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Abstract. We present a variational approach to motion estimation of instationary
experimental fluid flows from image sequences. Our approach extends prior work along
two directions: (i) The full incompressible Navier-Stokes equation is employed in order
to obtain a physically consistent regularization which does not suppress turbulent
variations of flow estimates. (ii) Regularization along the time-axis is employed as well,
but formulated in a receding horizon manner contrary to previous approaches to spatio-
temporal regularization. This allows for a recursive on-line (non-batch) implementation
of our variational estimation framework.
Ground-truth evaluations for simulated turbulent flows demonstrate that due to
imposing both physical consistency and temporal coherency, the accuracy of flow
estimation compares favourably even with advanced cross-correlation approaches and
optical flow approaches based on higher-order div-curl regularization.
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1. Introduction

1.1. Overview and Motivation

Image sequence analysis of fluid flows constitutes an active research field with a high
industrial impact. Corresponding real-world measurements in concrete scenarios complement
numerical results from direct simulations of the Navier-Stokes equation, particularly in the
case of turbulent flows, and for the understanding of the complex spatio-temporal evolution
of instationary flow phenomena. More and more advanced imaging devices (lasers, high-
speed cameras, control logic, etc.) are currently developed that allow to record fully time-
resolved image sequences of fluid flows at high resolutions. As a consequence, there is a need
for advanced algorithms for the analysis of such data, to provide the basis for a subsequent
pattern analysis, and with abundant applications across various areas.

The image measurement process proceeds as follows: First, the flow medium is seeded
with small particles that are designed such that they accurately follow the fluid’s motion. Next,
entire velocity fields are measured by taking two or more images of the flow within short time
intervals, and by estimating and interpolating the displacements of individual particles from
frame to frame.

A basic requirement for any motion estimation scheme in this connection is physical
consistency. Otherwise, the information provided by a subsequent motion analysis is limited.
Current approaches to PIV [19] do not address this issueas part of the motion estimation
scheme. As a consequence, this calls for a novel combination of motion estimation and the
Navier-Stokes equation which governs the real unknown flow in all applications.

Our contribution reported in this paper is a novel spatio-temporal variational approach to
the estimation of motion fields constrained by the Navier-Stokes equation.

1.2. Related Work

Recently, variational optical flow techniques from the field of computer vision have been
adopted and extended for the purpose of PIV [21, 10, 20, 5, 22]. Besides combining a
carefully designed data term and coarse-to-fine estimation schemes with a standard first-
order regularizer [21], a physically more plausible regularization has been suggested recently
[22]. Because this approach is based on the Stokes-equation, however, it is based on
related assumptions which are strictly valid only for low Reynold numbers, i.e.non-turbulent
flow. Another competitive research direction concerns the design and use of higher-order
regularizers [10, 5, 27]. By separately penalizing thegradientof the divergence and the curl
of flows, the major disadvantage of first-order regularization that penalize flow variations
too much, is alleviated. Issues like well-posedness, accurated discretization and numerical
stability, on the other hand, become more involved.

To add physically motivated prior knowledge to cross-correlation PIV methods, physics-
based non-linear dynamic models [16] have been introduced. The velocity is obtained
by minimizing a measure which consists of the residues of the Navier-Stokes equation,
the continuity equation, and the difference between estimated and observed image data.
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The resulting non-linear optimization system is solved using methods from evolutionary
programming [13]. This procedure is repeated until the difference between the observed and
the estimated image is sufficiently small. This method allows a reliable estimation of velocity
fields and pressure estimates.

One may criticize, however, that little insight can be gained from the viewpoint
of optimization because a general-purpose framework for intricate problems was used
(evolutionary programming). It does not take into account the structure of the underlying
problem. This is contrary to our approach presented below where the computational flow
estimation scheme with provable properties (well-posedness, numerical stability) is directly
derived from an adequate variational problem formulation.

Finally, we point out that the vorticity transport equation has been used before in the
field of computer vision in order to “inpaint” images and videos (cf., e.g., [1] and [17, chapter
3]). In this completely different context, the same transport mechanism is used to infer from
surrounding image partsspatial image structures within local image regions that may result
from removing corrupted image parts, disturbing text, etc.

1.3. Contribution

We present a framework for fluid motion estimation that utilizes as prior knowledge the fact
that flows have to satisfy the incompressible vorticity transport equation. This equation
relates to the full (incompressible) Navier-Stokes equations and therefore is also valid in
turbulentscenarios. Furthermore, rather than considering image pairs, our estimation scheme
takes into account the whole image sequence. As a result, it takes into account previous
estimation results so as to enforce spatio-temporal coherency and regularization, however,
without penalizing flow structures that are characteristic for instationary turbulent flows.
Finally, analogously to the corresponding concept from control theory, our overall algorithm
works in a receding horizon manner, that is flow velocities can be computed as soon as their
respective frames have been recorded. By this, we avoid a significant part of the computational
costs associated with common temporal regularization and control schemes [7, 26].

1.4. Organization

We sketch in section 2.1 the derivation of the vorticity transport equation, which embodies
the prior knowledge we use for flow estimation. Section 2.2 motivates and describes
our variational approach and details the resulting constrained optimization problem.
Corresponding numerical issues are dealt with in section 3. Numerical experiments for
evaluating the approach are presented in section 4. We conclude and indicate further research
directions in section 5.



Variational Estimation of Experimental Fluid Flows 4

2. Approach

2.1. The Vorticity Transport Equation

Let u = (u1, u2)
>, u = u(x, t), x = (x1(t), x2(t))

>, denote a two-dimensional velocity field.
The Navier-Stokes equation, the governing equation for incompressible homogeneous flow
(densityρ = ρ0 = const.), reads:

∂u

∂t
+ (u · ∇)u = −∇p′ + ν∆u , (1)

∇ · u = 0 ,

whereν is the coefficient of kinematic viscosity andp′ = p/ρ0. Applying∇× to the Navier-
Stokes equation‡, we obtain

∇× ∂u

∂t
+∇× (u · ∇)u = −∇×∇p′ + ν∇×∆u . (2)

Taking into account the incompressibility constraint∇·u = 0, and by settingω = ∇×u,
it follows from elementary calculus that (2) can be rewritten as

Dω

Dt
=

∂

∂t
ω + u · ∇ω = ν∆ω , ω(x, 0) = ω0 . (3)

This equation is known as thevorticity transport equation. It describes the evolution of the
fluid’s vorticity over time. Note that in the absence of external forces acting on the fluid, this
equation describes the flow completely.

2.2. Variational Model

Let I(x1, x2, t) denote the gray value of an image sequence recorded at locationx = (x1, x2)
>

within some rectangular image domainΩ and timet ∈ [0, T ]. We adopt the basic assumption
underlying most approaches to motion estimation thatI is conserved. Thus, the total
(material) derivative ofI vanishes:

DI

Dt
= u · ∇I + It = 0 . (4)

The spatial and temporal derivatives ofI of the optical flow constraint (4) are estimated locally
by using FIR filters. As the focus of this paper is on physically consistent regularization and
not on design of the data term, we refer the interested reader to [21] for a detailed description.

As is well known, eqn. (4) alone cannot be used to reconstruct the velocity fieldu,
becauseanyvector field with componentsu · ∇I = −It at each locationx satisfies (4).
The standard approach is to minimize the squared residual of (4) over the entire image
domainΩ and to add a variational term that either enforces smoothness of the flow (first-
order regularization) [24]§∫

Ω

{
(u · ∇I + It)

2 + α|∇ · u|2 + β|∇ × u|2
}
dx , (5)

‡ Throughout this paper, we consider 2D flows only. We therefore define ∇× u = ∂u2
∂x − ∂u1

∂y .
§ It can be shown easily that the Horn&Schunck approach [9] is just the special case of this
regularization where α = β.
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or smoothness of the divergence and vorticity (second-orderregularization) [25]∫

Ω

{
(u · ∇I + It)

2 + α|∇(∇ · u)|2 + β|∇(∇× u)|2
}
dx . (6)

We emphasize that both approaches (5) and (6) take only into accountspatial context
and determine a vector field for afixedpoint in timet ∈ [0, T ].

Therefore, following the ideas of [23], our present work is an attempt to elaborate a
dynamicrepresentation of fluid flow. To this end, we solve eqn. (3) for the time interval[0, T ]

between a subsequent pair of image frames, whereω0 denotes our current vorticity estimate.
As a result, we obtain atransportedvorticity field ωT := ω(x, T ), which can be regarded as
a predictedvorticity based on the assumption that our fluid is governed by the Navier-Stokes
equation. The regularization term that we employ penalizes derivations from the predicted
vorticity values and forces incompressibility:

1

2

∫

Ω

{
(u · ∇I + It)

2 + λ(∇× u− ωT )2
}
dx , (7)

s.t. ∇ · u = 0 .

We apply Neumann boundary conditions (i.e.∂u/∂n = 0 on ∂Ω). Note that, while the
regularization term of (7) penalizes deviations between the current vorticity estimateω and
the propagated vorticity estimate of the preceding frameωT , it doesnot enforce smoothness
of the current vorticity. In practice, an implementation of (7) therefore leads to increasingly
noisy vorticity estimates. Increasing the parameterν reduces the problem only slightly:ωT

becomes smoother, but smoothness ofω is still not enforced directly.
To overcome this problem, we add a term that mimics the small viscous term (Laplacian)
on the right-hand side of eqn. (3). Expressing the new second-order regularization term
equivalently through a first-order regularizer and an additional linear constraint, we finally
obtain:

E =
1

2

∫

Ω

{
(u · ∇I + It)

2 + λ(ω − ωT )2 + κ|∇ω|2
}
dx , (8)

s.t. ∇ · u = 0 ,

∇× u = ω .

As we usually do not have a vorticity estimate at the very first frame of an image
sequence, the overall estimation process is initialized with a vorticity estimateω0 = 0.

The novel vorticity transport regularizer in (8), in connection with (3), can be perceived
as aspecial second-order div-curl regularizer: Estimated flows from a given image sequence
have vanishing divergence and a curl field (vorticity) that should be smooth and as close as
possible to the transported vorticity.
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3. Discretization and Optimization

3.1. Discretisation of the Vorticity Transport Equation

We solve the time-dependent vorticity transport equation (3) with a second-order conservative
finite difference scheme. The method is upwind and two-dimensional in that the numerical
fluxes are obtained by solving the characteristic form at cell edges (i.e. edges between adjacent
pixels), and all fluxes are evaluated and differenced at the same time. The finite difference
method that we employ is the Fromm-Van-Leer scheme [18].

The basic idea is to satisfy Godunov’s theorem in a “natural” way. Roughly speaking,
Godunov’s theorem says that all methods of accuracy greater than order one will produce
spurious oscillations in the vicinity of large gradients, while being second-order accurate
in regions where the solution is smooth. Accordingly, Fromm-Van-Leer’s scheme detects
discontinuities and adapts its behavior such that the high-order accuracy of Fromm’s scheme
is preserved for smooth parts of the solution, while spurious oscillations are avoided through
first-order accuracy at detected discontinuities. For further details, we refer to [18].

3.2. Variational Approach

For every image pair (two consecutive frames of the image sequence), we have to solve
optimization problem (8) which comprises a convex functional and two linear constraint
equations. We transform this constrained optimization problem into a saddle point problem.
Accordingly, the unique vector fieldu(x) minimizing (8), along with the vorticityω and
multipliersp, q, are determined by the variational system

a((u, ω)>, (ũ, ω̃)>) + b((p, q)>, (ũ, ω̃)>) = ((f, g)>, (ũ, ω̃)>) , ∀ũ, ω̃ (9)

b((p̃, q̃)>, (u, ω)>) = 0 , ∀p̃, q̃ .
The bilinear and linear forms read:

a((u, ω)>, (ũ, ω̃)>) :=

∫

Ω

{
u · ∇I∇I · ũ+ λωω̃ + κ∇ω · ∇ω̃

}
dx , (10)

b((p, q)>, (ũ, ω̃)>) := −
∫

Ω

{
p∇ · ũ+ q(∇× ũ− ω̃)

}
dx .

The right-hand side reads:

((f, g)>, (ũ, ω̃)>) :=

∫

Ω

{
− It∇I · ũ+ λ ωT ω̃

}
dx . (11)

We choose a regular tessellation of the image domainΩ and discretize (10) using finite
elements. It is well-known from computational fluid dynamics (cf. Stokes equation) that
standard first-order finite element discretizations of saddle point problems may result in
instabilities or even in so-called locking effects, where the zero velocity field is the only one
satisfying the incompressibility condition.

Therefore, when solving saddle point problems, mixed finite elements are traditionally
used [3]. An admissible choice is the so-called Taylor-Hood element based on a square
reference element with nine nodes (fig. 1). Each component of the velocity field is defined
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Figure 1. Sketch of 2D Taylor-Hood elements: biquadratic velocity elements (squares)
and bilinear pressure elements (circles).
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Figure 2. Left: Basis function φ of a bilinear finite element. Right: Basis function ψ

of a biquadratic finite element.

in terms of piecewise quadratic basis functionsψi located at each node (the solid squares
in fig. 1), whereas the Lagrange multipliersp andq and the vorticityω are represented by
linear basis functionsφi attached to each corner node (indicated by circles in fig. 1). It can be
shown that Taylor-Hood elements fulfill the so-called Babuska-Brezzi condition [3], making
the discretized problem well-posed.

Indexing the velocity nodes (squares in fig. 1) by1, 2, ..., N , we obtain

u1(x) =
N∑

i=1

uiψi(x) (12)

and similarly foru2(x) (whereu = (u1, u2)
>) and the components of̃u. By analogy, we

obtain for theM Lagrange multiplier nodes (circles in fig. 1)

p(x) =
M∑
i=1

piφi(x) (13)

and similarly expressions forq, ω, p̃, q̃, ω̃. Hence, each functionu, ũ is represented by2N real
variables, and each functionp, q, ω, p̃, q̃, ω̃ is represented byM real variables. For the sake of
simplicity, we will use the same symbols to denote the corresponding vectors. The discretized
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system (10) then reads

A(u, ω)> · (ũ, ω̃)> +B>(p, q)> · (ũ, ω̃)> = (f, g)> · (ũ, ω̃)> , ∀ũ, ω̃ (14)

B(u, ω)> · (p̃, q̃)> = 0 , ∀p̃, q̃ .
Because these equations have to be satisfied forarbitrary ũ, p̃, q̃, ω̃, we finally obtain:

A

(
u

ω

)
+B>

(
p

q

)
=

(
f

g

)
, (15)

B

(
u

ω

)
= 0 .

In order to numerically solve the saddle point problem (15), we want to employ the Uzawa
algorithm (cf., e.g. [2]). However, this requiresA to be positive definite which is not the case
here, because the relationsu andω definingA in (10) are mutually independent andu is only
involved through a degenerate quadratic form. This problem can be removed by

• including a penalty term related to the divergence constraint into our Lagrange multiplier
formulation to obtain an Augmented Lagrangian formulation [6], and by

• splitting the vorticity matching term into two equivalent terms, one containing∇×u and
the other one containingω.

This yields the following modification of the bilinear form (10):

ap((u, ω)>, (ũ, ω̃)>) :=

∫

Ω

{
u · ∇I∇I · ũ+

λ

2
(ωω̃ + (∇× u)(∇× ũ))

+ µ(∇ · u)(∇ · ũ) + κ∇ω · ∇ω̃
}
dx . (16)

We point out that this modification is done for numerical reasons only. It does not change
the optimization problem (8). MatrixAp resulting from the discretization of (16) is positive
definite and, becauseu andω do not explicitlydepend on each other, can be split into two
systems:

• The system containingu is the linear system with a simple first-order div-curl
regularization (cf., e.g. [24], and (5)).

• The system containingω corresponds to a simple first-order quadratic functional.

BecauseAp is invertible and well-conditioned, we solve the first equation of the system (15),
with A replaced byAp, for the unknownu(

u

ω

)
= A−1

p

[(
f

g

)
−B>

(
p

q

)]
, (17)

and insert the result into the second equation:

BA−1
p

[(
f

g

)
−B>

(
p

q

)]
= 0 . (18)

This problem only involves the adjoint variablesp, q:

(BA−1
p B>)

(
p

q

)
= BA−1

p

(
f

g

)
. (19)

The matrix(BA−1
p B>) is symmetric and positive definite. Therefore, we apply the conjugate

gradient iteration to (19). This requires a single matrix inversion in every iteration step. For
computational efficiency, this is accomplished using multi grid iteration (cf. [8]).
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3.3. Relaxing the Assumption of a Vanishing Divergence

Due to out-of-plane motion (that can hardly be totally avoided), the assumption of a vanishing
divergence will usually not hold in practice.
Let us therefore relax the assumption and minimize

E =
1

2

∫

Ω

{
(u · ∇I + It)

2 + λ(ω − ωT )2 + κ|∇ω|2 + µ|d|2
}
dx ,

s.t. ∇ · u = d , (20)

∇× u = ω ,

where the 2D divergenced (which is assumed to be small) does actually correspond to the
derivative of the out-of-plane component ofu in out-of-plane direction (i.e.d = ∂u3/∂x3).
Note that we do not change the vorticity transport equation itself – we still assume that the
2D vorticity transport equation is able to give a good approximation for the transport process.
Therefore, (20) should only be used to analyze 2D projections of incompressible fluids.

4. Experimental Evaluation

This experimental section is devided into three parts:

• Sec. 4.1 shows numerical results on ground truth fluid image sequences (2D flows)
obtained with our approach in comparison with cross-correlation and optical flow with
first-order and with higher-order regularization.

• Sec. 4.2 shows numerical results for a synthetic flow where the out-of-plane component
is not negligible (3D flow). We perform the analysis with the method introduced in sec.
3.3.

• In sec. 4.3, we finally show results for a real-world 2D image sequence.

4.1. Synthetic 2D Flows

This section shows numerical results on ground truth fluid image sequences obtained with our
approach in comparison with cross-correlation and optical flow with first-order regularization
and higher-order regularization.

The synthetic PIV image sequence that we used for testing was provided by [4]. The
underlying velocity field was computed by a so-called pseudo-spectral code that solves the
vorticity transport equation in Fourier space and evaluates a subgrid model for simulating
small-scale turbulent effects on the larger scales of the flow. These latter effects arenotknown
in practice, of course, and consequently they were ignored while evaluating our approach.

In order to simulate the intensity function of real PIV images, the computed velocity
fields are used to transport collections of (images of) particles that are typically used for the
seeding of flows so as to make them visible (cf. section 1.1). The scheme resembles the one
described in [14]. We used the first 100 frames of the synthesized PIV image sequence and
compared the following three approaches:
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Figure 3. Left: 100th frame of the synthetic image sequence with ground truth velocity
field. Right: Estimated velocity field for the 100th frame. The background intensity
shows the absolute RMS error (brighter = larger error), which is about 0.055 px. on
average (cf. fig. 4).
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Figure 4. Average absolute RMS error (in pixels) for frames 1-100, using five different
methods. Cross-correlation gives the worst results for this highly non-rigid image
pair. First-order regularization performs worse than second-order regularization, while
Optical Stokes Flow is slightly better than second-order regularization. All these
four error curves are constant because temporal coherency is not exploited. The
approach based on vorticity transport starts with a rather low accuracy (assumption
of ω = 0, which is not valid) but then becomes significantly more accurate than the
other techniques due to the physically consistent regularization over time. This novel
spatio-temporal regularization is achieved with an on-line computational scheme and
fixed storage requirements, irrespective of the length of the image sequence. The decay
of the error curve within the first 10 frames clearly displays the usage of this implicitly
encoded “memory”.
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Figure 5. Left: True vorticity of frame 100. Right: Estimated vorticity ω for frame 100.
For the first frame, the estimation process was initialized with ω = 0, corresponding to
“nothing is known in advance”. The result on the right shows that not only the vorticity
transport equation has been successfully adapted to the observed image sequence, but
that it improves the accuracy of flow estimation in terms of u, too (cf. fig. 4). As a
consequence, flow derivatives can be estimated fairly accurate, as shown in the right
panel. Such quantitative information is very important in connection with imaging-
based experimental fluid mechanics.

• Multi Pass Cross Correlation [11]:Advanced cross-correlation approach (LaVision
Davis 7.1.1.34). Initial interrogation window size32×32, final interrogation window size
8 × 8 and50% overlap manually selected for best performance. In order to interpolate
the velocity vectors to the fine grid (i.e. one vector per pixel), second order spline
interpolation is used.

• Horn&Schunck [9]: First-order regularization, temporal coherency is not exploited, no
incompressibility constraint is imposed. The smoothness parameterλ = 0.005 was
manually selected for best performance.

• 2nd Order Regularization [27]:These authors used higher-order regularization with an
additional incompressibility constraint. Instead of mixed finite elements (as we do), the
authors used the so-called mimetic finite differencing scheme. Temporal coherency is
not exploited. Parameters:λ1 = 0.5, λ2 = 0.05, manually selected for best performance.

• Optical Stokes Flow [22]: Optical flow approach that incorporates physical prior
knowledge. Admissible flow fields are restricted to vector fields satisfying the Stokes
equation. Parameters:µ = 1, α = 100, β = 100, γ = 200 manually selected for best
performance. Temporal coherency is not exploited.

• Vorticity Transport Approach (this paper): As described above, higher-order
regularization is used, the incompressibility constraint is imposed, and temporal
coherency is exploited in an on-line manner. Parametersλ = 0.005, µ = 0.005, ν = 0.1,
κ = 0.0005. As for the other approaches, we selected the regularization parameters
λ, µ, κ by hand. Note that the viscosity coefficientν is not a free user parameter but
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characterizes the physical nature of the fluid flow. Choosing a different value may affect
the accuracy of the predictor (3). Parameterλ is the only intrinsic user parameter of
our approach that weights the influence of the predictionωT in (8), whereasµ andκ are
merely constants to achieve numerical stability as explained in connection with (8) and
(16).

Figure 4 compares the errors of all five approaches over time. The multi pass cross
correlation approach’s estimate has the highest RMS error. This is due to the very high
velocity frequencies that are present in the image data and that cannot be recovered by
correlation. First-order regularization yields a higher error than second-order regularization
which is much more accurate. The quality of the estimation can further be improved by
applying Optical Stokes Flow. The errors of all these four approaches stay constant over time
because each subsequent image pair is independently evaluated and temporal coherency is
ignored.

For the first frame, the approach presented in this paper, utilizing the vorticity transport
equation, shows worse performance than the other optical flow-based algorithms. During the
subsequent period of time, however, the error of the vorticity transport approach decreases
considerably, because not only higher-order regularization is used but temporal coherency is
successfully exploited as well.

We emphasize that temporal coherency doesnot mean smoothness. Rather, the flow
exhibits high spatio-temporal gradients as turbulent fluids do. Temporal coherency relates to
a physically consistent transport mechanism interacting with flow estimation from an image
sequence. Due to the on-line computational scheme, fixed computational resources are needed
no matter how long the image sequence is. The decay of the error curve over several frames
in figure 4 shows, however, that the approach is able to memorize the history longer than just
the previous frame.

Figure 3 displays the estimated velocity for the 100th frame, along with the respective
RMS errors. The reconstructed velocity field is surprisingly exact, in view of the highly
non-rigid motion we are dealing with. Figure 5 shows that even the vorticity related to
flow derivativesis reconstructed quite well under these difficult conditions. We expect
such quantitative data to be valuable information in connection with imaging-based fluid
mechanics.

4.2. Flows with Out-of-plane Velocity Component

In order to assess our approach’s performance when it comes to tackling image sequences
with a high out-of-plane component, we analyzed the VSJ image sequence 301 [15]: It shows
a 3D jet shear flow with an out-of-plane component up to4 pixels.‖ Due to the large out-
of-plane velocity component, the assumption of a vanishing divergence does not hold in this
example. This is why we weaken the assumption of vanishing divergence as shown in section
3.3.

‖ Note that we assume that the imaginary grid in out-of-plane direction has the same resolution as the
in-plane grid.
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Figure 6. Average absolute RMS error (in pixels) for frames 1-140 of the VSJ 301
image sequence, using cross-correlation and novel optical flow technique with spatio-
temporal regularization (with modification of sec. 3.3). Both approaches have similar
accuracy.

Figure 6 compares the results of our vorticity transport approach with those of an
advanced cross-correlation approach (DaVis). For the evaluation, we chose the following
parameters:

• Multi Pass Cross Correlation: Initial interrogation window size32 × 32, final
interrogation window size16 × 16 and 50% overlap, manually selected for best
performance.

• Vorticity Transport Approach (this paper):λ = 0.005, µ = 0.005, ν = 0.1, κ = 0.005,
manually selected for best performance.

Figure 6 shows the absolute RMS error of both approaches along with the average absolute
out-of-plane motion over time. While both error curves are quite similar, the cross-correlation
approach tends to give better results at time instances when the out-of-plane velocity is rather
large (i.e. t ≈ 40 andt ≈ 125) whereas the optical flow results are better when the out-of-
plane component is rather small (i.e.t ≈ 1 andt ≈ 70).

The fact that the brightness of particles that travel out of the illuminated plane fades,
while particles gain brightness if they travel towards the illuminated plane is in contradiction
with the optical flow constraint that we use. This introduces errors in scenarios where
high out-of-plane velocities are present. We’d like to stress, however, that cross-correlation
approaches have the same problem (as they also assume brightness conservation), it just seems
to be slightly less pronounced. In sec. 5, we will shortly discuss possible improvements that
might enhance the quality of optical flow based approaches in environments with high out-of-
plane velocities.
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Figure 7. Left: Sample Real-World Passive Scalar Image (frame 80, size: 512 × 512.)
Right: Recovered Velocity Field (with color-coded vorticity) with Vorticity Transport
Approach.
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Figure 8. Iso-surface plot of the vorticity distribution over time. Blue denotes positive
vorticity (ω > 0.75) and red denotes negative vorticity (ω < −0.75).

4.3. Real-World 2D Flows

Figure 7 shows a sample image of the experimental evaluation of the spreading of a low
diffusivity dye in a 2D turbulent flow, forced at a large scale. The passive scalar is a mixture
of fluorescein and water. For more details about the experimental setup, we refer to [12].
Cross-correlation approaches are not able to extract valid velocity fields for this type of input
data (passive scalar images). Figure 7 shows, however, that our approach that uses the vorticity
transport equation is capable of extracting a very reasonable velocity distribution. Figure 8
shows the temporal evolution of individual vortices.
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5. Conclusions and Further Work

We presented an approach to fluid motion estimation that uses the vorticity transport equation
for physically consistent spatio-temporal regularization. The approach combines variational
motion estimation with higher-order regularization and motion prediction through a transport
process. For motions that conform to our assumption (i.e. fluids that are governed by the
incompressible 2D Navier-Stokes equation), a temporal regularization effect, computed in
a recursive manner, was demonstrated. In these scenarios, our approach outperforms cross
correlation approaches as well as advanced variational approaches for optical flow estimation.

In our future work we will focus on two major issues:

• Adaptive optical flow constraint:While we have adapted our regularization term to
handle large out-of-plane motions, the optical flow constraint forming the data term
in our current approach is only valid for 2D flows. In the future, we will replace the
simple optical flow constraint by a more advanced data term that is able to deal with
brightness variations that are caused by out-of-plane motion and illumination changes in
2D scenarios.

• Three-dimensional flow analysis: Imposing physical constraints is much more
straightforward in 3D (no need to handle out-of-plane motion sepearately, cf. sec. 3.3),
but poses new computational challenges as well. As there is a lot of progress regarding
capturing devices (e.g. scanning PIV or tomographic PIV), we will concentrate on full
3D flow analysis and related variational models and computational estimation schemes.
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