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Abstract
We introduce a novel variational approach for evaluating PTV image pairs
and sequences in two and three dimensions. We combine a discrete
non-differentiable particle matching term with a continuous regularization
term. An advanced mathematical method guarantees convergence to a local
minimum. The experimental evaluation shows that our variational method
competes with three alternative approaches. We outline the potential of our
method for further developments.

Keywords: particle tracking velocimetry, particle matching, variational
models, finite elements

1. Introduction

The terms particle image velocimetry (PIV) and particle
tracking velocimetry (PTV) denote established classes of
image processing methods for extracting the underlying
velocity fields in particle images. PIV methods operate on
grey-level images, while PTV approaches determine the flow
field by tracking individual tracers [17]. PTV methods are
capable of yielding a higher resolution than PIV methods, as
it is not necessary to average over regions in the image (i.e.,
interrogation windows). Furthermore, in 3D, PTV can be
supported and combined with stereoscopic analysis and 3D
reconstruction, leading to high-resolution 3D3C vector fields.

PTV methods are traditionally either based on nearest-
neighbour search with geometrical constraints (using four
or more consecutive frames) [8, 6], or on binary-image
cross correlation (two frames) [24] which computes the cross
correlation between regions around particles in the first and in
the second frame. More recent approaches include relaxation
methods that analyse the probability of particle matching
[2, 15] and genetic algorithms that evaluate different pairing
schemes based on local morphology conservation or the
constraint of vanishing divergence (for incompressible fluids)
[22, 4]. Basically, all these methods have two assumptions in
common:

• Small displacements. While nearest-neighbour search
algorithms directly rely on small displacements from one
frame of an image sequence to the next (in proportion to
the particle density), binary-image correlation methods
and relaxation methods both search for possibly
corresponding particle images in a certain ‘tracking
range’.

• Smoothness of motion. Nearest-neighbour search
algorithms assume that a particle changes its motion
during an image sequence only smoothly. A similar
assumption that tacitly underlies binary-image correlation
methods is that the particles within a correlation window
move with the same speed (if they do not, the correlation
peak is less pronounced and the estimates become less
reliable). Finally, using relaxation methods, a matching
is considered probable if the movement of particles in a
certain region can be reduced to a simple translation.

Recently, a novel class of variational approaches to image
fluid analysis has been introduced in [20, 9]. These methods
were originally developed in the field of computer vision
[7, 14] and modified for the purpose of PIV. The basic idea is
not to estimate displacement vectors locally and individually,
but to estimate vector fields �u as a whole by minimizing
a suitable functional defined over the entire image section.
Such functionals typically comprise two terms: a data term
measuring how well two images of a sequence match as

0957-0233/05/071449+10$30.00 © 2005 IOP Publishing Ltd Printed in the UK 1449

http://dx.doi.org/10.1088/0957-0233/16/7/007
mailto:ruhnau@uni-mannheim.de
mailto:guetter@uni-mannheim.de
mailto:torsten.putze@mailbox.tu-dresden.de
mailto:schnoerr@uni-mannheim.de
http://stacks.iop.org/mt/16/1449


P Ruhnau et al

uaux,1 T1

T2

T3

S1

S2

S3

T1

T2

T3

S1

S2

S3

regularizationu aux,2

uaux,3

u

u

u

2

1

3

Figure 1. Full circles denote particle positions in the first frame, open circles denote positions in the second frame. Left: simple
nearest-neighbour search yields mismatches. Right: nearest-neighbour search followed by regularization with smoothness constraint. In the
next iteration, T2 will find the correct match.

a function of the vector field �u to be estimated, and a
smoothness term measuring the variation of �u in terms of
first- or second-order partial derivatives. In principle, the
smoothness term enforces coherent vector field structures,
making the corresponding post-processing steps in connection
with traditional local PIV approaches obsolete. Experimental
evaluations showed a competitive performance of variational
approaches [19]. Furthermore, advanced parallel and fast
implementations using off-the-shelf hardware are available
[10, 11].

The objective of this paper is to generalize the class of
variational approaches to particle tracking velocimetry. To this
end, we have to replace the continuous data term of variational
approaches to PIV with a discrete non-differentiable particle
matching term for PTV. This raises the problem of minimizing
such data terms together with a continuous regularization term.
We accomplish this with an advanced mathematical method
which guarantees convergence to a local minimum of such a
non-convex variational approach to PTV.

Figure 1 illustrates the basic behaviour of this new
type of variational approach to PTV. On the left, figure 1
depicts a common situation where particle matching by
nearest-neighbour search fails. The variational PTV approach
presented in this paper is able to avoid, and even to revise,
such erroneous local decision through the smoothness term
(figure 1, right). A key advantage in our opinion is that
all ‘rules’ guiding the matching of particles are encoded
by the choice of a smoothness term which, in turn, can
be related to physical properties of the underlying fluid,
such as low divergence [25]. The physical constraints
are thus incorporated directly (in contrast to, e.g., the
indirect incorporation in genetic algorithm approaches). In
the following, we will introduce this novel variational
approach to PTV (section 2.1) and the corresponding
optimization procedure (section 3). The investigation of
different smoothness terms in this context is left for future
work. Numerical experiments for benchmark image pairs, a
comparison with three alternative approaches, as well as results
for real-world image sequences will be presented in section 4.
We conclude in section 5 by indicating various extensions to
this prototypical approach within the variational framework.

2. General problem formulation

2.1. Basic assumptions and constraints

Let S denote the coordinates of the extracted particles in the
first image of an image pair, and T denote the coordinates of

the extracted particles in the second image. Then, we define
the distance of a specific particle with coordinates Si to T by

dT (Si) := d(Si, T ) = inf
Ti∈T

d(Si, Ti),

where d(Si, Ti) is just the Euclidean distance. Therefore, the
target velocity field �u (where �ui denotes the displacement of
particle Si from frame 1 to frame 2) minimizes the accumulated
distance function

D(�u) =
M∑
i=1

dT (Si + �ui) (1)

where �u = �u1, �u2, . . . , �uM , and where M is the number of
extracted particles in image 1.

Unfortunately, the minimization of (1) is a highly non-
convex problem, as every other possible matching minimizes
the equation as well. The local minimum is just the ‘nearest-
neighbour’ solution. We define a convex attraction potential as
an increasing continuous function that attracts every particle
to its closest neighbour:

Elocal(�u) =
M∑
i=1

α

2
(dT (Si + �ui))

2. (2)

Until now, the particles are only attracted to their nearest
neighbours and the minimization of (2) is trivial. This is
why we have to make an additional assumption about �u.
The prototypical assumption that we want to make use of
in this paper is the assumption of smoothness. We indicate in
section 5 that other assumptions (that include, e.g., physical
knowledge) are conceivable.

However, rather than considering vector fields that are
close to a constant in a small region (the predominant
assumption in PTV) we want to rule out too irregular vector
fields by minimizing the magnitudes of the spatial (and, in the
case of image sequences, spatiotemporal) gradients of �u:

Eglobal(�u) =
∫

�

N∑
j=1

|∇ �uj (s)|2 ds. (3)

Please note that �u = (u1, u2, . . . , uN)�, where N indicates
the dimensionality of the problem (N is usually 2 or 3). The
integration variable s is for image pairs in 2D s = (x, y)�,
and in 3D s = (x, y, z)�, where x, y and z denote the spatial
coordinates within the domain �. For image sequences, it
follows s = (x, y, t)� in 2D, and s = (x, y, z, t) in 3D, where
x, y and z denote the spatial coordinates, and t is the temporal
coordinate.
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Particle was not detected
in the second frame

Figure 2. Full circles denote particle positions in the first frame,
open circles denote positions in the second frame. Full rectangles
denote the current estimate. One particle has not been detected in
the second frame. Minimization of (6) necessarily leads to the
wrong match.

Equations (2) and (3) can be combined into the variational
framework

E(�u) = Elocal(�u) + λEglobal(�u)

=
M∑
i=1

α

2
(dT (Si + �ui))

2

︸ ︷︷ ︸
data

+ λ

∫
�

N∑
j=1

|∇ �uj (s)|2 ds

︸ ︷︷ ︸
regularization

, (4)

where Elocal is called a ‘data term’ which incorporates local
information, and Eglobal is the global regularization term. In
this work, the so-called smoothness parameter λ � 0 is
considered a user parameter that controls the smoothness of the
resulting velocity field. If we choose λ = 0, no regularization
is performed. The reconstructed velocity field is therefore
just the ‘nearest-neighbour’ solution, as the locally optimal
solution for every particle in image 1 is the matching with its
nearest neighbour in image 2.

2.2. Outlier treatment

An important problem in the PTV analysis is raised by the
fact that usually not all the particles are detected correctly. In
2D it may happen that a particle is visible in the first frame,
but moves out of the illuminated plane and is therefore not
visible, or beneath the threshold, in the second frame. In 3D,
additional problems occur when the 3D reconstruction fails,
e.g., due to a very high particle density. Further problems arise
from particle images tending to coalesce.

We can distinguish between two error scenarios:

• A particle is extracted from the second image, but not
from the first image: in this case, the proposed algorithm
can still estimate a reliable velocity field, as it searches
matches for all particles in the first frame.

• A particle is visible only in the first frame but not in the
second frame: in this error case, the nearest-neighbour
search (6) of the proposed algorithm will necessarily find
the wrong match in every iteration (cf figure 2). Through
the smoothness term of (7) this error is propagated to the
neighbourhood of the erroneous vector.

The strategy that we merely want to adopt is to eliminate
vectors that contribute a high energy to (7). This is achieved

through a threshold: we replace the attraction potential of the
data term of (6) by a robust potential—a cut-off potential that
cuts off points located beyond an adjustable threshold. These
outliers are not considered in the regularization step of the
current iteration.

However, the result of the regularization step is
propagated to the outliers: linear interpolation yields the
velocity field also at the location of the outliers, the positions
of which are updated, as are the positions of the inliers. The
idea is that they may be torn below the threshold in case they
were wrongly detected outliers.

In order to improve the performance in image regions
with high velocity, we start with a high outlier threshold and
then slowly increase this threshold: thus, in the first iterations,
particles in fast moving regions will tend to be considered
outliers, while particles in slowly moving regions will tend
to be considered inliers. The idea is that, in the course of
several iterations with an attenuating threshold, more and more
particles are considered inliers and the estimated velocity field
in the high-velocity regions can converge to the correct flow
field. Extensive experiments confirmed this behaviour.

3. Optimization and discretization

Note that the implicit data constraint defined by equation (1)
is a non-convex function. Thus, retrieving a local minimum
of (4) does not imply having found the global optimum.

We use an auxiliary variable approach that represents a
sound mathematical framework and guarantees convergence
[3]: in a two-stage iterative algorithm, each iteration comprises
a local deformation followed by a global regularization. To
justify this approach, we modify the energy E(�u) of (4) by
introducing an auxiliary variable �uaux. The above two steps
can then be interpreted as alternate minimizations with respect
to each of the two variables, the variable of the initial energy
�u and the auxiliary variable �uaux.

A general formulation of the energy Eaux following [3]
and based on formula (4), with the extra auxiliary variable
�uaux = �uaux,1, �uaux,2, . . . , �uaux,M , has the form

Eaux(�u, �uaux) =
M∑
i=1

(
1 − α

2
(dS+�u(S + �uaux,i ))

2

+
α

2
(dT (S + �uaux,i ))

2

)
+ λ

∫
�

N∑
j=1

|∇ �uj (s)|2 ds. (5)

The first two terms of equation (5) exhibit the auxiliary
variable’s role as an interpolate between S + �u and T.
Globally, we can think of the iterative minimization of Eaux

as a deformation of the current vector field followed by a
regularization. The successive minimization of Eaux is equal
to subsequent minimization of the following two energies EI

and EII, each with respect to a different variable—EI with
respect to �uaux, and EII with respect to �u:

local deformation

EI (�uaux) =
M∑
i=1

(
1 − α

2
(dS+�u(S + �uaux,i ))

2

+
α

2
(dT (S + �uaux,i ))

2

)
(6)
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Figure 3. Delaunay triangulation of the area covered by particles
from an image plane. Line intersections denote extracted particle
positions.

global regularization

EII(�u) =
M∑
i=1

(
1

2
(dS+�u(S + �uaux,i ))

2

)
+ λ

∫
�

N∑
j=1

|∇ �uj (s)|2 ds.

(7)

The two equations can be subsequently iterated in the given
order until convergence is obtained. Equations (6) and (7)
demonstrate how both minimizations are linked by the term∑M

i=1(dS+�u(S + �uaux,i ))
2. The minimizing �uaux of EI can be

interpreted as a trade-off between the closeness to S + �u and
the closeness to T. This gives a good direction of displacement
and avoids too large deformations of the auxiliary flow field
�uaux. The grid generation is performed using a Delaunay
triangulation [1] (cf figure 3). For technical details about grid
generation and discretization of equation (7), for 2D and 3D
image pairs and image sequences, we refer to [18].

4. Experimental evaluation

In this section, we test the variational PTV approach on
synthetic and real 2D and 3D data sets. For the 2D case,
we report comparisons of our variational particle tracking
approach with three other approaches. Before discussing
the results in section 4.5, we first describe the data sets
used for the comparison (section 4.1), the preprocessing
(i.e., particle extraction and 3D reconstruction, section 4.2),
the alternative approaches and their corresponding parameter
settings (section 4.3), and the quantitative error measures
(section 4.4).

4.1. Data

The experimental evaluation was carried out on the basis of
the following data sets:

• Synthetic data. The Visual Society of Japan (VSJ) has
published standard images for particle image velocimetry
that are freely available on the internet [16]. For 2D data,
we will refer to the test image classified as 301 in the
VSJ library. It consists of ten frames taken at intervals
of 0.005 s; each frame consists of about 4150 particles.
It shows the vertical portion of the impinging jet, with a
maximum velocity of 10 pixels/frame. Figure 4 shows
the first image from this series along with the correct
motion field. We will analyse our 3D approach using the

Figure 4. VSJ standard image 301.
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Figure 5. 3D velocity field of VSJ standard image 331.

test images classified as 331 in the VSJ library ( jet shear
flow). Figure 5 shows a plot of its velocity field.

The advantage of the VSJ images is that the underlying
motion fields, as well as the particle coordinates, are
available so that the evaluation of different approaches,
as well as that of different parameter constellations,
is possible. By basing our computations on these
particle position data, we have to deal with very high
particle concentrations (approximately 4150 particles to
be tracked in the 2D case and 3500 particles in the 3D
case). We want to evaluate the performance of our
algorithm in cases of high particle concentrations, as up-
to-date CCD cameras yield increasingly high resolutions,
and thus an up-to-date tracking system must be capable
of managing high particle concentrations.

In order to achieve a more realistic test scenario, we
will randomly delete particles in order to emulate typical
individual-particle extraction errors.

• Real-world data. Figure 6 shows different frames from
a visualized air flow. The camera used is a high-speed
camera with 1000 fps. The flow is visualized by styrofoam
particles or mirco-balloons. One has to visualize the flow
in a way that the mean displacement is approximately
10 pixels/frame.

To analyse the 3D capability of our algorithm,
we took the ‘stirred aquarium’ sequence from [12]. It
investigates the water flow in a channel made of glass.
The velocity of the real flow in the glass channel averaged
30–50 cm s−1. The camera system, which contains
three video cameras that operate with 25 fps, was moved
continuously in the direction of the flow to optimize the
tracking. In order to get the characteristic flow, one has
to consider the bias of the moved camera system.
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Figure 6. Real-world image: four frames have been superimposed
to visualize the overall motion.

For successful processing, a compromise between
camera frame rate, exposure time, flow velocity and
illumination is necessary. Fast particles detected when
using a longer exposure time appear as streaks. This
means a loss of accuracy and it generates ambiguities.
Longer exposure times also reduce the maximum frame
rate. Low frame rates in turn increase errors due to the
curvature of the particle paths. High frame rates are
correlated with short exposure times, which results in dim
particles. Especially, particles at the boundaries of the
illumination corridor cannot be segmented by an overall
threshold.

In order to get sufficient results in terms of a successful
tracking, the highest possible frame rate is required. The
more turbulent the flow is, the higher the time resolution
has to be in order to get correct matching outputs. The
maximum time delay between two epochs depends on
the feasibility of the temporal matching. The latter in
turn depends on the homogeneity, the turbulence and the
velocity of the flow and, of course, on the performance
of the matching algorithm and its ability to incorporate
spatiotemporal constraints on homogeneity.

4.2. Preprocessing steps

4.2.1. Individual-particle detection. In order to track
individual particles, these particles first have to be extracted out
of the grey-value structure of the image. Many authors have
concentrated on this topic (a comparison of different particle
detection approaches can be found in [15]).

While we omitted the particle detection and 3D
reconstruction steps in the synthetic cases by directly basing
the tracking algorithm on the 3D coordinates provided, we
used the so-called particle mask correlation method described
in [5, 21] in the 2D real-world cases. For the 3D real-world
case, a region growing approach with a discontinuity parameter
that divides overlapping particles was used [13].

4.2.2. 3D reconstruction. For 3D PTV, the illuminated scene
is usually recorded by a system of three or more cameras.

If the camera calibration is known, then, by use of epipolar
geometry, the particle positions can be described by a set of
lines. The particles are situated around the intersection points
of these lines. According to the accuracy of the calibration
and the particle density there will be ambiguities. In some
cases it is not possible to resolve them [12]. As the presented
algorithm is capable of handling outliers (cf section 2.2), we
will, in these cases, consider all possible particle locations that
cannot be ruled out—anticipating that the wrong candidates
will be considered as outliers by the algorithm.

4.3. Approaches and parameter settings

The data sets described above are evaluated with the use of the
following approaches and parameter settings.

• Variational approach (VAR). The particle coordinates are
normalized so that all particles lie between 0 and 1 in all
spatial dimensions; the temporal dimension is numbered
in integer steps (t = 1, 2, . . . , T ). For all the test
cases we use a smoothness parameter of λ = 0.1. The
parameter α is set to 0.8. In the first iteration, 75% of the
particles are considered as outliers and in every iteration
0.1% particles in addition are considered as inliers. No
additional particles are considered as inliers if the outlier
threshold reaches 0.01. The iteration stops if no further
decrease in energy occurs.

• Four-frame in-line tracking method (FIT) [6, 8]. The
movement of the tracer particles is traced frame by frame
while checking the geometrical consistency of every
possible particle path. Therefore an iterative procedure
of firstly the extrapolation of the particle displacement,
and secondly the search for the nearest neighbour is
implemented. As this method asks for four consecutive
frames to track the particles, we will use all four of the
frames of the VSJ standard images.

• Binary-image cross-correlation method (BCC) [24]. This
method is considered a variation of the standard cross-
correlation PIV, in which the correlation functions are
computed for each interrogation window which is centred
on the first-frame particles. An adaptive shifting scheme
is used.

• Relaxation method (NRX) [2, 15]. This analysis is
based on the probability of particle matching between
the first and second frames, defined for every possible
pair of particles including the probability of there being
no match. A high probability of matching is assumed if
the neighbouring particles move similarly.

4.4. Error measures

In this work, we concentrate on two error measures, yield and
reliability:

• Yield (EY ) is the measure of the number of correct vectors
produced between two images (n) divided by the total
number of particle pairs known to exist between the two
images (v):

EY = n

v
. (8)
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Figure 7. Estimated velocity field VSJ image 301 (left). Two likely
error constellations (right): one particle has not been extracted in
frame 2, the matching is performed with a close neighbour of this
vanished particle (top). Due to three dimensionality of the velocity
field, two particles ‘cross’ in the two-dimensional projection. The
two-dimensional variational approach presumes the smoothness of
the projection and chooses the wrong match (bottom).

• Reliability (ER) is the measure of the number of correct
vectors that were reconstructed by the tracking method
(n), divided by the total number of vectors determined by
the tracking method (d ):

ER = n

d
. (9)

It is apparent that we can influence both error measures by
the chosen parameters: if we use a high outlier threshold, we
can expect good reliability (as only matches that fit the model
very well are considered), while EY will definitely drop. A
lower threshold will lead to an increase in EY , while decreasing
the reliability.

4.5. Numerical results and discussion

4.5.1. 2D results.

Synthetic images. The first test case is the computation of
the velocity field between the frames 0 and 1 of the VSJ 301
image sequence. After 700 iterations the solution presented in
figure 7 (outlier ratio 3%) is generated.

In the test case, 4042 particles are visible in both images;
4039 matchings are computed; 3894 of which are correct.

Figure 8. Graph of the two error measures from iteration 1 to 720.

This corresponds to a yield rate of Ey = 96.34% and a
reliability rate of ER = 95.93%. Figure 8 shows these two
error measures through the iteration process. The average
angular error of our estimated vectors is 0.24◦ and the root
mean squared (RMS) error is 0.0261 pixel, which would
suggest that the performance of our approach is one order of
magnitude more exact than that of (cross-correlation-based)
PIV techniques. However, these numbers are misleading:
when using highly accurate matching techniques, the overall
RMS or angular error will be largely caused by inaccuracies
in particle extraction.

Figure 10 points up our outlier strategy. As explained
in section 2.2, we start using a very low outlier threshold,
considering only 25% of the particles as inliers. These
particles are located mainly in the left part of the image (top
left figure). The velocity is small and the velocity field is
smooth, so that these particles fit the model best. In the
course of iterations, more and more particles are considered as
inliers, so that the reconstructed velocity field resembles the
true velocity field even at locations where the velocity is very
high. Beginning with iteration 400, more and more particles
in the lower right part of the image are considered as inliers
and find their correct counterparts (cf figure 10). The velocity
induced by these correct matchings, in turn, is propagated
through the smoothness constraint to the middle of the image
where it raises the number of correct matches. This is why
reliability strongly increases between iterations 450 and 500
(cf figure 8).

Figure 9 shows that our approach is rather insensitive to
changes of the smoothness parameter λ. However, as λ goes to
zero, the reconstructed velocity field approaches the ‘nearest-
neighbour solution’ (cf section 2.1) and the accuracy drops. In
contrast, if we apply a very large smoothness parameter, the
algorithm will not be able to deal with spatial and temporal
motion variations, many particles will be considered as outliers
and the performance will decrease.

Please note that we used the same λ in all our
experiments—if we had adapted the parameter manually for
every experiment we could have achieved better results than
those presented in this paper. Changes of the parameter α had
only very little influence on the resulting matching.

Table 1 compares the results achieved with our approach,
with the results of the approaches introduced in section 4.3.
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Figure 9. Graph of the two error measures for different smoothness parameters.

Figure 10. Estimated velocity field after 50 (top left), 300 (top right), 500 (bottom left) and 720 (bottom right) iterations.

Table 1. Comparison of four PTV algorithms: four-frame in-line
tracking (FIT), binary-image cross correlation (BCC), relaxation
(NRX), variational approach (VAR).

Estimated Correct
Algorithm Frames matches matches Reliability (%)

FIT 0, 1, 2, 3 630 559 88.73
BCC 0 → 1 860 788 91.62

0 → 2 863 691 80.07
NRX 0 → 1 808 788 97.52

0 → 2 714 680 95.24
VAR 0 → 1 872 865 99.20

0 → 2 904 885 97.90

In order to guarantee a fair comparison, we have not used the
correct particle coordinates provided by the VSJ, but extracted
particle positions by using the particle mask correlation
method (cf section 4.2.1). Therefore the number of particles
is clearly lower than in the preceding computations.

The variational PTV method finds the largest number of
matches while additionally yielding the highest reliability.

4.5.2. 2D plus time results (2D image sequences). The next
step is the additional exploitation of temporal smoothness
information. Therefore we have to analyse the whole VSJ
301 image sequence consisting of 10 frames. Figure 11 shows
the computed trajectories. Table 2 shows the parameters we
use and the results that we achieve. Furthermore, the results
of the analysis of image pairs only are indicated. In every
frame, the computation based on the whole sequence is at
least as good as the image pair result. This had to be expected,
as additional information is available in the sequence case.
The reason why only slight improvements are achieved has
already been addressed: we analyse a 2D projection of a 3D
velocity field, therefore the smoothness assumption does not
necessarily hold at every point in the image. This is why we
will later turn to three-dimensional problems.
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Figure 11. Computed trajectories from sequence VSJ 301.

Table 2. Error measures for VSJ standard image 301.

α = 0.8, λsp = 0.1, λtmp = 10 α = 0.8, λ = 0.1

Image sequence Image pairs (%)

Frames Yield Reliability Yield Reliability

00 → 01 97.72 96.41 96.34 95.93
01 → 02 97.62 96.61 96.83 95.83
02 → 03 97.69 96.45 97.05 95.81
03 → 04 97.64 96.64 96.90 95.90
04 → 05 97.32 96.63 97.05 96.35
05 → 06 97.64 96.70 97.11 96.18
06 → 07 97.28 96.10 92.99 91.86
07 → 08 97.28 96.30 93.11 92.10
08 → 09 96.33 95.24 93.94 92.87

Real-world images. Figure 12 shows the computed trajectories
for the four frames of the 2D real-world image. Visual
comparison of the extracted velocity field and image pair
suggests that there has not been a wrong match.

4.5.3. 3D results.

Synthetic data. First we compute the 3D velocity field
between frames 0 and 1 of the VSJ 331 image sequence. The
solution that was generated after 750 iterations is presented in
figure 13. In this test case, 3364 particles are visible in both
images and 3372 matchings are computed. These matches
include all exact matches, and eight particles that do not have
a counterpart in the second image but are erroneously matched
to another particle. As expected, the 3D results are much better
than the 2D results. Computations with volume coordinates
of the VSJ 301 sequence show that we achieve matching rates
very close to 100% in these test cases, too.

Please note, however, that in real-world scenarios, errors
in 3D imaging and 3D reconstruction will lead to missing
particles or erroneous particle locations. This is why we want
to test the robustness of our algorithm: table 3 shows that even
an increase in outlier probability does not deteriorate the results
significantly. In these test cases, the indicated percentage of
particles (first column) has been randomly removed from both
images to simulate problems in particle extraction and 3D

Figure 12. Left: computed trajectories from real-world image
sequence. Right: velocity vectors between frame 1 and frame 4 with
the mean flow component subtracted; amplified for perceivability.

Figure 13. Estimated 3D velocity field for sequence VSJ 331.

reconstruction. The second column indicates the number of
particles that are visible in both frames, columns 3 and 4 show
the two performance measures.

In order to assess the limits of our approach we consider
only every second image. The results indicated in table 3 show
that the error measures are still very good. When considering
only every third image, however, the approach is no longer
able to determine a valid velocity field. In fact, both yield
and reliability drop to 0% (i.e., not a single velocity vector is
recovered correctly). The algorithm does not find a starting
point as the offsets at every position in the image are so high
that no particle is able to find its counterpart in the first iteration
and thus the algorithm converges to the wrong minimum. This
drawback has to be expected as we are minimizing a highly
non-convex functional (cf equation (6)).

Even in this case, perfect matching can be found, if
we provide the algorithm with a good initial guess (e.g., by
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Table 3. Error measures for VSJ standard image 331.

00 → 01 00 → 02

Removed Possible Yield Reliability Possible Yield Reliability
particles (%) matches (%) (%) matches (%) (%)

0 3364 100.00 99.76 3192 99.97 99.47
5 3037 100.00 99.84 2881 99.86 99.45

10 2731 100.00 99.60 2586 99.38 99.34
15 2440 100.00 99.59 2307 98.22 99.60
20 2170 100.00 99.40 2053 98.30 99.56
25 1885 100.00 99.74 1809 44.83 44.81
30 1649 100.00 99.40 1557 38.79 39.35
35 1403 99.93 99.64 1339 31.14 31.17
40 1211 100.00 99.26 1131 32.98 33.01

Figure 14. Estimated 3D trajectories for the real-world sequence
‘stirred aquarium’. Every third trajectory has been printed.

specifying the overall image velocity, or one single match);
we will point out this possibility in section 5.

Real-world data. Figure 14 shows the extracted trajectories
from the real-world sequence ‘stirred aquarium’ [12]. The
sequence consists of 31 exposures of the whole volume
with a three-camera set-up. 1300–1400 particles were
detected in every image. 3D reconstruction yielded a total
number of 28 818 particles from the sequence (i.e., ≈ 930
particles/frame). We used the same parameters used for the
synthetic experiments. 22 485 matches were found when using
our variational algorithm (i.e., ≈ 750 matches/image pair).
The position of each vector is expressed in the initial camera
coordinate system.

5. Conclusion and further work

We have introduced and successfully evaluated a variational
particle tracking velocimetry approach that combines a
discrete matching term and a continuous regularization term.
This novel approach can handle 3D image sequences and
outperforms standard PTV methods.

A decisive advantage of the variational approach (4)
is its potential for further development. Note that the
regularization term (second term in (4)) does not incorporate
specific physically motivated prior knowledge. As the particle

matching is performed in the 3D object space, this term could
be replaced by a term that is better suited for specific tasks:
one could, e.g., guarantee zero divergence (in the case of
incompressible fluids) and/or the compliance with the Navier–
Stokes equations.

Furthermore, our approach could be used for particle
tracking in an integrated PIV–PTV method (super resolution
analysis, cf [23]). One could also add the possibility of
specifying border conditions for regions where the correct
flow is known.

Acknowledgment

Support by the Deutsche Forschungsgemeinschaft (DFG,
SCHN 457/6) within the priority programme ‘Bildgebende
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approach for particle tracking velocimetry Comp. Science
Series, Technical Report Dept. Math. and Comp. Science,
University of Mannheim, Germany

[19] Ruhnau P, Kohlberger T, Nobach H and Schnörr C 2004
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