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Abstract. The decomposition of motion vector fields into components
of orthogonal subspaces is an important representation for both the anal-
ysis and the variational estimation of complex motions. Common finite
differencing or finite element methods, however, do not preserve the ba-
sic identities of vector analysis. Therefore, we introduce in this paper the
mimetic finite difference method for the estimation of fluid flows from
image sequences. Using this discrete setting, we represent the motion
components directly in terms of potential functions which are useful for
motion pattern analysis. Additionally, we analyze well-posedness which
has been lacking in previous work. Experimental results, including hard
physical constraints like vanishing divergence of the flow, validate the
theory.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in var-
ious application areas of image analysis like remote sensing, medical imaging,
and experimental fluid mechanics. Such flows, which cannot be represented by
a single parametric model, are typically estimated by variational approaches. In
contrast to standard approaches, however, higher-order regularization is neces-
sary in order to accurately recover important flow structures like vortices, for
example, and to incorporate physically plausible constraints, like vanishing di-
vergence of the flow.

The basis for our paper is early work on second-order regularizers constrain-
ing the gradients of the flow components divergence and curl [1–3]. This reg-
ularization approach has been elaborated in a series of papers by Mémin and
co-workers [4–6]. Moreover, the decomposition and representation of continuous
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vector fields by velocity potentials and stream functions [7] has been adopted to
derive piecewise parametric representations of relevant flow structures. Recently,
the direct estimation of this representation has been studied in [8].

Contribution. From numerical fluid dynamics, it is well known that stan-
dard discretizations, like piecewise linear finite elements, are not approriate.
Imposing the constraint of vanishing divergence, for example, may result in a
constant flow. Therefore, we introduce the mimetic finite difference method [9–
11] to the field of image sequence analysis, which uses basic integral identities of
vector analysis to derive discrete differential operators preserving these relation-
ships after discretization. Based on this exact discrete representation, we study
div-curl regularization, detect and remove a corresponding sensitivity of this
regularizer to “boundary noise”, state precise conditions for well-posedness, and
present a provably convergent iterative implementation for directly estimating
velocity potentials and stream functions by iterative subspace correction. Most
importantly, our approach makes the estimation of accurate solenoidal (non-
divergent) flows feasible. The theory is validated by numerical experiments.

2 Vector-Field Representation

2.1 Discretization and Vector Spaces

We use the mimetic finite difference method for discretization [9, 10] in order to
preserve basic relationships of continuous vector analysis. This discretization will
be applied in section 2.2 to accurately represent and decompose vector fields.
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Fig. 1. Definition of finite-dimensional spaces of scalar fields and vector fields on a
rectangular grid. Filled circles depict nodes or vertices, the other circles indicate cells.
The positions of diamonds are referred to as sides.

Figure 1 illustrates the definitions of the following finite-dimensional vector
spaces:
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HV : the space of scalar fields defined on cells,
HP : the space of scalar fields defined on vertices,
HE : the space of vector fields defined tangential to sides,
HS : the space of vector fields defined normal to sides.

Furthermore, we define the following primal discrete first-order differential op-
erators:

G : HP → HE the discrete gradient operator representing ∇,
G⊥ : HP → HS the discrete directional derivative along level curves

representing ∇⊥ in the discrete case. This operator is
specific to the 2D case considered here.

Div : HS → HV the discrete divergence operator,
Curl : HE → HV the discrete curl operator.

In order to construct the discrete second-order differential operators by combin-
ing first-order operators, dual discrete first-order differential operators

G
∗ : HV → HS , G

⊥∗
: HV → HE , Div ∗ : HE → HP , Curl ∗ : HS → HP

are defined so as to solve the incompatibilities of domains and ranges of the
primal operators defined above [10]. For example, G and Div cannot be regarded
as mutually adjoint operators like in the continuous case, whereas G, Div ∗ and
G∗, Div do.

2.2 Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal
components. These components are defined by the first-order variations of ve-
locity potentials ψ and stream functions φ, respectively [11]:

Theorem 1 (Vector Field Decomposition). For any 2D vector field u ∈
HS, the representation of u in terms of ψ, φ:

u = G
∗ψ + G

⊥φ, u∂Ω = ∂nψ, (1)

where φ∂Ω = 0, is unique up to a constant of ψ.

Here, Ω denotes the image section (grid), n the corresponding outer normal
vector, and f∂Ω the boundary values of f . Let

u = v + w , v = G
∗ψ , w = G

⊥φ

according to (1). Since the operators defined in the previous section satisfy [11]:

Div G
⊥ ≡ 0 , Curl ∗

G
∗ ≡ 0 ,

we have
Div w = 0 , Curl ∗v = 0 , (2)

and:
〈w, v〉HS

=
〈

G
∗ψ,G⊥φ

〉

HS

= 〈Curl ∗
G

∗ψ, φ〉HP
≡ 0 (3)

This shows:
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Theorem 2 (Orthogonality). The decomposition (1) is orthorgonal, that is:
〈

G
∗ψ,G⊥φ

〉

HS

= 0 , ∀u ∈ HS (4)

Let Sir express the subspace of all vectors which can be written as G∗ψ and
Ssol the subspace of vectors which can be reprented as G⊥φ. Then the previous
theorem asserts that the direct sum holds:

HS = Sir ⊕ Ssol (5)

Representation (1) is motivated by analogous decompositions of continuous
vector fields [7]. However, discretizing such vector fields with standard finite
differences or finite elements yields approximate decompositions only, which may
lead to numerical instabilities in applications. In contrast, theorem 1 provides an
exact orthogonal decomposition of the finite-dimensional space of vector fields
HS . Furthermore, as detailed below, the decomposition allows to estimate ψ, φ
directly, and in parallel, using variational optical flow approaches and subspace
correction methods (cf. section 5.1).

Alternatively, we may first estimate u and then compute ψ and φ in a sub-
sequent step by solving the Neumann and Dirichlet problems:

4Dψ = Div u , ∂nψ = u∂Ω , (6)

4Cφ = Curl ∗u , φ∂Ω = 0 , (7)

where the discrete Laplacians are defined by:

4D := Div G
∗ , 4C := Curl ∗G⊥ (8)

and the additional constraint
∑

cells ψ = 0. In the remainder of this paper,
however, we show that directly estimating ψ, φ from image sequence data is
feasible.

3 Regularization and Optimization Problems

3.1 Representation of the Data Term and Linearization

We consider pixels as cells and define accordingly I ∈ HV for a given image.
We use the conventional data term for optical flow estimation, along with

regularizers L(u) to be specified below (section 3.2):

min
u∈HS

F (u) , F (u) := ‖I(x+ u) − I(x)‖
2

HV
+ L(u) (9)

Note that this data term could be made robust against outliers by using some
robust estimators or the L1-norm [12]. In this paper, however, we focus on higher-
order regularization in connection with the representation (1).

In order to alleviate the local minima problem, we apply the standard pro-
cedure of minimizing F (u) using a sequence of linearizations of the data term:

F l(ul) :=
∥

∥G
∗I l1 · u

l + ∂tI
l
∥

∥

2

HV

+ L(ul) , (10)

where {I l1, I
l
2}l=0,1,...,m denote linear scale-space representations of a given image

pair, and ∂tI
l = I l1(x) − I l2(x+ ul+1(x)).
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3.2 Regularization

We wish to apply the following second-order regularizer (cf. the discussion of
related work in section 1):

∫

Ω

λ1|∇div u|2 + λ2|∇curlu|2dx (11)

where λ1 and λ2 are two positive constants. This term measures the variation
of the basic flow components divergence and curl, but does not penalize the
components itself. However, both standard finite differences or finite elements
discretization lead to finite-dimensional representations which do not satisfy (1),
(4). As a result, penalizing one component may affect the other component too.
Therefore, we adopt the framework sketched in section 2.1 which leads to the
following discretization of (11):

L(u) := Ldiv(u) + Lcurl(u) := λ1 ‖G
∗
Div u‖

2

HS
+ λ2 ‖GCurl ∗u‖

2

HE
, (12)

3.3 Estimation of Non-rigid Flows

Based on (12), we consider the functional:

min
u∈HS

F (u) := ‖I(x + u) − I(x)‖
2

HV
+ Ldiv(u) + Lcurl(u) (13)

Inserting the decomposition (1), we obtain the minimization problem:

min
ψ,φ

F (ψ, φ) =
∥

∥I(x+ G
∗ψ + G

⊥φ) − I(x)
∥

∥

2

HV

(14)

+ λ1 ‖G
∗4Dψ‖

2

HS
+ λ2 ‖G4Cφ‖

2

HE

subject to the linear constraints:

∑

cells

ψ = 0 , φ∂Ω = 0 (15)

Note that the first constraint fixes the free constant mentioned in theorem 1.
Furthermore, the arguments of (14) are elements of orthogonal subspaces (5),
and thus may be determined in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid
dynamics, concerns the estimation of solenoidal (divergence-free) flows. In this
case the decomposition (1) reduces to:

u = G
∗ψl + G

⊥φ := ul + G
⊥φ (16)
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where the laminar flow ul can be computed through the full flow u by solving:

4Dψl = 0 , ∂nψl = u∂Ω (17)

and ul = G∗ψl. Since Curl ∗
G∗ ≡ 0, the laminar flow ul is both divergence and

curl free. In order for (17) to be solvable, we require the compatible condition
∫

∂Ω
u∂Ωdl = 0 (cf., e.g., [13]).
Let Sdiv0 = {u ∈ HS | Div u = 0} be the linear space of vector fields with

vanishing divergence. Then the following direct sum holds:

Sdiv0 = Slam ⊕ Ssol (18)

with laminar and solenoidal flows as basic components.
In order to estimate solenoidal flows, we consider instead of (13) the func-

tional:
min

u∈Sdiv0

Fsol(u) := ‖I(x+ u) − I(x)‖
2

HV
+ Lcurl(u) (19)

which is well-defined by (18). Inserting the decomposition (16), we obtain the
minimization problem:

min
ψl,φ

Fsol(ψl, φ) =
∥

∥I(x+ G
∗ψl + G

⊥φ) − I(x)
∥

∥

2

HV

+ λ ‖G4Cφ‖
2

HE
(20)

subject to the constraints:

4Dψl = 0 ,
∑

cells

ψl = 0 , φ∂Ω = 0 (21)

Note that the arguments of (20) are elements of orthogonal subspaces (18), and
thus may be determined in parallel by subspace correction methods.

4 Well-Posedness and Stability

4.1 Well-Posedness

We state the conditions under which the functionals (13) and (19) with linearized
data terms (cf. (10)) are strictly convex. To this end, we consider the spaces:

Sd = {u ∈ HS | Div u = C , Curl ∗u = 0 , C ∈ R arbitrary}

Sc = {u ∈ HS | Div u = 0 , Curl ∗u = C , C ∈ R arbitrary}

Sdc = {u ∈ HS | u = u1 + u2 , u1 ∈ Sd , u2 ∈ Sc}

Sg = {u ∈ HS | G
∗I1 · u = 0}

As we work with finite-dimensional vector fields, the following two assertions are
obvious: problem

min
u∈HS

F (u) := ‖G
∗I1 · u+ ∂tI‖

2

HV
+ λ1 ‖G

∗
Div u‖

2

HS
+ λ2 ‖GCurl ∗u‖

2

HE
(22)

is strictly convex iff the subspaces Sg and Sdc trivially intersect, that is there is
no vector 0 6= u ∈ Sdc which is perpendicular to G∗I1. Similarly, problem

min
u∈Sdiv0

Fsol(u) := ‖G
∗I1 · u+ ∂tI‖

2

HV
+ λ ‖GCurl ∗u‖

2

HE
(23)

is strictly convex iff Sg and Sc trivially intersect.
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4.2 Stability

It is well-known that existence of a unique solution, as established in the previous
section, does not say much about numerical stability. Indeed, inspection of the
second-order regularizer (11) reveals a particular sensivity of u with respect to
the image data, and suggests using a corresponding regularizer.

To motivate this additional term, we consider the following representation of
vector fields u in terms of functions ρ, ω and boundary data v:

div u = ρ , curlu = ω , u∂Ω = v

Provided the compatibility condition:

∫

Ω

ρ dx =

∫

∂Ω

v dl (24)

holds, u is uniquely defined, both in the continuous case [13] and in the discrete
case, using the discretization of section 2.1.

It is clear that the regularizer (11) only constrains ρ and ω, but not v which
is weakly constrained only through the data terms of the functionals considered
above. Therefore, in practice, it turned out to be useful to reduce this sensivity
of u by including a regularizer which weakly constraints the boundary values:

∫

∂Ω

(∂nu)
2 dl. (25)

By virtue of the orthogonal decomposition, this constraint can be expressed in
terms of ψ.

5 Experiments and Discussion

5.1 Implementation Details

Minimization of the functionals (14) and (20), respectively, with linearized data
terms (see (10)) can be done by alternating partial minimizations with respect
to ψ, φ and subsequent subspace corrections. The proof of convergence and
further details are given in [14, 15]. In the case of solenoidal flows, the first
linear constraint in (21) is incorporated by using the Augmented Lagrangian
Method [16]. The remaining two constraints can be taken into account by directly
modifying the two linear systems involved.

5.2 Experiment Results

Error measures. In pactice, evaluating non-rigid flows by computing the av-
erage angular and norm error, respectively, induced by the inner product of the
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space (L2(Ω))2 = L2(Ω) × L2(Ω) [17] appeared to us too insensitive to the im-
portant flow structures. Therefore, we suggest error measures that also take into
account divergence and curl of flow structures:

enorm =
〈w,w〉DC

N
; eang. = arccos

〈u, v〉DC + 1
√

〈u, u〉DC + 1
√

〈v, v〉DC + 1
. (26)

where we adopt the average angular and norm error measures but use the inner
products of the space H(div;Ω) ∩H(curl;Ω) (see, e.g., [7]):

〈u, v〉DC = 〈u, v〉HS
+ 〈Div u,Div v〉HV

+ 〈Curl ∗u,Curl ∗v〉HP
. (27)

Ground truth experiments. Figure 2 shows a real image which was warped
by the flow shown on the right. The corresponding errors for the approach (20)
enorm = 6.1 ∗ 10−3, eang. = 6.51◦ are smaller than the approach with Horn-
Schunck regularization, for which enorm = 2.95 ∗ 10−2, eang. = 13.52◦. Note,
that these error measures include flow derivatives as opposed to common mea-
sures used in the literature.

Fig. 2. Left: Synthetic image and solenoidal velocity field. Middle: Divergence error
using Horn-Schunck regularization. Right: Divergence error using our approach.

Estimating solenoidal flows. Figure 3 shows the result of estimating the
solenoidal flow for a real image sequence. The comparison with first-order reg-
ularization (Horn-Schunck approach) in Figure 4 cleary reveals the superiority
of our approach regarding the reconstruction of vortex structures. Furthermore,
the (in this case) physically plausible constraint of vanishing divergence is satis-
fied quite accurately.

Estimating general non-rigid flows. Figures 5 and 6 show general non-
rigid flow estimated for two different real image sequences. As in the solenoidal
case, the potential functions provide a useful representation of qualitative prop-
erties of the flow.
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Fig. 3. Top Left The first image I1with the restored solenoidal flow. Top Right The
divergence field of the flow which is less than 3 ∗ 10−12. Middle Left The potential
field ψl(Ω) related to the laminar flow. Middle Right The potential field φ(Ω). Bot-

tom Left The first component of flow: the laminar flow ulam. Bottom Right The
second component of flow related to potential φ(Ω). The comparison with standard
regularization is depicted in Figure 4.

6 Conclusion and Future Works

We presented a high-quality discrete representation of flow estimation schemes
for non-rigid flows. Our further work will focus on the extension to 3D image
sequences.
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Fig. 4. Top The restored solenoidal flow u(Ω). Bottom The restored flow uhs(Ω) using
the Horn-Schunck regularization. This results clearly show that vortex structures are
better recovered by our approach. Furthermore, the magnitude of the divergence is
below 10−11 throughout the image plane.

References

1. L. Amodei and M. N. Benbourhim. A vector spline approximation. J. Approx.

Theory, 67(1):51–79, 1991.
2. D. Suter. Motion estimation and vector splines. In Proceedings of the Conference

on Computer Vision and Pattern Recognition, pages 939–942, Los Alamitos, CA,
USA, June 1994. IEEE Computer Society Press.

3. S. Gupta and J. Prince. Stochastic models for div-curl optical flow methods. Signal

Proc. Letters, 3(2):32–34, 1996.
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