
Learning Linear Assignment Flows for
Image Labeling via Exponential Integration

Alexander Zeilmann1, Stefania Petra2 and Christoph Schnörr1

1 Image and Pattern Analysis Group, Heidelberg University, Germany
2 Mathematical Imaging Group, Heidelberg University, Germany

Abstract. We introduce a novel algorithm for estimating optimal pa-
rameters of linear assignment flows for image labeling. This flow is de-
termined by the solution of a linear ODE in terms of a high-dimensional
integral. A formula of the gradient of the solution with respect to the
flow parameters is derived and approximated using Krylov subspace tech-
niques. Riemannian descent in the parameter space enables to determine
optimal parameters for a 512×512 image in less than 10 seconds, without
the need to backpropagate errors or to solve an adjoint equation. Nu-
merical experiments demonstrate a high generative model expressivity
despite the linearity of the assignment flow parametrization.

Keywords: image labeling · assignment manifold · linear assignment
flows · parameter learning · exponential integration · low-rank approxi-
mation.

1 Introduction

Learning the parameters of large networks from training data constitutes a basic
problem in imaging science, machine learning and other fields. The prevailing
approach utilizes gradient descent or approximations thereof based on automatic
differentiation software tools [4].

In this paper, we focus on a class of networks for image labeling, linear as-
signment flows introduced by [17], where parameter estimation can be based
on an exact formula of the loss function gradient and its approximation, us-
ing established methods of large-scale numerical linear algebra. This enables
easy implementations and better control of the approximation error. In partic-
ular, neither backpropagation, nor automatic differentiation or solving adjoint
equations are required. Our parameter estimation is also time-efficient: for a
512× 512 image, the runtime for estimating optimal parameters takes less than
10 seconds. Besides demonstrating these properties, numerical experiments also
reveal a high expressivity of linear assignment flows: multiscale image structure
can be generated from pure noise by estimating corresponding parameters.

Related work. Linear assignment flows result from a linear tangent space
parametrization of the nonlinear assignment flows introduced by [3]. While the
linear assignment flow is still nonlinear, both the linearity of the corresponding

2 Zeilmann, Petra, Schnörr

Linear Assignment Flow

V̇ = AV + B

Image Labeling

Gradient

descent for

parameter

learning

Exponential

Integration

Methods to Compute the Gradient

Exact Gradient
+ explicit math. formula

− computat. infeasible

Discret. & Backprop.
+ computat. efficient

− no gradient formula

Our Approach
+ computationally efficient

+ mathematically explicit

+ low-rank approximation

+ as fast as backpropagation

+ automatic differentiation

is not required

Fig. 1.1. Our approach & related work: pros and cons. Based on the linear as-
signment flow, our approach performs optimal parameter estimation using a low-rank
approximation of the exact gradient. It is as efficient as applying automatic differentia-
tion in frameworks like PyTorch. Unlike this latter methodology, however, our approach
is mathematically explicit and hence supports further tasks like flow control.

tangent space ODE and of its parameter dependency facilitate optimal parame-
ter estimation. This has been exploited in [8] by applying symplectic numerical
integration for solving both the linear assignment flow and an adjoint ODE for
determining the parameter sensitivities.

In this paper, we exploit the fact that the linear tangent space ODE admits
a closed-form solution in terms of the high-dimensional integral (Duhamel’s for-
mula). By directly approximating an exact gradient formula using established
numerical techniques [7,2], error backpropagation can be avoided altogether, and
parameter estimation can be done by computing a Riemannian descent flow in
the parameter space.

The standard approach to network parameter learning is using automatic
differentiation [4]. Automatic differentiation is a general concept applicable to a
variety of scenarios. However, the efficient handling of many scenarios requires
a more targeted approach. In the current paper, we introduce such a specific
algorithm.

The exact integration of the linear assignment flow requires the evaluation of
the matrix exponential. The only machine learning frameworks which implement
this function are PyTorch [13] and TensorFlow [1]. But even their implementa-
tions can not be applied directly to the large matrices required by imaging tasks.
In contrast, our approach is able to learn the parameters for very large images
or even 3D volumes as commonly found in medical image analysis.

Regarding the numerical techniques employed in our work, related work in
scientific computing includes, e.g., [11,9] for computing the Fréchet derivative
of the matrix exponential. However, these algorithms are only applicable if the
gradient is computed using the forward mode of automatic differentiation (i.e.,
multiplying Jacobians from the right). For functions of the form Rn → R (with
large n), the reverse mode of automatic differentiation (backpropagation, i.e.,
multiplying the Jacobians from the left) is significantly more efficient for com-
puting gradients. This is in line with our approach, in which the Jacobians of the
loss function and of the additive term of the linear assignment flow are multi-

Learning Linear Assignment Flows 3

plied from the left to the Jacobian of the matrix exponential. This is an essential
component for reducing the dimensionality of the problem in our approach.

Contribution. We introduce a novel approach for learning the model parameters
of the linear assignment flow [17]. These parameters control the regularization
properties of image labelings determined by the flow. The problem of learning
these parameters was raised in [3, Section 5 and Fig. 14]. Our approach has the
following properties:

Linear complexity both in storage space and evaluation time with respect to
image size and number of labels, which enables to handle large problem sizes.

No automatic differentiation is necessary. While automatic differentiation
(and especially backpropagation) has been advancing significantly in recent
years, there are not many comprehensive frameworks for it, and its imple-
mentation is nontrivial. Our algorithm does not require automatic differ-
entiation and can be conveniently implemented in any numerical software
framework.

Explicit parameter gradient formula. While automatic differentiation is a
procedure computing the gradient, it does generally not lead to a succinct
formula. By contrast, our approach is based on an explicit mathematical
formula that can be analyzed theoretically and used in future tasks, e.g., for
controlling the assignment flow.

Approximating the exact gradient instead of the exact gradient of an
approximation. Approaches like exponential integration (see Section 2.3)
or explicit Euler integration approximate the ordinary differential equation.
Automatic differentiation, therefore, produces the exact gradient of this ap-
proximation. As a consequence, not the parameters of the linear assignment
flow are learned but of its approximation. Our approach, on the other hand,
directly approximates the exact gradient of the linear assignment flow for pa-
rameter estimation and hence enables a better control of the approximation
error.

As efficient as backpropagation. In our experiments, our approach was as
efficient as backpropagation of exponential integration and backpropagation
of explicit Euler. In addition, it requires less storage space.

Low-rank approximation. An approximation is worked out in factorized form.
This not only saves storage space but also enables to carry out subsequent
computations more efficiently.

Applicability to any loss function and data. Besides being C1, no further
assumptions are made with respect to the loss function used for parame-
ter estimation. Our approach shares with the general assignment flow the
property that data in any metric space can be processed.

Organization. Section 2 summarizes the assignment flow, the linear assignment
flow and exponential integration for computing it. Section 3 details the exact
gradient of any loss function of the flow, with respect to the flow parameters.
The application to the linear assignment flow is explained in Section 4 and
experimental results are reported in Section 5. We conclude in Section 6.

4 Zeilmann, Petra, Schnörr

2 Assignment Flow, Linear Assignment Flow

This section summarizes the assignment flow and its approximation, the linear
assignment flow, introduced in [3] and [17], respectively. The linearized assign-
ment flow provides the basis for our approach to parameter estimation developed
in Section 3.

2.1 Assignment Flow

Let G = (I, E) be a given undirected graph with vertices i ∈ I indexing data
FI = {fi : i ∈ I} ⊂ F given in a metric space (F , d). The edge set E specifies
neighborhoods Ni = {k ∈ I : ik = ki ∈ E}∪{i} for every vertex i ∈ I along with
positive weight vectors wi ∈ ∆̊|Ni|, where ∆̊n = ∆n ∩ Rn>0 denotes the relative
interior of the probability simplex ∆n.

Along with FI , prototypical data (labels) LJ = {lj ∈ F : j ∈ J} are given
that represent classes j = 1, . . . , |J |. Supervised image labeling denotes the task
to assign precisely one prototype lj to each datum fi at every vertex i in a
coherent way, depending on the label assignments in the neighborhoods Ni.
These assignments at i are represented by probability vectors

Wi ∈ S := (∆̊|J|, gFR), i ∈ I (2.1)

on ∆̊|J| that endowed with the Fisher-Rao metric gFR becomes a Riemannian
manifold denoted by S. Collecting all assignment vectors as rows defines the
strictly positive row-stochastic assignment matrix

W = (W1, . . . ,W|I|)
> ∈ W = S × · · · × S ⊂ R|I|×|J|, (2.2)

that we regard as point on the product assignment manifold W. Image labeling
is accomplished by geometrically integrating the assignment flow W (t) solving

Ẇ = RW
(
S(W)

)
, W (0) = 1W :=

1

|J |
1|I|1

>
|J| (barycenter), (2.3)

that provably converges towards a binary matrix [18], i.e., limt→∞Wi(t) = ej(i),
for every i ∈ I and some j(i) ∈ J , which yields the label assignment lj(i) → fi. In
practice, geometric integration is terminated when W (t) is ε-close to an integral
point using the entropy criterion from [3], followed by trival safe rounding [18].

We specify the right-hand side of (2.3) — see (2.5) below — and refer to [3,15]
for more details and the background. With tangent space T0 = TpS independent
of the base point p ∈ S, we define

Rp : R|J| → T0, z 7→ Rp(z) =
(

Diag(p)− pp>
)
z, (2.4a)

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
e

v
p

〈p, e
v
p 〉
p, (2.4b)

Exp−1 : S × S → T0, (p, q) 7→ Exp−1p (q) = Rp log
q

p
, (2.4c)

Learning Linear Assignment Flows 5

where multiplication, division, exponentiation e(·) and log(·) apply component-
wise to the vectors. Corresponding maps RW and ExpW in connection with the
product manifold (2.2) are defined analogously, and likewise the tangent space
T0 = T0 × · · · × T0 to W.

The vector field defining the assignment flow (2.3) arises through coupling
flows for individual pixels through geometric averaging within the neighborhoods
Ni, i ∈ I, conforming to the underlying Fisher-Rao geometry

S(W) =

 . . .

Si(W)
>

. . .

 = GΩ
(
L(W)

)
∈ W,

Ω = (Ωi)i∈I ,

Ωi = (ωik)k∈Ni
,

(2.5a)

Si(W) = GΩi
(
L(W)

)
= ExpWi

(∑
k∈Ni

ωik Exp−1Wi

(
Lk(Wk)

))
, i ∈ I. (2.5b)

The similarity vectors Si(W) are parametrized by weight patches Ωi > 0 that
serve as regularization parameters and satisfy the constraints

∑
k∈Ni

ωik =
1, ∀i ∈ I. Flattening these weight patches and complementing zero entries de-

fines sparse row vectors of the matrix Ω ∈ R|I|×|I|≥0 . Estimating these parameters
using the linear assignment flow is the subject of this paper.

2.2 Linear Assignment Flow

The linear assignment flow, introduced by [17], approximates (2.3) by

Ẇ = RW

(
S(W0) + dSW0RW0 log

W

W0

)
, W (0) = W0 ∈ W (2.6)

around any point W0. In what follows, we only consider the barycenter W0 = 1W
which is the initial point of (2.3). The differential equation (2.6) is still nonlinear
but can be parametrized by a linear ODE on the tangent space

W (t) = ExpW0

(
V (t)

)
, (2.7a)

V̇ = RW0

(
S(W0) + dSW0

V
)

=: BW0
+A(Ω)[V], V (0) = 0, (2.7b)

where the linear operator A(Ω) linearly depends on the parameters Ω of (2.5)
(see [17] for an explicit expression). The linear ODE (2.7b) admits a closed-form
solution which in turn enables a different numerical approach (Section 2.3) and
a novel approach to parameter learning (Section 3).

2.3 Exponential Integration

The solution to (2.7b) is given by a high-dimensional integral (Duhamel’s for-
mula) whose value in closed form is given by

V (t;Ω) = tϕ
(
tA(Ω)

)
BW0

, ϕ(x) =
ex − 1

x
, (2.8)

where ϕ is extended to matrix arguments in the standard way [6]. As the matrix
A is already very large even for medium-sized images, however, it is not feasible

6 Zeilmann, Petra, Schnörr

in practice to compute ϕ(tA). Exponential integration [7,12], therefore, was used
in [17] for approximately evaluating (2.8).

Applying the row-stacking operator vecr, that satisfies the general property
vecr(ABC) = (A⊗C>) vecr(B), to both sides of (2.7b) and (2.8), respectively,
yields with v = vecr(V) and the Kronecker product ⊗ (cf. [16])

v̇ = b+AJ(Ω)v, v(0) = 0, b = vecr(BW0
), (2.9a)

AJ =
(
AJik
)
i,k∈I , AJik =

{
ωikRSi(W0), k ∈ Ni,
0, k 6∈ Ni.

(2.9b)

v(t;Ω) = tϕ
(
tAJ(Ω)

)
b, n := dim v(t) = |I||J |. (2.9c)

Using the Arnoldi iteration [14] with initial vector q1 = b/‖b‖, an orthonormal
basis Qm = (q1, . . . , qm) ∈ Rn×m of the Krylov space Km(AJ , b) of dimension m
is determined. As reported by [17], choosing m ≤ 10 yields sufficiently accurate
approximations of the actions of the matrix exponential expm and the ϕ operator
on a vector, respectively, that using Hm = Q>mA

J(Ω)Qm are given by

expm
(
tAJ(Ω)

)
b ≈ ‖b‖Qm expm(tHm)e1, (2.10a)

tϕ
(
tAJ(Ω)

)
b ≈ t‖b‖Qmϕ(tHm)e1, (2.10b)

where e1 denotes the first unit vector. The expression ϕ(tHm)e1 results from
computing the left-hand side of the relation [6, Section 10.7.4]

expm

(
tHm e1

0 0

)
=

(
expm(tHm) ϕ(tHm)e1

0 1

)
(2.11)

and extracting the upper-right vector. Since Hm is a small matrix, any standard
method [10] can be used for computing the matrix exponential on the left-hand
side.

3 Loss Function Gradient and Approximation

Fixing a point of time t = T , we set vT (Ω) := v(T ;Ω) as given by (2.9c) and
assume to be given a loss function

L : W −→ R, L(Ω) = fL
(
vT (Ω)

)
(3.1)

that evaluates the solution (2.9c) to (2.7b) and hence also the corresponding
labeling (2.7a), as a function of the weight parameters Ω; see Section 4 for
a concrete example. In this section, various ways to approximate the gradient
∂L(Ω) are discussed.

3.1 Loss Function Gradient

We compute differentials of matrix-valued functions F (X) by using the row-
stacking operator vecr: if vecr(F (X)) = f(vecr(X)) defines the vector function
f by F , then vecr(dF (X)Y) = df(vecr(X)) vecr(Y), and we define the Jacobian

Learning Linear Assignment Flows 7

of F by dF (X) := df(vecr(X)). Thus, if X ∈ Rm1×m2 and F (X) ∈ Rn1×n2 , then
dF (X) ∈ Rn1n2×m1m2 and dF (X)Y ∈ Rn1×n2 .

An example is the formula [6, Thm. 10.13] for the vectorized differential of
the matrix exponential

vecr
(
d expm(C)D

)
=
(

expm(C)⊗ In
)
ϕ(−C ⊕ C>) vecr(D), (3.2)

that we rearranged so as to conform to the row-stacking operator vecr, rather
than to the column-stacking operator used in [6]. ⊕ is the Kronecker sum A⊕B =
A⊗ In + Im ⊗B for A ∈ Rm×m, B ∈ Rn×n with identity matrices In ∈ Rn×n.

Proposition 1. Let L be a function of the form (3.1), where vT (Ω) = v(T ;Ω)
solves (2.9a) at t = T . Then the gradient of L is given by

∂L(Ω) = vec−1r
(
C(Ω)

>
∂fL(vT (Ω))

)
, (3.3a)

C(Ω) =
(
(eTA

J (Ω), vT (Ω))⊗ e>n+1

)
ϕ(−B(Ω)⊕B(Ω)

>
)dfB(vecr(Ω)) (3.3b)

where n = |I||J |, e>n+1 = (0>n , 1) and AJ(Ω) is given by (2.9b), and

B(Ω) =
(
TAJ (Ω) Tb

0>n 0

)
, fB

(
vecr(Ω)

)
= vecr

(
B(Ω)

)
. (3.3c)

Proof. By (3.1), we have

〈∂L(Ω), U〉 = dfL(vT (Ω))dvT (Ω)U. (3.4)

In order to determine the vector dvT (Ω)U ∈ Rn, we compute analogous to (2.11),

expm
(
B(Ω)

)
=

(
expm

(
TAJ(Ω)

)
Tϕ
(
TAJ(Ω)

)
b

0>n 1

)
, (3.5)

and note that vT (Ω) = v(T ;Ω) given by (2.9c) appears in the last column on
the right-hand side. Thus, using vecr(dB(Ω)U) = dfB(vecr(Ω)) vecr(U),

vT (Ω)
(3.5)
= (In, 0n) expm

(
B(Ω)

)
en+1 (3.6a)

dvT (Ω)U = (In, 0n)d expm
(
B(Ω)

)
dB(Ω)Uen+1 (3.6b)

(∗)
=
(
(In, 0n)⊗ e>n+1

)
vecr

(
d expm

(
B(Ω)

)
dB(Ω)U

)
(3.6c)

(3.2)
=
(
(In, 0n)⊗ e>n+1

)(
expm

(
B(Ω)

)
⊗ In+1

)
(3.6d)

ϕ(−B(Ω)⊕B(Ω)
>

)dfB(vecr(Ω)) vecr(U) (3.6e)

(3.5)
=
(
(expm(TAJ(Ω)), vT (Ω))⊗ e>n+1

)
(3.6f)

ϕ(−B(Ω)⊕B(Ω)
>

)dfB(vecr(Ω)) vecr(U) (3.6g)

=: C(Ω) vecr(U) (3.6h)

where the right-hand side of equation (∗) is the vectorization of the left-hand
side, i.e., the terms are rearranged, but the overall expression is unchanged.

8 Zeilmann, Petra, Schnörr

Since the left-hand side of (3.4) is a matrix inner product, we substitute the last
equation into the right-hand side,

〈L(Ω), U〉 = dfL
(
vT (Ω)

)
C(Ω) vecr(U) =

〈
C(Ω)

>
∂fL(vT (Ω)), vecr(U)

〉
(3.7)

and convert by vec−1r the linear form acting on vecr(U). ut

Expression (3.3) is exact, but its evaluation is computationally infeasible for

typical problem sizes. For example, ϕ(−B(Ω) ⊕ B(Ω)
>

) is a dense (n+ 1)
2 ×

(n+ 1)
2

matrix, where n = |I||J | is (number of pixels) × (number of labels).
Therefore, approximations of the loss function gradient ∂L(Ω) are studied next.

3.2 Approximation

Evaluating the gradient (3.3a) requires to multiply a large matrix by a vector,

C(Ω)
>
∂fL(vT (Ω)) = dfB(vecr(Ω))

>
ϕ(−B(Ω)

> ⊕B(Ω)) vecr
(
F (Ω)

)
, (3.8a)

F (Ω) =

(
expm(TAJ(Ω)

>
)

vT (Ω)
>

)(
vec−1r

(
∂fL(vT (Ω))

))
e>n+1 (3.8b)

=: f1e
>
n+1. (3.8c)

The structure of this expression has the general form [5]

f(A)b = f(M1 ⊕M2) vec(B). (3.9)

Approximations for large problem sizes exploit the Kronecker sum structure of
the matrix valued function f and the assumption that matrix B which generates
the vector b has low rank. In our case (3.8a), function ϕ is applied to a Kronecker
sum and the matrix F (Ω) (3.8b) has rank 1. Below, we apply the approach [5]
and refine it in terms of an additional approximation that takes into account
the structure of our problem (3.8).

The approach [5] amounts to determine two Krylov subspaces with orthonor-
mal bases Pm = (p1, . . . , pm), Rm = (r1, . . . , rm) and the standard approxima-
tions [6, Section 13.2.1]

Km(−B(Ω)
>
, f1), −B(Ω)

>
Pm = PmT1 + T1;m+1,mpm+1e

>
m, (3.10a)

Km(B(Ω), en+1), B(Ω)Rm = RmT2 + T2;m+1,mrm+1e
>
m. (3.10b)

Setting Um = Pm ⊗Rm yields

(−B(Ω)
> ⊕B(Ω))Um = −B(Ω)

>
Pm ⊗Rm + Pm ⊗B(Ω)Rm (3.11a)

(3.10)
= (Pm ⊗Rm)(T1 ⊕ T2) + low rank terms (3.11b)

and with Tm = T1 ⊕ T2 and B(Ω) = −B(Ω)
> ⊕B(Ω) the approximation of the

matrix-vector product on the right-hand side of (3.8a)

ϕ(B(Ω)) vecr(F (Ω)) ≈ Umϕ(Tm)U>m vecr(F (Ω)) (3.12a)

= Umϕ(Tm) vecr(P
>
mF (Ω)Rm) =: vecr(PmZR

>
m), (3.12b)

Learning Linear Assignment Flows 9

Z = vec−1r
(
ϕ(Tm) vecr(P

>
mF (Ω)Rm)

)
(3.13a)

(3.8c)
= vec−1r

(
ϕ(Tm) vecr

(
(P>mf1)(R>men+1)

>))
. (3.13b)

The need to store PmZR
>
m ∈ Rn×n in the right-hand side of (3.12b) is prob-

lematic. Our additional approximation, therefore, exploits that fact that the
matrix F (Ω) of (3.8) has rank 1 and that the singular values of ϕ(Tm) typically
decrease quickly. As a consequence, we directly approximate Z ∈ Rm×m by a
singular value decomposition (SVD),

Z ≈
∑
i∈[r]

σiyi ⊗ z>i , r � m, to obtain (3.14)

ϕ(B(Ω)) vecr(F (Ω)) ≈ vecr

(
Pm

(∑
i∈[r]

σiyi ⊗ z>i
)
R>m

)
(3.15a)

= vecr

(∑
i∈[r]

σi(Pmyi)⊗ (Rmzi)
>
)

=
∑
i∈[r]

σi(PmYi)⊗ (RmZi). (3.15b)

The last expression shows that Um = Pm⊗Rm does not have to be explicitly com-
puted and stored. By leaving the Kronecker product unevaluated, the resulting
vector (3.15b) can be conveniently multiplied with the Jacobian dfB(vecr(Ω))

>

of (3.8a). In addition, merely O(2rn) numbers have to be stored which is feasible
even for large problem sizes like 3D image labeling problems.

3.3 Computing the Gradient using Automatic Differentiation

An entirely different approach for computing the gradient ∂L(Ω) of the func-
tion (3.1) is using automatic differentiation. To this end, we implemented the
explicit Euler integration of the linear assignment flow (2.7b)

V (k+1) = V (k+1) + h
(
A(Ω)[V (k)] +BW0

)
, V (0) = 0 (3.16)

in PyTorch and used PyTorch’s automatic differentiation capabilities to compute
the gradient. Similarly, we let PyTorch compute the gradient of the exponential
integration (2.10b) of the linear assignment flow.

From a numerical point of view, we compare the approaches in Section 5.

4 Application to the Linear Assignment Flow

We provide further details on our implementation.

Loss Function. Because we can use trivial rounding to convert tangent vectors
V ∈ T0 and in turn assignment matrices W ∈ W to a labeling, only the direction
of the tangent vectors is important, but not their length. Thus, we consider the
angle between the solution of the linear assignment flow V and a ground truth
direction V ∗ = Exp−11W

(W ∗), with ground truth labeling W ∗, as loss function

fL : Rn −→ R, V 7−→ 1− 〈V ∗, V 〉
‖V ∗‖‖V ‖

. (4.1)

10 Zeilmann, Petra, Schnörr

We point out that our approach works with any C1 loss function.

Riemannian Gradient Descent. As stated in Section 2.1, the parameters of
the weight patches as nonzero entries of the row-stochastic matrix Ω of the linear
assignment flow can be represented in the same way as the assignment vectors
on the assignment manifoldW. Consequently, we convert the Euclidean gradient
∂L(Ω) from Section 3 into the Riemannian gradient ∇L(Ω) = RΩ∂L(Ω) using
the mapping (2.4a) and perform Riemannian gradient descent

Ω(k+1) = expΩ(k)(−h∇L(Ω(k))), k = 0, 1, 2, . . . (4.2)

with step size h > 0. As initialization, we choose uniform weights Ω(0) = 1W .

Parameter Influence. Our implementation also takes into account the de-
pendency of the vector b of (2.9a) and the block-matrices RSi(W0) of (2.9b) on
Ωi = (ωik). Due to lack of space, we did not include formulas of the correspond-
ing gradient components in Section 3.

5 Experiments

Figures 5.1, 5.2 and 5.3 illustrate the applicability and performance of our ap-
proach. We refer to the captions for details.

A comparison of our algorithm and the two algorithms using backpropagation
is depicted by Figure 5.2. Generally speaking, regarding numerical computations
(Fig. 5.2, left), the difference between the three algorithms is negligible compared
to the influence of other hyperparameters like step size (learning rate) h for the
gradient descent or neighborhood size |Ni|, respectively. Our algorithm, however,
has further advantageous properties as listed on page 3. In particular, it explicitly
returns a subspace of low dimension m (Fig. 5.2, left) that will be useful for
further tasks related to label prediction and flow control.

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 5.1. Left: Noisy artificial vessel-like structures used as input data. Center-left:
Left half of the labeling (labels: J = {�,�}) result using uniform weights. Center-
right: The labeling result based on learned weights is very close to the ground truth
(< 0.1% wrong pixels). Right: Pseudo-color plot of entropies of learned weight patches
for each center pixel. The algorithm learned where to denoise with uniform weights
(high entropy) and where to enforce structure using non-uniform weights (low entropy).

Learning Linear Assignment Flows 11

Percentage of Wrong Pixels

our approach

explicit Euler and backpropagation

exponential integration and backpropagation

20 40 60 80 100

3%

10%

30%

100%

Training Iteration

Percentage of Wrong Pixels

20 40 60 80 100

3%

10%

30%

100%

Training Iteration

Fig. 5.2. Comparison of the loss for different algorithms and Krylov sub-
space dimensions. Left: We chose the Krylov subspace dimension resp. the discrete
time step size such that all three algorithms required about the same computation time.
Closeness of the curves demonstrates that all methods estimate the parameters accu-
rately. The slightly worse accuracy of our algorithm is due to the fact that it uses an
approximation of the gradient instead of the exact gradient of an approximated model.
Our approach, however, is mathematically explicit and enjoys the pros displayed by
Figure 1.1. Right: For our approach to parameter learning based on the linear assign-
ment flow, a Krylov subspace dimension of m = 5 turned out to sufficient for most
experiments, as illustrated by the plot.

Fig. 5.3. Expressivity of the linear assignment flow. Left: Pure noise used as
input data. Center: Labeling (J = { , , , , , , , }) with uniform weights
returns more than 90% wrongly labeled pixels. Right: Our learning approach takes less
than 10 seconds and produces a labeling at multiple spatial scales with well below 1%
wrongly labeled pixels. These wrong label assignments can be corrected by choosing a
larger neighborhood size or by iteratively applying the assignment flow again.

6 Conclusion

We presented a novel approach for learning the parameters of the linear assign-
ment flow for image labeling. The algorithm approximates the computationally
infeasible exact gradient of a linear dynamical system with respect to the regular-
izing weight parameters, using exponential integration, low-rank approximation
and sparse matrix-vector multiplications. Regarding runtime, our research im-
plementation is on par with highly tuned-machine learning toolboxes, and it

12 Zeilmann, Petra, Schnörr

additionally returns the essential information for image labeling in terms of a
low-dimensional parameter subspace. Our future work will study on this basis
problems related to label prediction and flow control.

Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 -
390900948 (the Heidelberg STRUCTURES Excellence Cluster).

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. In: OSDI (2016)

2. Al-Mohy, A.H., Higham, N.J.: Computing the Fréchet Derivative of the Matrix Ex-
ponential, with an Application to Condition Number Estimation. SIAM J. Matrix
Anal. Appl. 30(4), 1639–1657 (2009)

3. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image Labeling by Assignment.
Journal of Mathematical Imaging and Vision 58(2), 211–238 (2017)

4. Baydin, A., Pearlmutter, B., Radul, A., Siskind, J.: Automatic Differentiation in
Machine Learning: a Survey. J. Machine Learning Research 18, 1–43 (2018)

5. Benzi, M., Simoncini, V.: Approximation of Functions of Large Matrices with Kro-
necker Structure. Numerische Mathematik 135(1), 1–26 (2017)

6. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM (2008)
7. Hochbruck, M., Lubich, C.: On Krylov Subspace Approximations to the Matrix

Exponential Operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)
8. Hühnerbein, R., Savarino, F., Petra, S., Schnörr, C.: Learning Adaptive Regular-

ization for Image Labeling Using Geometric Assignment. Journal of Mathematical
Imaging and Vision 63, 186–215 (2021)

9. Kandolf, P., Koskela, A., Relton, S.D., Schweitzer, M.: Computing Low-Rank Ap-
proximations of the Fréchet Derivative of a Matrix Function Using Krylov Subspace
Methods. arXiv:2008.12926 (2020)

10. Moler, C., Loan, C.V.: Nineteen Dubious Ways to Compute the Exponential of a
Matrix, Twenty-Five Years Later. SIAM Review 45(1), 3–49 (2003)

11. Najfeld, I., Havel, T.F.: Derivative of the Matrix Exponential and Their Compu-
tation. Adv. Appl. Math. 16(3), 321–375 (1995)

12. Niesen, J., Wright, W.M.: Algorithm 919: A Krylov Subspace Algorithm for Eval-
uating the ϕ-Functions Appearing in Exponential Integrators. ACM Transactions
on Mathematical Software 38(3), 1–19 (2012)

13. Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In: NIPS (2019)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
15. Schnörr, C.: Assignment Flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.)

Variational Methods for Nonlinear Geometric Data and Applications, pp. 235–260.
Springer (2020)

16. Van Loan, C.F.: The Ubiquitous Kronecker Product. J. Comput. Appl. Math. 123,
85–100 (2000)

17. Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric Numerical Integration
of the Assignment Flow. Inverse Problems 36(3) (2020)

18. Zern, A., Zeilmann, A., Schnörr, C.: Assignment Flows for Data Labeling on
Graphs: Convergence and Stability. arXiv:2002.11571 (Feb 20, 2020)

	Learning Linear Assignment Flows for Image Labeling via Exponential Integration

