has not exactly the middle value within its neighbourhood.

If instead the central pixel is repeated more than once within the ordered sequence,

its value survives even if it is just close to the middle value. Only pixels whose

values are close to the extrema within their neighbourhood are treated as outliers

and therefore changed.

Definition 4 Given a tuple S = (A1, . . . , An) of d×d matrices, a vector of nonneg-

ative weights w = (w1, . . . , wn) and a norm ‖·‖. The weighted median med(S, w) is

defined as the minimiser of

E(S,w)(X) =
n

∑

i=1

wi ‖X − Ai‖ .

Fig. 9 demonstrates denoising of tensor images by weighted matrix median fil-

tering. We use a 3 × 3 stencil in which the weight of the central pixel is varied. It

can be seen that fine structures can be retained that are removed by unweighted

median filtering even with small stencils. The admissible weight for the central

pixel depends sensitively on the noise level. In our noisy test image, a weight of 2

or slightly above for the central pixel considerably enhances structure preservation

while higher weights lead directly to stronger noise.

7 Matrix-Valued Quantiles

The possibility to transfer the notion of median, thus a 50%-quantile, to matrix

data motivates us to check whether even other quantiles can be defined for this

type of data. Indeed, the α-quantile quα(S), 0 < α < 1, of a real data tuple

S = (a1, . . . , an) admits a characterisation by a minimisation property similar to

that for the median. One has that quα(S) minimises the convex function

ES,α(x) :=

n
∑

i=1

fα(x − ai)
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Figure 9: Weighted median filtering. The noisy DTI image has been filtered with

a 3 × 3 stencil, 5 iterations, Frobenius norm. The weight w of the central pixel

was varied while that of the remaining pixels was fixed to 1. Top, left to right: (a)

Standard median filtering (w = 1). (b) w = 2. (c) w = 2.2. Bottom, left to right:

(d) w = 2.5. (e) w = 5.

where fα(z) is a piecewise linear but asymmetric (except for α = 1/2) function

replacing the absolute value,

fα(z) := |z| + (1 − 2α)z =















(2 − 2α) |z| , z ≥ 0,

2α |z| , z < 0.

(10)

In defining matrix-valued quantiles, we require again the properties of scaling and

rotational invariance as well as the embedding property for the scalar-valued quan-

tiles. The way of generalising is mostly analogous to the median case. However,

matrix equivalents of fα has to be used.

Definition 5 Let S = (A1, . . . , An) be a tuple of symmetric d × d matrices, 0 <

α < 1, and let a norm ‖·‖ be given. The α-quantile quα(S) of S w.r.t. ‖·‖ is defined

as minimiser of the convex function

ES,α(X) :=

n
∑

i=1

‖fα(X − Ai)‖
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with the function fα defined in (10).

As usual, the operation of fα on a symmetric matrix Y is defined by action on

the eigenvalues. More explicitly, if Y = Q diag(λ1, . . . , λd)Q
T with orthogonal Q,

then

fα(Y ) := Q diag(fα(λ1), . . . , fα(λn))QT .

For ‖·‖ one might consider again nuclear, Frobenius and spectral norm. However,

the necessity to apply fα to the matrices by diagonalisation prevents any generali-

sation of this quantile definition to other than symmetric square matrices.

7.1 Relation to Matrix Suprema and Infima

Scalar α-quantiles include the minimum and maximum of a tuple of real numbers

as special cases for α = 0 and α = 1. The minimisation characterisation is not fully

sufficient in this case since e.g. ES,0(x) is equally minimised by all lower bounds

of the given data. Similarly, the characterisation of matrix-valued quantiles from

Def. 5 becomes deficient for α = 0 (α = 1), admitting as minimisers all X for which

X − Ai are uniformly negative (positive) semidefinite.

Conditions of this type were also used in [11, 12] where supremum and infimum

notions for matrix tuples were defined in order to establish morphological filters.

The semi-ordering used in [12] (so-called Loewner ordering) is defined exactly by

the definiteness of the X − Ai while the geometrical semi-ordering used in Sec. 4

of [11] is equivalent to the same condition for the difference of squared matrices

X2 − A2
i . By an additional criterion, the supremum (infimum) is then selected

among all matrices which are lower (upper) bounds of the given tuple w.r.t. the

semi-ordering. In [11] a lexicographic ordering of eigenvalues plays this role while

in [12] the matrix with smallest trace is selected as supremum.

In the quantile framework, the limit process α ↑ 1 (α ↓ 0) lends itself as a way to

disambiguate the supremum (infimum). It turns out that for the α-quantiles formed

with the nuclear norm, the limit process α ↑ 1 leads to the supremum matrix of

minimal trace as in [12]. We remark that a robustness property similar to Lemma 5

ensures the independency of the supremum on those Ai for which X−Ai is positive

definite. – The quantiles formed with Frobenius or spectral norm tend for α ↑ 1 to

different suprema for which this independency is not guaranteed.
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Figure 10: α-quantile filtering of 2-D DTI data with 5 × 5 stencil. Top: With

Frobenius norm. Left to right: (a) α = 0.1. (b) α = 0.5 (i.e. median). (c) α = 0.9.

Bottom,left to right: (d)–(f) Same as above but with nuclear norm.

By the following proposition we establish an additional link between matrix

suprema and matrix filters defined via minimisation.

Proposition 7 Let a tuple S = (A1, . . . , An) of symmetric d×d matrices be given.

Provided that the spectral mid-range midr∞(S) is uniquely determined, we have

midr∞(S) + ( max
i=1,...,n

‖midr∞(S) − Ai‖) I = sup(S) (11)

where ES is the objective function from (9) with spectral norm and sup(S) is the

matrix X with smallest trace for which all X − Ai are positive semidefinite.

The scalar-valued equivalent of (11) is the equation

midr(a1, . . . , an) + max
i=1,...,n

|midr(a1, . . . , an) − ai| = max(a1, . . . , an) . (12)

An important difference to the scalar case is that (11), with sensible treatment of

the non-unique case, could also be used to define and compute matrix suprema

since the maximisation in (11) is scalar-valued. A similar “definition” using (12) to

introduce scalar maximum via the mid-range value would be circular.
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8 Summary

A concept of matrix-valued median filters has been presented which is based on

the minimisation of a geometrically motivated objective function. This function

measures the sum of distances of a variable matrix to the given data matrices. This

median concept is theoretically sound, fits well into the context of other multivariate

median approaches and possesses favourable mathematical properties.

The computation of matrix-valued medians has been addressed in two ways. One

approach is based on gradient descent. Moreover, a convex programming framework

has been established which allows an efficient numerical evaluation.

Two main application fields have been discussed. First, matrix-valued median

filters can be employed as an efficient tool for structure-preserving denoising of

tensor-valued images. Second, median filtering allows to smooth orientation esti-

mates, giving rise to a variant of an adaptive (robust) structure tensor.

The proposed minimisation idea allows generalisations in a number of directions,

yielding a family of further matrix-valued local image filters including mid-range

filters, M-smoothers, weighted median filters and quantiles which can be used to

emphasise various types of structures. Moreover, mid-range filters (with spectral

norm) and quantiles (with nuclear norm) offer close connections to matrix supre-

mum/infimum concepts that have been established as foundation for matrix-valued

morphology.
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