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ABSTRACT. We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows
for image labeling. An exact formula is derived for the parameter gradient of any loss function that is constrained
by the linear system of ODEs determining the linearized assignment flow. We show how to efficiently evaluate
this formula using a Krylov subspace and a low-rank approximation. This enables us to perform parameter
learning by Riemannian gradient descent in the parameter space, without the need to backpropagate errors or
to solve an adjoint equation, in less than 10 seconds for a 512 × 512 image using just about 0.5 GB memory.
Experiments demonstrate that our method performs as good as highly-tuned machine learning software using
automatic differentiation. Unlike methods employing automatic differentiation, our approach yields a low-
dimensional representation of internal parameters and their dynamics which helps to understand how networks
work and perform that realize assignment flows and generalizations thereof.
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1. INTRODUCTION

1.1. Overview, Motivation. Learning the parameters of large neural networks from training data consti-
tutes a basic problem in imaging science, machine learning and other fields. The prevailing approach utilizes
gradient descent or approximations thereof based on automatic differentiation [BPRS18] and corresponding
software tools, like PyTorch [PGM+19] and TensorFlow[AAB+16]. This kind of software support has been
spurring research in imaging science and machine learning dramatically. However, merely relying on numer-
ical schemes and their automatic differentiation tends to thwart attempts to shed light on the often-criticized
black-box behavior of deep networks and to better understand the internal representation and function of
parameters and their adaptive dynamics.

In this paper, we explore a different route. Adopting the linearized assignment flow approach introduced
by [ZSPS20], we focus on a corresponding large system of linear ODEs of the form

V̇ = A(Ω)V +B, (1.1)

and study a geometric approach to learning the regularization parameters Ω by Riemannian gradient descent
of a loss function

Ω 7→ L(V (T ; Ω)) (1.2)

constrained by the dynamical system (1.1). Here, the matrix V ∈ R|I|×c represents a tangent vector of the
so-called assignment manifold, |I| is the number of nodes i ∈ I of the underlying graph, and c is the number
of labels (classes) that have to be assigned to data observed at nodes i ∈ I . Specifically,

• we derive a formula for the Euclidean parameter gradient ∂ΩL(V (T ; Ω)) in closed form;
• we show that a low-rank representation of this gradient can be used to efficiently and accurately ap-

proximate evaluate this closed form gradient; neither backpropagation, nor automatic differentiation
or solving adjoint equations are required;
• we highlight that the resulting parameter estimation algorithm can be implemented without any

specialized software support with modest computational resources;
• we demonstrate that optimal parameters for a 512×512 image can be learned in less than 10 seconds

with a memory requirement that does not exceed ≈ 0.5 GB.

The significance of our work reported in this paper arises in a broader context. The linearized assignment
flow approach also comprises the equation

W (T ) = Exp1W (V (T )) (1.3)

that yields the labeling in terms of almost integral assignment vectors Wi ∈ Rc+, i ∈ I that form the rows
of the matrix W , depending on the solution V (t) of (1.1) for a sufficiently large time t = T . Both equations
(1.3) and (1.1) together constitute a linearization of the full nonlinear assignment flow [ÅPSS17]

Ẇ = RWS(W ) (1.4)

at the barycenter 1W of the assignment manifold. Choosing an arbitrary sequence of time intervals (step
sizes) h1, h2, . . . and setting

W (0) = 1W , B = Π0S(W (0)), W (k) = W (hk), k ∈ N, (1.5)

a sequence of linearized assignment flows

W (k+1) = Exp1W (V (k)), (1.6a)

V (k+1) = V (k) + V
(
hk; Ω(k),W (k)

)
, k = 0, 1, 2, . . . (1.6b)
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can be computed in order to approximate (1.4) more closely, where V
(
hk; Ω,W (k)

)
solves the corresponding

updated ODE (1.1) of the form

V̇ = A(Ω(k);W (k))V + Π0S(W (k)). (1.6c)

The time-discrete equations (1.6) reveal two basic ingredients of deep networks (or neural ODEs) which the
full assignment flow (1.4) embodies in a continuous-time manner: coupling a pointwise nonlinearity (1.6a)
and diffusion (1.6b),(1.6c) enhances the expressivity of network models for data analysis.

The key point motivating the work reported in this paper is that our results apply to learning the parameters
Ωk in each step of the iterative scheme (1.6). We expect that the gradient, and its low-dimensional subspace
representations, will help the further study of how each ingredient of (1.6) impacts the predictive power of
assignment flows. Furthermore, ‘deep’ extensions of (1.4) and (1.6) are equally feasible within the same
mathematical framework (cf. Section 5).

1.2. Related Work. Assignment flows were introduced by [ÅPSS17]. For a survey of prior and recent
related work, we refer to [Sch20]. Linearized assignment flows were introduced by [ZSPS20] as part of a
comprehensive study of numerical schemes for the geometric integration of the assignment flow equation
(1.4).

While the bulk of these schemes rely on established theory and algorithms for the numerical integration
of ODEs that evolve in a Euclidean space [HNW08], due to the observation that addition in the tangent
space in connection with the exponential map constitutes a Lie group action on the assignment manifold
(cf. [IMKNZ00]), a representation of the solution to the linear ODE (1.1) in closed form is given by the
Duhamel (or variation-of-constants) formula [Tes12]. Corresponding extensions to nonlinear ODEs rely on
exponential integration [HOS09, HO10]. The scheme (1.6) combines a corresponding iterative scheme and
the tangent-space based parametrization (1.3) of the linearized assignment flow.

A key computational step of the latter class of methods requires to evaluate an analytical matrix-valued
function, like the matrix exponential and similar functions [Hig08, Section 10]. While basic methods
[MVL03] only work for problem of small and medium size, dedicated methods using Krylov subspaces
[HL97, AMH11] and established numerical linear algebra [Saa92, Saa03] can be applied to larger problems.
The algorithm that results from our approach employs such methods.

Machine learning requires to compute gradients of loss functions that take solutions of ODEs as argument.
This defines an enormous computational task and explains why automatic differentiation and corresponding
software tools are almost exclusively applied. Alternative dedicated recent methods like [KKRS21] have to
focus on a special problem structure, viz. the action of the differential of the matrix exponential on a rank-
one matrix. Our closed-form formula for the parameter gradient also involves the differential of a matrix
exponential. Yet, we wish to evaluate the gradient itself rather than its action on another matrix. The special
problem structure that we can exploit is the Kronecker sum of matrices. Accordingly, our approach is based
on the recent corresponding work [BS17] and an additional subsequent low-rank approximation.

1.3. Contribution, Organization. We derive a closed-form expression of the gradient of any C1 loss func-
tion of the form (1.2) that depends on the solution V (t) of the linear system of ODEs (1.1) at some arbitrary
but fixed time t = T . In addition, we develop a numerical method that enables to evaluate the gradient effi-
ciently for the common large sizes of image labeling problems. We apply the method to optimal parameter
estimation by Riemannian gradient descent and validate our approach by a series of proof-of-concept ex-
periments. This includes a comparison with automatic differentiation applied to two numerical schemes for
integrating the linearizes assignment flow: geometric explicit Euler and exponential integration. It turns out
that our method is as accurate and efficient as the highly optimized automatic differentiation software. We
point out that to our knowledge, automatic differentiation has not been applied to exponential integration, so
far.
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This paper elaborates the conference version [ZPS21] in that all parameter dependencies of the loss func-
tion, constrained by the linearized assignment flow, are taken into account (cf. diagram (3.16)), and a com-
plete proof of the corresponding main result (Theorem 3.8) is provided. The space complexity of various
gradient approximations are specified in a series of Remarks. The approach is validated numerically and
more comprehensively by comparing to automatic differentiation and by examining the influence of all pa-
rameters.

The plan for this paper is as follows. Section 2 summarizes the assignment flow approach, the linearized
assignment flow and exponential integration for integrating the latter flow. Section 3 details the derivation
of the exact gradient of any loss function of the flow with respect to the weight parameters that regularize
the flow. Furthermore, a low-rank approximation of the gradient is developed for evaluating the gradient
efficiently. We also sketch how automatic derivation is applied to two numerical schemes in order to solve
the parameter estimation problem in alternative ways. Numerical experiments are reported in Section 4 for
comparing the methods and for inspecting quantitatively the gradient approximation and properties of the
estimated parameter patches. We conclude in Section 5 and point out further directions of research.

2. PRELIMINARIES

2.1. Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N. The cardinality of a finite set S is denoted by
S, e.g. |[n]| = n. Rn+ denotes the positive orthant and Rn> its interior. 1 = (1, 1, . . . , 1)> has dimension
depending on the context that we specify sometimes by a subscript, e.g. 1n ∈ Rn. Similarly, we set 0n =
(0, 0, . . . , 0)> ∈ Rn. {ei : i ∈ [n]} is the canonical basis of Rn and In = (e1, . . . , en) ∈ Rn×n the identity
matrix.

The support of a vector x ∈ Rn is denoted by supp(x) = {i ∈ [n] : xi 6= 0}. ∆n = {p ∈ Rn+ : 〈1n, p〉 =
1} is the probability simplex whose points represent discrete distributions on [n]. Distributions with full
support [n] form the relative interior ∆̊n = ∆n ∩ Rn>. 〈·, ·〉 is the Euclidean inner product of vectors and
matrices. In the latter case, this reads 〈A,B〉 = tr(A>B) with the trace tr(A) =

∑
iAii. The induced

Frobenius norm is denoted by ‖A‖ =
√
〈A,A, 〉, and other matrix norms like the spectral norm ‖A‖2 are

indicated by subscripts. The mapping Diag : Rn → Rn×n sends a vector x to the diagonal matrix Diag(x)
with entries x. A⊗B denotes the Kronecker product of matrices A and B [VL00] and⊕ the Kronecker sum

A⊕B = A⊕ In + Im ⊕B ∈ Rmn×mn, A ∈ Rm×m, B ∈ Rn×n. (2.1)

We have
(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.2)

for matrices of compatible dimensions. The operator vecr turns a matrix into the vector by stacking the row
vectors. It satisfies

vecr(ABC) = (A⊗ C>) vecr(B). (2.3)

The Kronecker product v ⊗ w ∈ Rmn of two vectors v ∈ Rm and w ∈ Rn is defined by viewing the vectors
as matrices with only one column and applying the definition of Kronecker products for matrices. We have

v ⊗ w = vecr(vw
>). (2.4)

The matrix exponential of a square matrix A is given by [Hig08, Ch. 10]

expm(A) =
∑
k≥0

Ak

k!
. (2.5)

L(E1, E2) denotes the space of all linear bounded mappings from E1 to E2.
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2.2. Assignment Flow. Let G = (I, E) be a given undirected graph with vertices i ∈ I indexing data

FI = {fi : i ∈ I} ⊂ F (2.6)

given in a metric space (F , d). The edge set E specifies neighborhoods

Ni = {k ∈ I : ik = ki ∈ E} ∪ {i}, i ∈ I. (2.7)

Along with FI , prototypical data (labels) LJ = {lj ∈ F : j ∈ J} are given that represent classes j =
1, . . . , |J |. Supervised image labeling denotes the task to assign precisely one prototype lj to each datum
fi at every vertex i in a coherent way, depending on the label assignments in the neighborhoods Ni. These
assignments at i are represented by probability vectors

Wi ∈ S := (∆̊|J |, gFR), i ∈ I (2.8)

on ∆̊|J | that becomes a Riemannian manifold denoted by S when endowed with the Fisher-Rao metric gFR.
Collecting all assignment vectors as rows defines the strictly positive row-stochastic assignment matrix

W = (W1, . . . ,W|I|)
> ∈ W = S × · · · × S ⊂ R|I|×|J |, (2.9)

that we regard as point on the product assignment manifoldW . Image labeling is accomplished by geomet-
rically integrating the assignment flow W (t) solving

Ẇ = RW
(
S(W )

)
, W (0) = 1W :=

1

|J |
1|I|1

>
|J | (barycenter), (2.10)

that provably converges towards a binary matrix [ZZS20], i.e., limt→∞Wi(t) = ej(i), for every i ∈ I and
some j(i) ∈ J , which yields the label assignment lj(i) → fi. In practice, geometric integration is terminated
when W (t) is ε-close to an integral point using the entropy criterion from [ÅPSS17], followed by trivial
rounding [ZZS20].

We specify the right-hand side of (2.10) — see (2.15) and (2.18) below — and refer to [ÅPSS17, Sch20]
for more details and the background. With the tangent space

T0 = TpS = {v ∈ R|J | : 〈1, v〉 = 0}, ∀p ∈ S, (2.11)

that does not depend on the base point p ∈ S, we define

Π0 : R|J | → T0, z 7→ I|J | −
1

|J |
1|J |1

>
|J |, (2.12a)

Rp : R|J | → T0, z 7→ Rp(z) =
(

Diag(p)− pp>
)
z, (2.12b)

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
e
v
p

〈p, e
v
p 〉
p, (2.12c)

Exp−1 : S × S → T0, (p, q) 7→ Exp−1
p (q) = Rp log

q

p
, (2.12d)

exp: S × R|J | → S, (p, z) 7→ expp(z) = Expp ◦Rp(z) =
pez

〈p, ez〉
, (2.12e)

where multiplication, division, exponentiation e(·) and log(·) apply component-wise to the vectors. Corre-
sponding maps

RW , ExpW , expW (2.13)
in connection with the product manifold (2.9) are defined analogously, and likewise the tangent space

T0 = T0 × · · · × T0 = TWW, ∀W ∈ W (2.14)

and the extension of the orthogonal projection (2.12a) onto T0, again denoted by Π0.
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For example, regarding (2.10), with W ∈ W and S(W ) ∈ W (or more generally S ∈ R|I|×|J |), we have

RWS(W ) =
(
RW1S1(W ), . . . , RW|I|S|I|(W )

)>
= vec−1

r

(
Diag(RW ) vecr

(
S(W )

))
(2.15a)

with

Diag(RW ) :=


RW1 0 · · · 0

0 RW2

...
...

. . . 0
0 · · · RW|I|

 . (2.15b)

Given data FI are taken into account as distance vectors

Di =
(
d(fi, l1), . . . , d(fi, l|J |)

)>
, i ∈ I (2.16)

and mapped toW by

L(W ) = expW (−1
ρD) ∈ W, Li(Wi) = expWi

(−1
ρDi) =

Wie
− 1
ρ
Di

〈Wi, e
− 1
ρ
Di〉

, (2.17)

where ρ > 0 is a user parameter for normalizing the scale of the data. These likelihood vectors represent
data terms in conventional variational approaches: Each individual flow Ẇi = RWiLi(Wi), Wi(0) = 1S
converges to ej(i) with j(i) = arg minj∈J Dij and in this sense maximizes the local data likelihoods.

The vector field defining the assignment flow (2.10) arises through coupling flows for individual pixels
through geometric averaging within the neighborhoods Ni, i ∈ I , conforming to the underlying Fisher-Rao
geometry

S(W ) =


...

Si(W )>

...

 = GΩ
(
L(W )

)
∈ W, (2.18a)

Si(W ) = GΩ
i

(
L(W )

)
= ExpWi

( ∑
k∈Ni

ωik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I. (2.18b)

The similarity vectors Si(W ) are parametrized by strictly positive weight patches (ωik)k∈Ni , centered at
i ∈ I and indexed by local neighborhoods Ni ⊂ I , that in turn define the weight parameter matrix

Ω = (Ωi)i∈I ∈ R|I|×|I|+ , Ωi|Ni = (ωik)k∈Ni ∈ ∆̊|Ni|,
∑
k∈Ni

ωik = 1, ∀i ∈ I (2.19)

that comprises all regularization parameters satisfying the latter linear constraints. Flattening these weight
patches defines row vectors Ωi|Ni , i ∈ I and, by complementing with 0, entries of the sparse row vectors Ωi

of the matrix Ω. Note that the positivity assumption ωik > 0 is reflected by the membership Ωi|Ni ∈ ∆̊|Ni|.
Throughout this paper, we assume equal neighborhoods

|N | := |Ni|, ∀i ∈ I (2.20)

and therefore simply write Ωi|N = Ωi|Ni .
Estimating these parameters from data using the linearized assignment flow, to be introduced next, is the

subject of this paper.
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2.3. Linearized Assignment Flow. The linearized assignment flow, introduced by [ZSPS20], approxi-
mates (2.10) by

Ẇ = RW

(
S(W0) + dSW0RW0 log

W

W0

)
, W (0) = W0 ∈ W (2.21)

around any point W0. In what follows, we only consider the barycenter

W0 = 1W (2.22)

which is the initial point of (2.10). The differential equation (2.21) is still nonlinear but can be parametrized
by a linear ODE on the tangent space

W (t) = ExpW0

(
V (t)

)
, (2.23a)

V̇ = RW0

(
S(W0) + dSW0V

)
=: BW0 +A(Ω)V, V (0) = 0, (2.23b)

where matrixA(Ω) linearly depends on the parameters Ω of (2.18) and whose action on V is explicitly given
by [ZSPS20, Prop. 4.4]

A(Ω)V = RW0dSW0V = RS(W0)ΩV
(2.15)
= vec−1

r

(
Diag(RS(W0)) vecr(ΩV )

)
(2.24a)

=

(
RS1(W0)

∑
k∈N1

ω1kVk, . . . , RS|I|(W0)

∑
k∈N|I|

ω|I|kVk

)>
, (2.24b)

where Diag(RS(W0)) is defined by (2.15b) and we took into account (2.22). The linear ODE (2.23b) admits a
closed-form solution which in turn enables a different numerical approach (Section 2.4) and a novel approach
to parameter learning (Section 3).

2.4. Exponential Integration. The solution to (2.23b) is given by a high-dimensional integral (Duhamel’s
formula) whose value in closed form is given by

V (t; Ω) = tϕ
(
tA(Ω)

)
BW0 , ϕ(x) =

ex − 1

x
=

∞∑
k=0

xk

(k + 1)!
, (2.25)

where the entire function ϕ is extended to matrix arguments in the standard way [Hig08]. As the matrix
A is already very large even for medium-sized images, however, it is not feasible in practice to compute
ϕ(tA). Exponential integration [HL97, NW12], therefore, was used by [ZSPS20] for approximately evalu-
ating (2.25), as sketched next.

Applying the row-stacking operator (2.3) to both sides of (2.23b) and (2.25), respectively, yields with

v = vecr(V ) (2.26)

the ODE (2.23b) in the form

v̇ = b+AJ(Ω)v, v(0) = 0, b = b(Ω) = vecr(BW0) ∈ Rn, (2.27a)

AJ(Ω) =
(
AJik(Ω)

)
i,k∈I ∈ Rn×n, AJik(Ω) =

{
ωikRSi(W0), k ∈ Ni,
0, k 6∈ Ni.

(2.27b)

v(t; Ω) = tϕ
(
tAJ(Ω)

)
b, n := dim v(t; Ω) = |I||J |, (2.27c)

where AJ(Ω) results from

vecr
(
A(Ω)V

) (2.24)
= Diag(RS(W0)) vecr(ΩV ) = Diag(RS(W0))(Ω⊗ I|J |)v (2.28a)

= AJ(Ω)v. (2.28b)
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Using the Arnoldi iteration [Saa03] with initial vector q1 = b/‖b‖, an orthonormal basisQm = (q1, . . . , qm) ∈
Rn×m of the Krylov space Km(AJ , b) of dimension m is determined. As will be validated in Section 4,
choosing m ≤ 10 yields sufficiently accurate approximations of the actions of the matrix exponential expm
and the ϕ operator on a vector, respectively, that are given by

expm
(
tAJ(Ω)

)
b ≈ ‖b‖Qm expm(tHm)e1, Hm = Q>mA

J(Ω)Qm, (2.29a)

tϕ
(
tAJ(Ω)

)
b ≈ t‖b‖Qmϕ(tHm)e1. (2.29b)

The expression ϕ(tHm)e1 results from computing the left-hand side of the relation [Hig08, Section 10.7.4]

expm

(
tHm e1

0 0

)
=

(
expm(tHm) ϕ(tHm)e1

0 1

)
(2.30)

and extracting the upper-right vector. Since Hm is a small matrix, any standard method [MVL03] can be
used for computing the matrix exponential on the left-hand side.

3. PARAMETER ESTIMATION

Section 3.1 details our approach for learning optimal weight parameters for a given image and ground
truth labeling: Riemannian gradient descent is performed with respect to a loss function that depends on the
solution of the linearized assignment flow. A closed form expression of this gradient is derived in Section 3.2
along with a low-rank approximation in Section 3.3 that can be computed efficiently. As an alternative and
baseline, we outline in Section 3.4 two gradient approximations based on numerical schemes for integrating
the linearized assignment flow and automatic differentiation.

3.1. Learning Procedure. Let

PΩ = {Ω ∈ R|I|×|I|+ : Ω satisfies (2.19)} (3.1)

denote the space of weight parameter matrices that parametrize the similarity mapping (2.18). Due to (2.19)
and (2.20), the restrictions Ωi|N are strictly positive probability vectors, as are the assignment vectors Wi

defined by (2.8). Therefore, similar to Wi ∈ S, we consider each Ωi|N as point on a corresponding manifold
(∆|N |, gFR) equipped with the Fisher-Rao metric and — in this sense — regard PΩ in (3.1) as corresponding
product manifold.

Let W ∗ ∈ W denote the ground truth labeling for a given image, and let V ∗ ∈ T0 be a tangent vector
such that

lim
s→∞

Exp1W (sV ∗) = W ∗. (3.2)

Our objective is to determine Ω such that, for some specified time T > 0, the vector

VT (Ω) := V (T ; Ω), (3.3)

given by (2.25) and corresponding to the linearized assignment flow, approximates the direction of V ∗ and
hence

lim
s→∞

Exp1W

(
sVT (Ω)

)
= W ∗. (3.4)

A suitable distance function that is sensitive to the direction of these vectors, but not to their size, is given by

fL : T0 → R, V 7→ 1− 〈V
∗, V 〉

‖V ∗‖‖V ‖
. (3.5)

In addition, we consider a regularizer

R : PΩ → R, Ω 7→ τ

2

∑
i∈I
‖ti(Ω)‖2, ti(Ω) = exp−1

1Ω
(Ωi|N ), τ > 0 (3.6)
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and define the loss function

L : PΩ → R, L(Ω) = fL
(
VT (Ω)

)
+R(Ω), (3.7)

with VT (Ω) from (3.3). Ω is determined by the Riemannian gradient descent sequence

Ω(k+1) = expΩ(k)

(
− h∇L(Ω(k))

)
, k ≥ 0, Ω

(0)
i |N = 1|N |, i ∈ I (3.8)

with step size h > 0. Here
∇L(Ω) = RΩ∂L(Ω) (3.9)

is the Riemannian gradient with respect to the Fisher-Rao metric. RΩ is given by (2.13) and (2.12b) and
effectively applies to the restrictions Ωi|N of the row vectors with all remaining components equal to 0.
It remains to compute the Euclidean gradient ∂L(Ω) of the loss function 3.7 which is presented in the
subsequent Section 3.2.

3.2. Loss Function Gradient. We derive in Section 3.2.2 a closed form expression for the loss function gra-
dient (Theorem 3.8), after introducing some basic calculus rules for representing and computing differentials
of matrix-valued mappings in Section 3.2.1.

3.2.1. Matrix Differentials. Let F : Rm1×m2 → Rn1×n2 be a smooth mapping. Using the canonical identifi-
cation TE ∼= E of the tangent spaces of any Euclidean space E with E itself, we both represent and compute
the differential

dF : Rm1×m2 → L(Rm1×m2 ,Rn1×n2) (3.10)
in terms of a vector-valued mapping f , which is defined by F according to the diagram

Rm1×m2 Rn1×n2

L(Rm1×m2 , Rn1×n2 )
∼= Rn1n2×m1m2

Rm1m2 Rn1n2

F

f

vecr vecr

dF

df

(3.11)

Specifically, based on the equation

vecr
(
F (X)

)
= f

(
vecr(X)

)
, ∀X ∈ Rm1×m2 , (3.12)

we set
vecr

(
dF (X)Y ) = df

(
vecr(X)

)
vecr(Y ), ∀X,Y ∈ Rm1×m2 (3.13)

and hence define and compute the differential (3.10) as matrix-valued mapping

dF := df ◦ vecr . (3.14)

The corresponding linear actions on Y ∈ Rm1×m2 and vecr(Y ) ∈ Rm1m2 , respectively, are given by (3.13).
We state an auxiliary result required in the next subsection, which also provides a first concrete instance of
the general relation (3.13).

Lemma 3.1 (differential of the matrix exponential). If F = expm: Rn×n → Rn×n, then (3.13) reads

vecr
(
d expm(X)Y

)
=
(

expm(X)⊗ In
)
ϕ(−X ⊕X>) vecr(Y ), Y ∈ Rn×n, (3.15)

with ϕ given by (2.25).

Proof. The result follows from [Hig08, Thm. 10.13] where columnwise vectorization is used, after rearrang-
ing so as to conform to the row-stacking mapping vecr used in this paper. �
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3.2.2. Closed-Form Gradient Expression. We separate the computation of L(Ω) and the gradient ∂L(Ω)
into several operations as illustrated by the following diagram that refers to quantities in (2.27) and (2.28)
related to the linearized assignment flow, after vectorization.

Ω S(W0) = exp1W

(
−1
ρΩD

)
b(Ω) = vecr(RW0S(W0))

AJ(Ω) = Diag(RS(W0))(Ω⊗ I|J |) vT (Ω) = Tϕ
(
TAJ(Ω)

)
b(Ω)

R(Ω) L(Ω) = fL(vT (Ω)) +R(Ω)

(1) (2)

(3) (4)

(4)

(5)

(3.16)

In what follows, we traverse this diagram from top-left to bottom-right and collect each partial result by a
corresponding lemma or proposition. Theorem 3.8 assembles all results and provides a closed form expres-
sion of the loss function gradient ∂L(Ω). To enhance readability, the proofs of most Lemmata are listed in
Appendix A.1.

We focus on mapping (1) in diagram (3.16).

Lemma 3.2. The differential of the function

f1 : R|I|×|I| → R|I|×|J |, Ω 7→ f1(Ω) := S(W0) = exp1W

(
− 1

ρ
ΩD
)
, D ∈ R|I|×|J | (3.17)

and its transpose are given by

df1(Ω)Y = −1

ρ
Rf1(Ω)(Y D), ∀Y ∈ R|I|×|I|, (3.18a)

df1(Ω)>Z = −1

ρ
Rf1(Ω)(Z)D>, ∀Z ∈ R|I|×|J |, (3.18b)

with Rf1(Ω) defined by (2.15).

Proof: see Appendix A.1.

We consider mapping (2) of diagram (3.16), taking into account mapping (1) and notation (3.17).

Lemma 3.3. The differential of the function

f2 : R|I|×|I| → R|I|
2
, Ω 7→ f2(Ω) := b(Ω) = vecr

(
RW0f1(Ω)

)
(3.19)

and its transpose are given by

df2(Ω)Y = vecr
(
RW0df1(Ω)Y

)
, ∀Y ∈ R|I|×|I| (3.20a)

df2(Ω)>Z = df1(Ω)>(RW0Z), ∀Z ∈ R|I|×|I|. (3.20b)

Proof: see Appendix A.1.

We note that df2(Ω)> should act on a vector vecr(Z) ∈ R|I|
2
. We prefer the more compact and equivalent

non-vectorized expression (3.20b).
We turn to mapping (3) of diagram (3.16) and use (3.16).

Lemma 3.4. The differential of the mapping

f3 : R|I|×|I| → Rn×n, Ω 7→ f3(Ω) := AJ(Ω) = Diag(Rf1(Ω))(Ω⊗ I|J |), n = |I||J | (3.21)
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is given by

df3(Ω)Y = Diag(dRf1(Ω)Y )(Ω⊗ I|J |) + Diag(Rf1(Ω))(Y ⊗ I|J |), ∀Y ∈ R|I|×|I|. (3.22a)

Here, Diag(dRf1(Ω)Y ) ∈ Rn×n is defined by (2.15b) and |I| block matrices of size |J |× |J | on the diagonal
of the form

dRf1i(Ω)Y = Diag
(
df1i(Ω)Y

)
−
(
df1i(Ω)Y

)
f1i(Ω)> − f1i(Ω)

(
df1i(Ω)Y

)>
, i ∈ I, (3.22b)

where df1i(Ω)Y is given by

(dRf1i(Ω)Y )Si =
(
(dRf1(Ω)Y )S

)
i
, i ∈ I (3.22c)

for any S = (. . . , Si, . . . )
> ∈ R|I|×|J | and by (3.18a).

Proof: see Appendix A.1.

We focus on the differential of the vector-valued mapping vT (Ω) ∈ Rn of (3.16) with n given by (2.27c).
We utilize the fact that analogous to (2.30), the vector

vT (Ω) = Tϕ(TAJ(Ω))b(Ω) = (In, 0n) expm
(
A(Ω)

)
en+1 (3.23a)

can be extracted from the last column of the matrix

expm
(
A(Ω)

)
=

(
expm

(
TAJ(Ω)

)
vT (Ω)

0>n 1

)
, A(Ω) =

(
TAJ(Ω) Tb(Ω)

0>n 0

)
. (3.23b)

By means of relation (3.12), we associate a vector-valued function fA with the matrix-valued mapping A
through

vecr
(
A(Ω)

)
= fA

(
vecr(Ω)

)
(3.24)

and record for later that, for any matrix Y ∈ R|I|×|I|, equation (3.13) implies

vecr
(
dA(Ω)Y

)
= dfA

(
vecr(Ω)

)
vecr(Y ). (3.25)

Lemma 3.5. The differential of the mapping A in (3.23b) is given by

dA(Ω)Y = T

(
df3(Ω) df2(Ω)

0>n 0

)((
1
1

)
⊗ Y

)
, ∀Y ∈ R|I|×|I|. (3.26)

Proof. Equation (3.26) is immediate due to

dA(Ω) =

(
TdAJ(Ω)Y Tdb(Ω)Y

0>n 0

)
(3.27)

and Lemmata 3.3 and 3.4. �

Now we are in the position to specify the differential of the solution to the linearized assignment flow with
respect to the regularizing weight parameters.

Proposition 3.6. Let
f4(Ω) := vT (Ω) := v(T ; Ω) (3.28)

denote the solution (2.27c) in vectorized form to the ODE (2.23b). Then the differential is given according
to the convention (3.14) by

df4(Ω)Y = T
(
d
(
ϕ
(
TAJ(Ω)

)
b(Ω)

)
+ ϕ

(
TAJ(Ω)

)
df2(Ω)

)
Y (3.29a)
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where

d
(
ϕ
(
TAJ(Ω)

)
b(Ω)

)
Y =

((
expm(TAJ(Ω)), vT (Ω)

)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
· (3.29b)

· dfA
(

vecr(Ω)
)

vecr(Y ) + Tϕ
(
TAJ(Ω)

)
df2(Ω)Y, ∀Y ∈ R|I|×|I|, (3.29c)

where AJ(Ω) is given by (2.27b), A(Ω) by (3.23b), dfA by (3.25) and Lemma 3.5, and df2 by Lemma 3.3.

Proof. Equation (3.29a) follows directly from equation (2.27c) and Lemma 3.3 makes explicit the second
summand on the right-hand side. It remains to compute the first summand. Using (3.23) and the chain rule,
we have for any Y ∈ R|I|×|I|,

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y = (In, 0n)d expm

(
A(Ω)

)(
dA(Ω)Y

)
en+1. (3.30a)

Applying vecr to both sides which does not change the vector on the left-hand side, yields by (2.3)

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y =

(
(In, 0n)⊗ e>n+1

)
vecr

(
d expm

(
A(Ω)

)
(dA(Ω)Y )

)
. (3.30b)

Applying Lemma 3.1 and (3.25), we obtain

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y =

(
(In, 0n)⊗ e>n+1

)(
expm

(
A(Ω)

)
⊗ In+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
(3.30c)

· dfA
(

vecr(Ω)
)

vecr(Y ) (3.30d)

and using (2.2) and (3.23b)

=
((

expm(TAJ(Ω)), vT (Ω)
)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
(3.30e)

· dfA
(

vecr(Ω)
)

vecr(Y ). �

We finally consider the regularizing mapping R(Ω), defined by (3.6) and corresponding to arc (5) in
diagram (3.16). Here, we have to take into account the constraints (2.19) imposed on Ω. Accordingly, we
define the corresponding set of tangent matrices

YΩ =
{
Y ∈ R|I|×|I| : 〈1N , Yi|N 〉 = 0, ∀i ∈ I

}
. (3.31)

Lemma 3.7. The differential of the mappingR in (3.6) is given by

dR(Ω)Y = τ
∑
i∈I

〈
ti(Ω),Π0

( Yi
Ωi

)∣∣∣
N

〉
, ∀Y ∈ YΩ. (3.32)

Proof: see Appendix A.1.

Putting all results together, we state the main result of this section.

Theorem 3.8 (loss function gradient). Let

L(Ω) = fL
(
vT (Ω)

)
+R(Ω) (3.33)

be a continuously differentiable loss function, where vT (Ω) given by (2.27c) is the vectorized solution to the
linearized assignment flow (2.23b) at time t = T . Then its gradient ∂L(Ω) is given by

〈∂L(Ω), Y 〉 = dL(Ω)Y, ∀Y ∈ YΩ (3.34a)

with

dL(Ω)Y =
〈
∂fL

(
vT (Ω)

)
, df4(Ω)Y

〉
+ dR(Ω)Y (3.34b)

and df4(Ω) given by (3.29), and with dR(Ω)Y given by Lemma 3.7.
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Proof. The claim (3.34) follows from applying the definition of the gradient in (3.34a) and evaluating the
right-hand side using the chain rule and Proposition 3.6, to obtain (3.34b). �

3.3. Gradient Approximation. In this section, we discuss the complexity of the evaluation of the loss
function gradient ∂L(Ω) as given by (3.34), and we develop a low-rank approximation (3.47) that is compu-
tationally feasible and efficient.

3.3.1. Motivation. We reconsider the gradient ∂L given by (3.34). The gradient involves the term df4(Ω)Y ,
given by (3.29), which comprises three summands. We focus on the computationally expensive first sum-
mand,

df4(Ω)Y =
((

expm(TAJ(Ω)), vT (Ω)
)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
· (3.35a)

· dfA
(

vecr(Ω)
)

vecr(Y ) + · · · (3.35b)

=: C(Ω) vecr(Y ) + · · · . (3.35c)

In order to evaluate the corresponding component of ∂L(Ω) based on (3.34b), the matrix C(Ω) is transposed
and multiplied with ∂fL(vT (Ω)),

C(Ω)>∂fL(vT (Ω)) = dfA
(

vecr(Ω)
)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
· (3.36a)

·
((

expm(TAJ(Ω)), vT (Ω)
)> ⊗ en+1

)
∂fL(vT (Ω)) (3.36b)

= dfA
(

vecr(Ω)
)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
· (3.36c)

·
((

expm(TAJ(Ω)), vT (Ω)
)> ⊗ en+1

)(
∂fL(vT (Ω))⊗ (1)

)
(3.36d)

(2.2)
= dfA

(
vecr(Ω)

)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
· (3.36e)

·
((

expm(TAJ(Ω)), vT (Ω)
)>
∂fL(vT (Ω))⊗ en+1

)
. (3.36f)

Thus, the matrix-valued function ϕ defined by (2.25) has to be evaluates at a Kronecker sum of matrices and
then multiplied by a vector. The structure of this expression has the general form

f(M1⊕M2)(b1 ⊗ b2), M1,M2 ∈ Rk×k, b1, b2 ∈ Rk, (3.37a)

where

M1 = −A(Ω)>, M2 = A(Ω), k = n+ 1 = |I||J |+ 1, (3.37b)

b1 =
(

expm(TAJ(Ω)), vT (Ω)
)>
∂fL

(
vT (Ω)

)
, b2 = en+1, (3.37c)

f = ϕ. (3.37d)

We discuss two ways to compute (3.37):
Direct computation: Compute the Kronecker sum M1⊕M2, evaluate the matrix function ϕ and mul-

tiply the vector b1⊗b2. This approach has space and time complexity of at leastO(k4), with k given
by (3.37b). The complexity might be even higher depending on how the function f is evaluated.

Krylov subspace approximation: Use the Krylov space Km(M1 ⊕M2, b1 ⊗ b2) for approximating
(3.37), as explained in Section 2.4. This approach has space complexity O(k2m2) and time com-
plexity O(k2(m+ 1)) [Saa11, p. 132].

Remark 3.9 (space complexity). Consider an image with 512× 512 pixels (|I| = 262 144), |J | = 10 labels
(i.e. k = |I||J | + 1 = 2 621 441) and using 8 bytes per number. Then the direct computation requires to
store more than 1014 terabytes of data. The Krylov subspace approximation (with m = 10) is significantly
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cheaper, but still requires to store more than 5000 terabytes. Hence both methods are computationally in-
feasible especially in view of the fact that (3.37) has to be recomputed in every step of the gradient descent
procedure (3.8).

3.3.2. An Approximation by Benzi and Simoncini. To reduce the memory footprint, we employ an approx-
imation for computing (3.37), first discussed by Benzi and Simoncini [BS17], and refine it using a new ad-
ditional approximation in Section 3.3.3. In the following, the notation from Benzi and Simoncini is slightly
adapted to our definition (2.1) of the Kronecker sum that differs from the authors’ definition of the Kronecker
sum (A⊕B = B ⊗ I + I ⊗A).

The approach uses the Arnoldi iteration [Saa03] to determine orthonormal bases Pm, Qm and the corre-
sponding Hessenberg matrices T1 and T2 of the two Krylov subspaces K(M1, b1), K(M2, b2). The matrices
are connected by a standard relation of Krylov subspaces [Hig08, Section 13.2.1],

M1Pm = PmT1 + t1pm+1e
>
m, (3.38a)

M2Qm = QmT2 + t2qm+1e
>
m, (3.38b)

where t1 ∈ R, pm+1 ∈ Rn (resp. t2 ∈ R, qm+1 ∈ Rn) refer to the entries of the Hessenberg matrices and the
orthonormal bases in the next step of the Arnoldi iteration. With these formulas we deduce

(M1 ⊕M2)(Pm ⊗Qm)
(2.1)
= (M1Pm ⊗Qm) + (Pm ⊗M2Qm) (3.39a)

(3.38)
= (PmT1 + t1pm+1e

>
m ⊗Qm) + (Pm ⊗QmT2 + Pm ⊗ t2qm+1e

>
m) (3.39b)

= (Qm ⊗ Pm)(T1 ⊕ T2) + (t1pm+1e
>
m ⊗Qm) + (Pm ⊗ t2qm+1e

>
m). (3.39c)

Ignoring the last two summands and multiplying by (Pm ⊗Qm)> yields the approximation

(M1 ⊕M2) ≈ (Pm ⊗Qm)(T1 ⊕ T2)(Pm ⊗Qm)>, (3.40)

which after applying f and multiplying b1 ⊗ b2 leads to the approximation

f(M1 ⊕M2)(b1 ⊗ b2) ≈ (Pm ⊗Qm)f(T1 ⊕ T2)(Pm ⊗Qm)>(b1 ⊗ b2) (3.41)

of the expression (3.37) as proposed by Benzi and Simoncini. We note that, due to the orthonormality of the
bases Pm and Qm and their relation to the vectors b1, b2 that generate the subspaces K(M1, b1), K(M2, b2),
the approximation simplifies to

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖(Pm ⊗Qm)f(T1 ⊕ T2)e1 (3.42a)

= ‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
, (3.42b)

where e1 ∈ Rm
2

denotes the first unit vector.

Remark 3.10 (complexity of the approximation (3.42b)). Computing and storing the matrices Pm, Qm, T1

and T2 has space complexityO(2km2) and a time complexity ofO(2k(m+ 1)) [Saa11, p. 132]. Storing the
matrices T1⊕T2 and f(T1⊕T2) has complexityO(m4). Finally, multiplying the three matrices Pm ∈ Rk×m,
vec−1

r (f(T1 ⊕ T2)e1) ∈ Rm×m andQ>m ∈ Rm×k has time complexityO(k2m+km2) and space complexity
O(k2 + km).

Ignoring negligible terms (recallm� k), the entire approximation has computational complexityO(k2m)
and storage complexity O(k2). Compared to the Krylov subspace approximation of (3.37) discussed in the
preceding section, this is a reduction of space complexity by a factor m2.

Consider as in Remark 3.9 an image with 512× 512 pixels (|I| = 262 144) and |J | = 10 labels. Then the
approximation (3.42b) requires to store a bit more than 50 terabytes. While this is a huge improvement com-
pared to the 5000 terabytes from the Krylov approximation (see Remark 3.9), using this approximation is still
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computationally infeasible. This motivates why we introduce below an additional low-rank approximation
that yields a computationally feasible and efficient gradient approximation.

3.3.3. Low-Rank Approximation. We consider again the approximation (3.42b)

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
(3.43)

and decompose the matrix vec−1
r

(
f(T1 ⊕ T2)e1

)
∈ Rm×m using the singular value decomposition (SVD)

vec−1
r

(
f(T1 ⊕ T2)e1

)
=
∑
i∈[m]

σiyi ⊗ z>i , (3.44)

with yi, zi ∈ Rm and the singular values σi ∈ R, i ∈ [m]. As m is generally quite small, computing the
SVD is neither computationally nor storage-wise expensive. We accordingly rewrite the approximation in
the form

‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
(3.45a)

= ‖b1‖‖b2‖ vecr

(
Pm

( ∑
i∈[m]

σiyi ⊗ z>i
)
Q>m

)
(3.45b)

= ‖b1‖‖b2‖
∑
i∈[m]

σi(Pmyi)⊗ (Qmzi). (3.45c)

Remark 3.11 (space complexity). While the factorized form (3.45c) is equal to the approximation (3.42b),
it requires only a fraction of the storage space: The intermediate results require storing m singular values
and k numbers for each Pmyi and Qmzi, and the final approximation has an additional storage requirement
of O(2km). In total O(4km) numbers need to be stored.

For a 512×512 pixels image with 10 labels (see Remark 3.9), storing this approximation requires at most
a gigabyte of memory.

In practice, this can be further improved: Numerical experiments show that the singular values decline
very rapidly, such that just the first singular value can be used to obtain the gradient approximation

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖σ1(Pmy1)⊗ (Qmz1). (3.46)

Numerical results in Section 4 demonstrate that this approximation is sufficiently accurate.

Remark 3.12 (space complexity). The term ‖b1‖‖b2‖σ1(Pmy1)⊗(Qmz1) requires to storeO(2k) numbers,
i.e. about twice as much storage space as the original image. In total, we need to storeO(2k+2km) numbers.
The required storage for the running example (see Remark 3.9) now adds up to less than 500 megabytes.

We conclude this section by returning to our problem using the notation (3.37) and state the proposed
low-rank approximation of the loss function gradient. By (3.34), (3.36), (3.37) and (3.46), we have

∂L(Ω) ≈ c(Ω) · vec−1
r

(
dfA
(

vecr(Ω)
)>(

σ1(Pmy1)⊗ (Qmz1)
)

(3.47a)

where

c(Ω) =
∥∥( expm(TAJ(Ω)), vT (Ω)

)>
∂fL

(
vT (Ω)

)∥∥, (3.47b)

vT (Ω) = v(T ; Ω) (cf. (2.27c)) (3.47c)

σ1y1 ⊗ z>1 ≈ vec−1
r

(
ϕ(T1 ⊗ T2)e1

)
. (top singular value and vectors) (3.47d)

Here, the matrices Pm, Qm, T1, T2 result from the Arnoldi iteration, cf. (3.38), that returns the two Krylov
subspaces used to approximate the matrix vector product ϕ(−A(Ω)> ⊕A(Ω))b1, with b1 given by (3.37c).
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3.4. Computing the Gradient using Automatic Differentiation. An entirely different approach to com-
puting the gradient ∂L(Ω) of the loss function (3.7) is to not use an approximation of the exact gradient
given in closed form by (3.8), but to replace the solution vT (Ω) to the linearized assignment flow in (3.34b)
by an approximation determined by a numerical integration scheme and to compute the exact gradient there-
from. Thus, one replaces an differentiate-then-approximate approach by an approximate-then-differentiate
alternative. We numerically compare these two approaches in Section 4.

We sketch the latter alternative. Consider again the loss function (3.7) evaluated at the linearized assign-
ment flow integrated up to time T

L(Ω) = fL
(
vT (Ω)

)
. (3.48)

Gradient approximations determined by automatic differentiation depend on what numerical is scheme is
used. We pick out two basic choices out of a broad range of proper schemes studied in [ZSPS20]. In
both cases, we implemented the loss function fL in PyTorch together with the functions Ω 7→ AJ(Ω) and
Ω 7→ b(Ω) given by are (2.27). Now two approximations can be distinguished depending on how the
mappings (AJ(Ω), b(Ω)) 7→ vT (Ω) = v(T ; Ω) are implemented.

Automatic Differentiation based on the explicit Euler scheme: We partition the interval [0, T ] into
T/h subintervals with some step size h > 0 and use the iterative scheme

v(k+1) = v(k+1) + h
(
AJ(Ω)v(k) + b(Ω)

)
, v(0) = 0, (3.49)

in order to approximate vT (Ω) ≈ v(T/h) the solution to the linearized assignment flow ODE (2.27a).
As the computations only involve basic linear algebra, PyTorch is able to compute the gradient using
automatic differentiation.

Automatic Differentiation based on exponential integration: The second approximation utilizes the
numerical integration scheme developed in Section 2.4. Again, only basic operations of linear al-
gebra are involved so that PyTorch can compute the gradient using automatic differentiation. The
more special matrix exponential (2.30) is computed by PyTorch using a Taylor polynomial approxi-
mation [BBC19].

Both approaches determine an approximation of the Euclidean gradient ∂L(Ω) which we subsequently
convert into an approximation of the Riemannian gradient using Equation (3.9).

4. EXPERIMENTS

We report and discuss results of a series of experiments devoted to the evaluation of the methods used to
approximate the loss function gradient and to estimate optimal parameters according to Section 3.1. For this
purpose, we used the two scenarios depicted in Figure 4.1.

Figure 4.2 shows a comparison of parameter learning using the low-rank approximation (3.47) and auto-
matic differentiation based on explicit Euler integration and Krylov subspace approximation, respectively, as
described in Section 3.4. Generally speaking, the difference between the three algorithms is negligible com-
pared to the influence of other hyperparameters like the step size (learning rate) h used for gradient descent,
the time T used for integrating the linearized assignment flow or the size |N | of weight parameter patches
(cf. (2.20)), respectively. This is illustrated in another way by Figure 4.3 which displays pixelwise differ-
ences of the gradient approximations. Overall, these results validate the closed form formulas in Section 3.2
and the subsequent low-rank approximation in Section 3.3.

Figure 4.4 demonstrates the influence of different hyperparameters (Krylov subspace dimension m, rank
of the low-rank gradient approximation) on parameter learning. The influence of the time T of integrating
the linearized assignment flow and of noise is analyzed in Figure 4.5. See the figure captions for further
discussion. These experiments show that quite low-dimensional representations suffice for representing the
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(a) Random Voronoi line structure (b) Random colored Voronoi regions

FIGURE 4.1. Randomized scenarios for training and testing. Two sample images of
two scenarios with randomly generated images that were used to evaluate regularization
parameter estimation and prediction. (a) Random line structure whose accurate labeling
requires to adapt weight parameters. (b) Random Voronoi cells to be labeled according to
their color ( , , , , , , , ). In both cases, additive Gaussian noise was added as specified
below.
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(a) Noisy Image
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(b) Noiseless image

FIGURE 4.2. Comparing gradient approximation and automatic differentiation. Both
figures show the effect of parameter learning in terms of the labeling error during the training
procedure (3.8), for a noisy version of the image from Figure 4.1b (panel (a)) and for the
noise-free image (panel (b)). Note the different scales of the two ordinates. For a fair
comparison, the Krylov dimension m = 10 and the step size h of the explicit Euler scheme
were chosen such that the entire parameter learning procedures took approximately the same
runtime for the three different algorithms. As exemplarily shown here by both figures, we
generally observed very similar results for all three algorithms which validates the closed
form formulas in Section 3.2 and the subsequent subspace approximation in Section 3.3.
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(b) Norm of gradients

FIGURE 4.3. Checking the gradient approximation at each pixel. As the exact gradient
is too expensive to compute, we used the gradient computed by automatic differentiation of
the explicit Euler with a very small step size h as a proxy for the exact gradient. We then
compared our gradient approximation (3.47) with this gradient at every pixel of the image
from Figure 4.1a at the beginning of the iteration. (a) A value of 1 means that the gradients
point in the same direction, 0 means they are orthogonal and −1 means that they point in
opposite directions. We see that, especially for not yet correctly labeled pixels at the cell
boundaries, the gradient directions mostly agree. In the interior of the cells, the gradients
disagree more which is insignificant, however, since the norm of the gradients are close
0. (b) The norm of the gradients are shown at each pixel. Non-vanishing norms display
where parameter learning (adaption) occurs. Since the initial weight parameter patches are
uniform, no adaption happens here, corresponding to zero norms of gradients, because such
parameters are optimal in homogeneous regions for noise removal.

information required for optimal regularization of dynamic image labeling. We point out that such insights
cannot be gained from automatic differentiation.

Besides parameter learning, parameter prediction for unseen test data define another important task. In
this connection, the regularity (smoothness) of optimal weight parameter patches is an important property
since smooth patches are easier to predict both in theory and in practice. Our experiments illustrate, see
Figure 4.6 and the caption, that prescribed labelings can be achieved with weight patches that are located in
a bounded set around the uniform weight parameter patch 1|N |. The latter maximally smooth patch is the

starting point Ω
(0)
i |N = 1|N | of the learning procedure (3.8) which determines at each pixel the closest patch

such that integrating the linearized assignment flow approximates the desired labeling. As a consequence,
employing additional regularization through a regularizerR in (3.7) is not really required.

5. CONCLUSION

We presented a novel approach for learning the parameters of the linearized assignment flow for image
labeling. Based on the exact formula of the parameter gradient of a loss function subject to the ODE-
constraint, an approximation of the gradient was derived using exponential integration, a Krylov subspaces
and low-rank approximation, that is efficient regarding both runtime and memory. Regarding runtime and
accuracy of gradient approximation, experiments demonstrate that our research implementation is on par
with highly tuned-machine learning toolboxes. Unlike the latter, however, our approach additionally returns
the essential information for image labeling in terms of a low-dimensional parameter subspace.
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(a) Influence of the Krylov subspace dimension
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(b) Influence of the rank of the approximation

FIGURE 4.4. Influence of the Krylov subspace dimension and the rank. The setup as
for Figure 4.2 was used to demonstrate the influence of the Krylov subspace dimension and
the low-rank approximation on parameter learning. (a) In general, we observed that Krylov
dimensions of 5 to 10 are sufficient for most experiments, here exemplarily shown for the
image depicted by Figure 4.1a. Larger Krylov dimensions only increased the computation
time without any noticeable improvement of accuracy. (b) Loss curves for different low-
rank approximations coincide. This illustrates that just selecting the top singular value and
vectors in (3.47) suffices for parameter learning.
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(a) Training without noise
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(b) Training with noise

FIGURE 4.5. Influence of image noise and the integration time T . The setup as for
Figure 4.2 was used. Notice the different scales of the ordinates for noise-free data (panel
(a)) and for noisy data (panel (b)). (a) In the absence of noise, local parameter adaption
suffices, which can be accomplished with a short integration time T . Using larger values
of T first averages out local image structure which then has to be restored, since parameter
learning starts at uniform ‘uninformed’ weight patches. (b) Larger integration times T are
beneficial for noise removal during parameter adaption. Surprisingly, a smaller number of
iterations is needed for removing the bulk of erroneous labels, than in the case of noise-free
data.
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(a) Parameter entropy histogram
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FIGURE 4.6. Parameter entropy and regularization. Both panels illustrate the entropies
of the weight parameter patches (2.19) after learning. (a) The histogram of weight patch
entropies contains a large peak that corresponds to uniform weight patches that are optimal
in homogeneous regions. For almost all of the remaining pixels, however, the entropies are
not smaller than 1, which indicates that the learned parameter patches are smooth. This is
a favorable property for parameter prediction. (b) Entropies of weight parameter patches
are shown at each pixel. In agreement with (a), almost all entropies are fairly large. This
illustrates that parameter learning only performs minimal changes of uniform weight patches
in order to approach the prespecified labeling.

Our future work will study generalizations of the linearized assignment flow. Since this can be done within
the overall mathematical framework of the assignment flow approach, the result presented in this paper are
applicable. We briefly indicate this for the continuous-time ODE (1.1) that we write down here again with
an index 0,

V̇0 = A0(Ω0)V0 +B0. (5.1)

Recall that B0, given by BW0 of (2.23b), represents the input data (2.16) via the mappings (2.17) and (2.18).
Now suppose the data are represented in another way and denoted by B1. Then consider the additional
system

V̇1 = A1(Ω1)V1 +B1 + V0(T )L, (5.2)

where the solution V0(T0) to (5.1) at time t = T0, possibly transformed to a tangent subspace by a linear
mapping L, modifies the data term B1 of (5.2). Applying (2.25) to (5.1) at time t = T0 and to (5.2) at time
t = T1 yields the solution

V1(T1) = T1ϕ
(
T1A1(Ω)

)(
B1 + T0ϕ

(
T0A0(Ω0)

)
B0L

)
, (5.3)

which is a composition of linearized assignment flows and hence linear too, due to the sequential coupling
of (5.1) and (5.2). Parallel coupling of the dynamical systems is feasible as well and leads to larger matrix
ϕ that is structured and linearly depends on the components A0(Ω0), A1(Ω1), L. Designing larger networks
of this sort by repeating this steps is straightforward.

In either case, the overall basic structure of (1.1), (1.3) is preserved. This enables us to broaden the scope
of assignment flows for applications and to study, in a controlled manner, various mathematical aspects of
deep networks in terms of sequences of generalized linearized assignment flow, analogous to (1.6).
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APPENDIX A. PROOFS

A.1. Proofs of Section 3.2.2.

Proof of Lemma 3.2. Regarding the differential of the mapping (2.12e) with respect to its second argument,
we have d expp(u)v = Rexpp(u)v by [ZSPS20, Lemma 4.5], with R given by (2.12b). Applying this relation
to (3.17) where exp1W acts row-wise analogous to the mappingRW as explained by (2.13) and (2.15), yields

df1(Ω)Y = Rexp1W (− 1
ρ

ΩD)

(
− 1

ρ
Y D

)
= Rf1(Ω)

(
− 1

ρ
Y D

)
, ∀Y ∈ R|I|×|I|, (A.1)

which is (3.18a). As for the transpose, we vectorize both sides using again (2.15),

vecr
(
df1(Ω)Y

)
= Diag(Rf1(Ω)) vecr

(
− 1

ρ
Y D

)
= −1

ρ
Diag(Rf1(Ω))(I|I| ⊗D>) vecr(Y ). (A.2)

Applying the transposed matrix to any vector vecr(Z) with Z ∈ R|I|×|J | and taking into account the sym-
metry of the matrix Diag(Rf1(Ω)), yields

df1(Ω)>Z = −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) vecr(Z)

)
(A.3a)

(2.15)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) vecr(Rf1(Ω)Z)

)
= −1

ρ
Rf1(Ω)(Z)D>. �

Proof of Lemma 3.3. Since RW0 does not depend on Ω and vecr is linear, we directly obtain (3.20a). Re-
garding the transpose map, we expand the right-hand side of (3.20a),

df2(Ω)Y
(2.15)
= Diag(RW0) vecr(df1(Ω)Y )

(A.2)
= −1

ρ
Diag(RW0) Diag(Rf1(Ω))(I|I| ⊗D>) vecr(Y ). (A.4)

Applying the transposed matrix to any vector vecr(Z) ∈ R|I|
2

yields (recall that the matrices Diag(RW0),
Diag(Rf1(Ω)) are symmetric)

df2(Ω)>Z = −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) Diag(RW0) vecr(Z)

)
(A.5a)

(2.15)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) vecr(RW0Z)

)
(A.5b)

(2.15)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) vecr

(
Rf1(Ω)(RW0Z)

))
= −1

ρ
Rf1(Ω)(RW0Z)D> (A.5c)

(3.18b)
= df1(Ω)>(RW0Z). �

Proof of Lemma 3.4. We have

df3(Ω)Y =
(
dDiag(Rf1(Ω))Y

)
(Ω⊗ I|J |) + Diag(Rf1(Ω))(Y ⊗ I|J |), ∀Y ∈ R|I|×|I| (A.6)

and have to the differential in the first summand on the right-hand side. By (2.15),

Diag(Rf1(Ω)) vecr(S) = vecr(Rf1(Ω)S), ∀S ∈ R|I|×|J | (A.7)

and hence dDiag(Rf1(Ω)) is given by(
dDiag(Rf1(Ω))Y

)
vecr(S) = vecr

(
(dRf1(Ω)Y )S

)
, ∀Y ∈ R|I|×|I|, ∀S ∈ R|I|×|J |. (A.8)
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It remains to compute dRf1(Ω) and to evaluate the defining right-hand side, to obtain the left-hand side in
explicit form. Focusing on a single component Rf1i

(Ω) of the mapping Rf1(Ω), we have by (2.12b)

Rf1i
(Ω) = Diag

(
f1i(Ω)

)
− f1i(Ω)f1i(Ω)> (A.9a)

dRf1i(Ω)Y = Diag
(
df1i(Ω)Y

)
−
(
df1i(Ω)Y

)
f1i(Ω)> − f1i(Ω)

(
df1i(Ω)Y

)> (A.9b)

and hence for any Si ∈ R|J | and S = (. . . , Si, . . . )
> ∈ R|I|×|J |

(dRf1i(Ω)Y )Si =
(
(dRf1(Ω)Y )S

)
i
, i ∈ I. (A.9c)

Thus, analogous to (2.15), we obtain

(dRf1(Ω)Y )S =
(
. . . , (dRf1i(Ω)Y )Si, . . . )

> = vec−1
r

((
Diag(dRf1(Ω))Y

)
vecr(S)

)
. (A.9d)

Applying vecr to both sides and comparing with (A.8), we conclude

dDiag(Rf1(Ω))Y = Diag(dRf1(Ω)Y ) (A.9e)

which proves (3.22). �

Proof of Lemma 3.7. The mapping expp specified by (2.12e) satisfies expp = expp ◦Π0 and a short compu-
tation [ÅPSS17, Appendix]) shows that the restriction expp |T0 , again denoted by expp, has the inverse

exp−1
p : S → T0, q 7→ Π0(log q − log p) (A.10)

and consequently the differential

d exp−1
p (q)u = Π0

(u
q

)
, u ∈ T0. (A.11)

For W, W̃ ∈ W and V ∈ T0, this differential applies componentwise, i.e.(
d exp−1

W (W̃ )V
)
i

= Π0

( Vi
W̃i

)
, i ∈ I. (A.12)

Application to (3.6) yields for any Y ∈ YΩ equation (3.32). �
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