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Abstract The assignment flow recently introduced in the J. Math. Imaging and
Vision 58/2 (2017) constitutes a high-dimensional dynamical system that evolves on a
statistical product manifold and performs contextual labeling (classification) of data
given in a metric space. Vertices of an underlying corresponding graph index the
data points and define a system of neighborhoods. These neighborhoods together
with nonnegative weight parameters define the regularization of the evolution of
label assignments to data points, through geometric averaging induced by the affine
e-connection of information geometry. From the point of view of evolutionary game
dynamics, the assignment flow may be characterized as a large system of replicator
equations that are coupled by geometric averaging.

This paper establishes conditions on the weight parameters that guarantee conver-
gence of the continuous-time assignment flow to integral assignments (labelings), up
to a negligible subset of situations that will not be encountered when working with
real data in practice. Furthermore, we classify attractors of the flow and quantify corre-
sponding basins of attraction. This provides convergence guarantees for the assignment
flow which are extended to the discrete-time assignment flow that results from apply-
ing a Runge-Kutta-Munthe-Kaas scheme for the numerical geometric integration of
the assignment flow. Several counter-examples illustrate that violating the conditions
may entail unfavorable behavior of the assignment flow regarding contextual data
classification.
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1 Introduction

1.1 Problem and Motivation

Metric data labeling denotes the task to assign to each data point of a given finite set
FI = { fi : i ∈ I} ⊂ F in a metric space (F ,dF ) a unique label (a.k.a. prototype, class
representative) from another given set F∗J = { f ∗j : j ∈ J} ⊂ F . The data indices i ∈ I
typically refer to positions xi ∈ Rd in space of in space-time [0,T ]×Rd . Accordingly,
one associates with the data a graph G = (I,E) where the set of nodes I indexes the
data and the edge set E ⊂ I× I represents a neighborhood system. A basic example is
provided by the data of a digital image observed on a regular grid graph G in which
case the data space F may be a color space, a high-dimensional Euclidean space like
in multispectral imaging, or the positive-definite matrix manifold like in diffusion
tensor medical imaging.

Data labeling provides a dramatic reduction of given data as Figure 1.1 illustrates.
In addition, it is a crucial step for data interpretation. Basic examples include the
analysis of traffic scenes [8], of medical images or of satellite images in remote
sensing.

Fig. 1.1 Data labeling on a graph through the assignment flow: Values from a finite set (so-called labels)
are assigned to a given vector-valued function so as to preserve its spatial structure on a certain spatial scale.
LEFT: Input data. CENTER: Data labeled at a fine spatial scale. RIGHT: Data labeled at a coarser spatial
scale. Scale is determined by the size |Ni|, i ∈ I of neighborhoods Ni (1.13) that couple the individual
dynamics (1.1) (see Section 1.2). Here, uniform weight parameters Ω (1.14) were used.
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The assignment flow approach [2] provides a mathematical framework for the
design of dynamical systems that perform metric data labeling. This approach replaces
established variational methods to image segmentation [7] as well as discrete Markov
random fields for image labeling [17] by smooth dynamical systems that facilitate the
design of hierarchical systems for large-scale numerical data analysis. In addition, it
can be extended to unsupervised scenarios [34] where the labels F∗J can be adapted to
given data or even learned from the data itself [35]. We refer to the survey [26] for
further discussion and related work.

Interpretation of data is generally not possible without an inductive bias towards
prior expectations and application-specific knowledge. In connection with image la-
beling, such knowledge is represented by regularization parameters that influence
label assignments by controlling the assignment flow. Figure 1.2 provides an illustra-
tion. Nowadays, such parameters are learned directly from data. Due to the inherent
smoothness, assignment flows can be conveniently used to accomplish this machine
learning task [16,31,32].

(a) noisy input image (b) close-up view
(c) labeling with
uniform weights

(d) labeling with
adaptive weights

Fig. 1.2 The assignment flow depends on the parameters Ω (1.14). (a),(b): Input data corrupted with noise.
(c) Labeling with uniform weights. (d) Labeling with nonuniform weights removes the noise, exploits spatial
context and determines correct label assignments. Stability and asymptotic behavior of the assignment flow
based on feasible parameters Ω are studied in this paper.

From a more distant point of view, deep networks and learning [13] prevail in
machine learning. Besides their unprecedented performance in applications, current
deep learning architectures are also known to be susceptible to data perturbations
leading to unpredictable erroneous outputs [9,11,14]. Our aim, therefore, is to prove
stability properties of assignment flows under suitable assumptions on the regulariza-
tion parameters, together with the guarantee that labelings, i.e. integral assignments,
are computed for any data at hand.

Section 1.3 further details the scope of this paper after introducing the assignment
flow approach in the next section.

1.2 Assignment Flow

The assignment flow has been introduced by [2] for the labeling of arbitrary data given
on a graph G = (I,E). It is defined by the system of nonlinear ODEs

Ẇi = RWiSi(W ), Wi(0) = 1
n 1n, i ∈ I, (1.1)
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whose solutions Wi(t) evolve on the elementary Riemannian manifold (S,g) given by
the relative interior S = rint(∆n) of the probability simplex

∆n =
{

p ∈ Rn :
n

∑
j=1

p j = 〈1n, p〉= 1, p≥ 0
}
. (1.2)

Here, n = |J| denotes the number of labels and 1n = (1, . . . ,1)> ∈ Rn is the vector of
ones. The tangent space of S at any point p ∈ S is given by

T0 = {v ∈ Rn : 〈1n,v〉= 0}, (1.3)

and the Riemannian structure on S is defined by the Fisher-Rao metric

gp(u,v) =
n

∑
j=1

u jv j

p j
, p ∈ S, u,v ∈ T0. (1.4)

The basic idea underlying the approach (1.1) is that each vector Wi(t) converges
within S to an ε-neighborhood of some vertex (unit vector) e j of ∆n, that is

∀ε > 0: ‖Wi(T )− e j‖ ≤ ε, (1.5)

for sufficiently large T = T (ε)> 0. This enables to assign a unique label (class index)
j to the data point observed at vertex i ∈ I by trivial rounding:

j = argmax
l∈{1,...,n}

Wil . (1.6)

In the following, we give a complete definition of the vector field defining the
assignment flow (1.1). The linear mapping RWi of (1.1) will be called replicator matrix.
It is defined by

Rp : Rn→ T0, Rp = Diag(p)− pp>, p ∈ S. (1.7)

Regarding the orthogonal projection onto T0 given by

Π0 : Rn→ T0, Π0 = In− 1
n 1n1>n (1.8)

with In denoting the identity matrix, the replicator matrix satisfies

Rp = RpΠ0 = Π0Rp, ∀p ∈ S. (1.9)

Further, we will use the exponential map and its inverse

expp : Rn→S, expp(v) =
pev

〈p,ev〉
, p ∈ S, (1.10a)

exp−1
p : S → T0, exp−1

p (q) = Π0 log
q
p
, (1.10b)

where multiplication, division, exponentiation and logarithm of vectors is meant com-
ponentwise. We call this map ‘exponential’ for simplicity. In fact, definition (1.10a) is
the explicit expression of the relation

expp = Expp ◦Rp, (1.11)
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where Exp: S×T0→S is the exponential map corresponding to the affine e-connection
of information geometry; see [1,3] and [26] for details. A straightforward calculation
shows that the differential of expp at v is

d expp(v) = Rexpp(v), (1.12)

where the right-hand side is defined by (1.7) and (1.10a).
The behavior of the assignment flow (1.1), essentially rests upon the coupling of

the local systems through the mappings Si within local neighborhoods

Ni = {i}∪{k ∈ I : i∼ k}, i ∈ I, (1.13)

corresponding to the adjacency relation E ⊆ I× I of the underlying graph G. These
couplings are parameterized by nonnegative weights

Ω = {ωik}k∈Ni,i∈I . (1.14)

Considering the assignment manifold

W = S ×·· ·×S, (|I| times) (1.15)

the similarity map S : W →W is defined by

Si : W →S, Si(W ) = ExpWi

(
∑

k∈Ni

ωik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I (1.16a)

Li : S → S, Li(Wi) = expWi
(−Di), i ∈ I. (1.16b)

It regularizes the assignment vectors Wi ∈ S depending on the parameters (1.14),
for given input data in terms of distance vectors Di ∈ Rn storing the distances
Di j = dF ( fi, f ∗j ) between data points fi ∈ FI and prototypes f ∗j ∈ F∗J . Denoting
the barycenter of S with 1S = 1

n 1n, the defining relation (1.16a) can be rewritten in
the form [23, Lemma 3.2]

Si(W ) = exp1S

(
∑

k∈Ni

ωik
(

exp−1
1S

(Wk)−Dk
))

, i ∈ I. (1.17)

In view of (1.15), all the mappings in (1.7), (1.10) and (1.16) naturally generalize
from S toW and from T0 given by (1.3) to

T0 = T0×·· ·×T0. (|I| times) (1.18)

For example,

expW (V ) =
(

expW1
(V1), . . . ,expW|I|

(V|I|)
)>

. (1.19)

We also denote the barycenter ofW with 1W =(1S , . . . ,1S)
>. Accordingly, collecting

all equations of (1.1), the assignment flow reads

Ẇ = RW S(W ), W (0) = 1W . (1.20)
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1.3 Objectives

The first goal of this paper is to analyze the asymptotic behavior of the assignment
flow (1.1) depending on the parameters (1.14). It was conjectured [2, Conjecture 1]
that, for data in ‘general position’ as they are typically observed in real scenarios
(e.g. no symmetry due to additive noise), the assignment flow converges to an integral
labeling at every pixel, as described above in connection with (1.6). We confirm this
conjecture in this paper under suitable assumptions on the parameters Ω . To this end,
we use a reparametrization of the assignment flow and clarify the convergence of the
reparameterized flow to equilibria and their stability.

The second goal of this paper concerns the same question regarding the time-
discrete assignment flow that is generated by a scheme for numerically integrat-
ing (1.1). Depending on what scheme is chosen, properties of the resulting flow may
differ from properties of the time-continuous flow (1.1). Indeed, the authors of [2]
adopted a numerical scheme from [19] which, when adapted and applied to (1.1), was
shown in [5] to always converge to a constant solution, i.e. a single label is assigned
to every pixel no matter which data are observed. Even though numerical experiments
strongly indicate that this undesirable asymptotic behavior is irrelevant in practice,
because it only occurs when W (tk) is so close to the boundary of the closure of the
underlying domain such that it cannot be reproduced with the usual machine accuracy,
such behavior—nonetheless—is unsatisfactory from the mathematical viewpoint.

In this paper, therefore, we consider the simplest numerical scheme that was re-
cently devised and studied in [33], to better take into account the geometry underlying
the assignment flow (1.1) than the numerical scheme adopted in [2]. We show under
suitable assumptions on the parameters Ω , that the time-discrete assignment flow gen-
erated by such a proper numerical scheme cannot exhibit the pathological asymptotic
behavior mentioned above.

1.4 Related Work

The assignment flow approach emerged from classical methods (variational methods,
discrete Markov random fields) to image segmentation and labeling. We refer to [26]
for further discussion. The approach can take into account any differentiable data like-
lihood, and all discrete decisions like the formation of spatial regions at a certain scale
are done by integrating the flow numerically. The inherent smoothness of the approach
compares favorably to discrete schemes for image segmentation, like region growing
schemes [20], in particular regarding the learning of parameters for incorporating prior
knowledge. In particular, spatial regularization can be performed independently of
the metric model of the data at hand. This is not the case for segmentation based on
spectral clustering [27] as discussed in detail and demonstrated by [35].

From a more distant viewpoint, our results may be also of interest in the field of
evolutionary game dynamics [15,22]. The corresponding basic dynamical system has
the form

ṗ = p
(

f (p)−Ep[ f (p)]1n
)
, p(0) ∈ ∆n, (1.21)
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where the first multiplication on the right-hand side is done componentwise, the
expectation is given by Ep[ f (p)] = 〈p, f (p)〉 and p(t) evolves on ∆n. The differential
equation (1.21) is known as replicator equation. It constitutes a Riemannian gradient
flow with respect to the Fisher-Rao metric if f = ∇F derives from a potential F . It
is well known that depending on what ‘affinity function’ f : ∆n → Rn is chosen, a
broad range of dynamics may occur, even for linear affinities p 7→ Ap, A ∈ Rn×n

(see e.g. [6]). Other choices give even rise to chaotic dynamics (see e.g. [12]). By
comparison, the explicit form of Eq. (1.1) reads

Ẇi =Wi
(
Si(W )−EWi [Si(W )]1n

)
, i ∈ I, (1.22)

where Si(W ) couples a possibly very large number m = |I| of replicator equations of
the form (1.22), as explained above in connection with (1.14). The mapping Si does
not derive from a potential, however, but can be related to a potential after a proper
reparametrization and under a symmetry assumption on the parameters (1.14) [23].
We refer to [26] for a more comprehensive discussion of the background and further
work related to the assignment flow (1.1).

1.5 Organization

The assignment flow and its basic properties (limit points, convergence, stability) are
established in Section 2. We briefly examine in Section 2.4 also properties of a simpli-
fied approximate version of the assignment flow, that can be linearly parametrized on
the tangent space, which is convenient for data-driven estimation of suitable weight
parameters [16]. In Section 3, we extend these results to the discrete-time assignment
flow that is obtained by applying the simplest numerical scheme for geometric integra-
tion of the assignment flow, as worked out in [33]. Numerical examples demonstrate
that violating the conditions established in Section 2 may lead to various behaviors of
the assignment flow, all of which are unfavorable as regards data classification. Some
lengthy proofs have been relegated to Appendix A. We conclude in Section 4.

1.6 Basic Notation

We set [n] = {1,2, . . . ,n} for any n ∈ N and denote by |S| the cardinality of any
finite set S. Throughout this paper, m and n will denote the number of vertices of the
underlying graph G = (I,E) and the number of classes indexed by J, respectively,

m = |I|, n = |J|. (1.23)

The setW = S ×·· ·×S (1.15) is called assignment manifold, where S = rint(∆n) is
the relative interior of the probability simplex ∆n. S andW , respectively, are equipped
with the Fisher-Rao metric (1.4) and hence are Riemannian manifolds. Points ofW are
row-stochastic matrices denoted by W = (W1, . . . ,Wm)

> ∈W with row vectors (also
called subvectors) Wi ∈ S, i ∈ I and with components Wi j, j ∈ J. The same notation is
adopted for the image S(W ) of the mapping S : W→W defined by (1.16). We denote
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the set of nonnegative reals by R≥0. Parameters (1.14) form a matrix Ω ∈ Rm×m
≥0 . The

subvectors of ΩS are denoted by (ΩS)i, i ∈ I.
1n = (1,1, . . . ,1)> ∈ Rn denotes the vector with all entries equal to 1 and ei =

(0, . . . ,0,1,0, . . . ,0)> is the ith unit vector. The dimension of ei will be clear from the
context. 1S = 1

n 1n denotes the barycenter of S (uniform categorical distribution). Sim-
ilarly, 1W with subvectors (1W)i = 1S , i ∈ I denotes the barycenter of the assignment
manifoldW . In denotes the identity matrix of dimension n×n.

The closure ofW is denoted by

W = ∆n×·· ·×∆n (1.24)

and the set of integral assignments (labelings) by

W∗ =W∩{0,1}m×n. (1.25)

Each subvector Wi of a point W ∈W∗ is a unit vector Wi = e j for some j ∈ J.
The support of a vector v ∈ Rn is denoted by supp(v) = {i ∈ [n] : vi 6= 0}. 〈x,y〉

denotes the Euclidean inner product of vectors x,y and 〈A,B〉 = tr(A>B) the inner
product of matrices A,B. The spectral (or operator) norm of a matrix A is denoted
by ‖A‖2. For two matrices of the same size, A�B denotes the Hadamard (entry-
wise) matrix product. For A ∈ Rm×n, B ∈ Rp×q, the matrix A⊗B ∈ Rmp×nq denotes
the Kronecker product of matrices with submatrices Ai jB ∈ Rp×q, i ∈ [m], j ∈ [n]
(cf. e.g. [30]). N (A) and R(A) denote the nullspace and the range of the linear
mapping represented by A ∈ Rm×n. For strictly positive vectors with full support,
like p ∈ S with supp(p) = [n], the entry-wise division of a vector v ∈ Rn by p is
denoted by v

p . Likewise, we set pv = (p1v1, . . . , pnvn)
>. The exponential function and

the logarithm apply componentwise to vectors, i.e. ev = (ev1 , . . . ,evn)> and log p =
(log p1, . . . , log pn)

>. For large expression as arguments, we also write

ev = exp(v), (1.26)

which should not be confused with the exponential map (1.10) that is always written
with subscript. Diag(p) denotes the diagonal matrix with the components of the vector
p on its diagonal.

2 Properties of the Assignment Flow

2.1 Representation of the Assignment Flow

The following parametrization of the assignment flow will be convenient for our
analysis.

Proposition 1 (S-parametrization [23, Proposition 3.6]) The assignment flow (1.20)
is equivalent to the system

Ṡ = RS(ΩS), S(0) = exp1W (−ΩD), (2.1a)

Ẇ = RW S, W (0) = 1W . (2.1b)

More precisely, W (t), t ≥ 0 solves (1.20) if and only if it solves (2.1).
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The difference between (1.20) and (2.1) is that the latter representation separates the
dependencies on the data D and the assignments W : The given data D completely
determines S(t) through the initial condition of (2.1a), and S(t) completely deter-
mines the assignments W (t) by (2.1b). In what follows, our focus will be on how the
parameters Ω affect S(t) and W (t).

Remark 1 (S-flow) We call S-flow system (2.1a) and its solution S(t) in the remainder
of this paper and use the short-hand F for the vector field, i.e.

Ṡ = F(S) = RS(ΩS), S(0) = S0 ∈W. (2.2)

A direct consequence of the parametrization (2.1) is the following.

Proposition 2 Let S(t), t ≥ 0 solve (2.1a). Then the solution to (2.1b) is given by

W (t) = exp1W

(∫ t

0
S(τ)dτ

)
= exp1W

(∫ t

0
Π0S(τ)dτ

)
. (2.3)

Proof Set IS(t) =
∫ t

0 S(τ)dτ . Then W (t) = exp1W

(
IS(t)

)
and

Ẇ (t) = d exp1W

(
IS(t)

)[
İS(t)

] (1.12)
= Rexp1W (IS(t))

(
İS(t)

)
= RW (t)

(
S(t)

)
. (2.4)

The second equation of (2.3) follows from the first equation of (1.9). ut

Transferring the assignment flow (1.20) to the tangent space T0 and linearizing the
ODE leads to the linear assignment flow [33, Prop. 4.2]

V̇ = RŜ(ΩV )+B, V (0) = 0, V ∈ T0, (2.5)

with fixed Ŝ ∈W and B ∈ T0.
We note that both the S-flow (2.2) and the linear assignment flow (2.5) are defined

by similar vector fields on the tangent space T0. Ignoring the constant term B in (2.5)
that can be represented by using a corresponding initial point (see Lemma 2), the
difference concerns the parameters S and Ŝ of the replicator matrix: In the linear
assignment flow, this parameter Ŝ is fixed, whereas in the S-flow, it changes with the
flow. Notice that ‘linear’ refers to the linearity of the ODE (2.5) on the tangent space.
The corresponding lifted flow (2.56) on the assignment manifold is still nonlinear
(cf. [33, Def. 4.1]).

Convergence properties of the S-flow and the linear assignment flow are analyzed
in the following sections.

2.2 Existence and Uniqueness

We establish global existence and uniqueness of both the S-flow and the assignment
flow and examine to what extent the former determines the latter.

Proposition 3 (global existence and uniqueness) The solutions W (t),S(t) to (2.1)
are unique and globally exist for t ≥ 0.
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Proof The hyperplanes {S : ∑ j Si j = 1} for i ∈ I and {S : Si j = 0} for i ∈ I, j ∈ J are
invariant with respect to the flow (2.2). Hence, S(t) stays inW ⊂W (cf. [15]) and
therefore exists for all t ∈ R by [29, Corollary 2.16]. Equation (2.3) then implies the
existence of W (t) for all t ∈ R. The uniqueness of the solutions follow by the local
Lipschitz continuity of the right-hand side of (2.2) and (1.20), respectively. ut

Remark 2

(a) It is clear in view of the representation (2.1) that the domain W of the S-flow
and consequently the domain of the assignment flow, too, can be extended toW ,
and we henceforth assume this to be the case. Furthermore, the domain of the
S-flow can be extended to an open set U withW ⊂U ⊆ Rm×n. In the latter case,
although the existence for all t ≥ 0 is no longer guaranteed, this simplifies the
stability analysis of equilibria S∗ ∈W , as we will see in Section 2.3.

(b) The assignment flow shares with replicator equations in general (cf. [15]) that it is
invariant with respect to the boundary ∂W : Due to the multiplication with RS and
RW , respectively, both S(t) and W (t) cannot leave the corresponding facet of ∂W
whenever they reach it.

Next, we examine what convergence of S(t) close to ∂W implies for W (t).

Proposition 4 Let

V j =
{

p ∈ ∆n : p j > pl , ∀l ∈ [n]\{ j}
}
, j ∈ [n] (2.6)

denote the Voronoi cells of the vertices of ∆n in ∆n and suppose limt→∞ Si(t) = S∗i ∈ ∆n,
for any i ∈ I. Then the following assertions hold.

(a) If S∗i ∈ V j∗(i) for some label (index) j∗ = j∗(i) ∈ J, then there exist constants
αi,βi > 0 such that

‖Wi(t)− e j∗(i)‖1 ≤ αie−βit , ∀t ≥ 0. (2.7a)

In particular,

lim
t→∞

Wi(t) = e j∗(i). (2.7b)

(b) One has∫
∞

0
‖Si(t)−S∗i ‖1dt < ∞

=⇒ lim
t→∞

Wi(t) =W ∗i with supp(W ∗i ) = argmax j∈J S∗i j. (2.8)

Proof See Appendix A.

Proposition 4(a) states that if any subvector of the S-flow converges to a Voronoi
cell (2.6), then the corresponding subvector of W (t) converges exponentially fast to
the corresponding integral assignment.

Proposition 4(b) handles the case when the limit point S∗i lies at the border of
adjacent Voronoi cells, that is the set argmax j∈J S∗i j is not a singleton. In this case, one
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can only state that Wi(t) converges to some (possibly nonintegral) point W ∗i without
being able to predict precisely this limit based on S∗i alone. In contrast to (a), we also
have to assume that the convergence of the S-flow is fast enough—see the hypothesis
of (2.8). This assumption is reasonable, however, because it is satisfied whenever S∗i is
subvector of a hyperbolic equilibrium point of the S-flow (cf. Remark 5 below).

Example 1 We briefly demonstrate what may happen when the assumption of (2.8) is
violated. Suppose Si(t) and S∗i are given by

Si(t) =

 1
2 −

1
t+1

1
2 −

2
t+1

3
t+1

 −→ S∗i =

 1
2
1
2
0

 for t→ ∞. (2.9)

The first component of Si(t) converges faster than the second component. Since
‖Si(t)−S∗i ‖1 =

6
t+1 , the convergence rate assumption of (2.8) does not hold. Calculat-

ing Wi(t) due to (2.3) gives

Wi(t) =
1

1+ 1
t+1 +(t +1)4e−

1
2 t

 1
1

t+1

(t +1)4e−
1
2 t

−→W ∗i =

1
0
0

 for t→ ∞,

(2.10)
i.e. Wi(t) still converges, but we have supp(W ∗i )( argmax j∈J S∗i j unlike the statement
of (2.8). This example also shows that, in the case of Proposition 4(b), the limit W ∗i
may depend on the trajectory Si(t), rather than only on the limit point S∗i as in case
(a).

Proposition 4 makes explicit that the S-flow largely determines the asymptotic behavior
of W (t). The next section, therefore, focuses on the S-flow (2.2) and on its dependency
on the parameters Ω .

2.3 Convergence to Equilibria and Stability

In this section, we characterize equilibria, their stability, and convergence properties
of the S-flow (2.2). Quantitative estimates of the basin of attraction to exponentially
stable equilibria will be provided, too.

2.3.1 Characterization of Equilibria and Their Stability

We show in this section under mild conditions that only integral equilibrium points
S∗ ∈W∗ can be stable.

Proposition 5 (equilibria) Let Ω ∈ Rn×n be an arbitrary matrix.

(a) A point S∗ ∈W is an equilibrium point of the S-flow (2.2) if and only if

(ΩS∗)i j = 〈S∗i ,(ΩS∗)i〉, ∀ j ∈ supp(S∗i ), ∀i ∈ I, (2.11)

i.e., the subvectors (ΩS∗)i are constant on suppS∗i , for each i ∈ I.
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(b) Every point S∗ ∈W∗ is an equilibrium point of the S-flow (2.1a).
(c) Let J+⊆ J be a non-empty subset of indices, and let 1J+ ∈Rn be the corresponding

indicator vector with components (1J+) j = 1 if j ∈ J+ and (1J+) j = 0 otherwise.
Then S∗ = 1

|J+|1m1>J+ is an equilibrium point. In particular, the barycenter 1W =
1
n 1m1>n corresponding to J+ = J is an equilibrium point.

Proof

(a) Each equation of the system (2.2) has the form

Ṡi j = Si j
(
(ΩS)i j−〈Si,(ΩS)i〉

)
, i ∈ I, j ∈ J. (2.12)

Ṡi j = 0 implies Si j = S∗i j 6= 0 if j ∈ supp(S∗i ) and that the term in the round brackets
is zero, which is (2.11).

(b) The replicator matrix (1.7) satisfies Re j ≡ 0, ∀ j ∈ J. This implies RS∗ = 0 and in
turn RS∗(ΩS∗) = 0.

(c) Since ΩS∗ = 1
|J+| (Ω1m)1>J+ , the subvectors (ΩS∗)i, i ∈ I are constant on J+ =

suppS∗i , which implies by (a) that S∗ is an equilibrium point.
ut

Remark 3 The set of equilibria characterized by Proposition 5 (b) and (c) may not
exhaust the set of all equilibrium points for a general parameter matrix Ω . However, we
will show below that, under certain mild conditions, any such additional equilibrium
points must be unstable.

Next, we study the stability of equilibrium points.

Lemma 1 (Jacobian) Let F(S) denote the vector field defining the S-flow (2.2). Then,
after stacking S row-wise, the Jacobian matrix of F is given by

∂F
∂S

=

B1
. . .

Bm

+

RS1
. . .

RSm

 ·Ω ⊗ In (2.13)

with block matrices Bi =Diag
(
(ΩS)i

)
−〈Si,(ΩS)i〉In−Si(ΩS)>i and RSi given by (1.7).

Proof The subvectors of F have the form

Fi(S) = RSi(ΩS)i =
(

Diag(Si)−SiS>i
)
(ΩS)i, i ∈ I. (2.14)

Hence

dFi(S)[T ] = d
dt Fi(S+ tT )|t=0 (2.15a)

=
(

Diag(Ti)−TiS>i −SiT>i
)
(ΩS)i +RSi(ΩT )i (2.15b)

=
(

Diag
(
(ΩS)i

)
−〈Si,(ΩS)i〉In−Si(ΩS)>i

)
Ti +RSi(ΩT )i (2.15c)

= BiTi +RSi(ΩT )i. (2.15d)

We have dF(S)[T ] = ∂F
∂S vec(T ) with vec(T ) ∈ Rmn denoting the vector that results

from stacking the row vectors (subvectors) of T . Comparing both sides of this equation,
with the block matrices of the left-hand side given by (2.15), implies (2.13). ut
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Proposition 6 (eigenvalues of the Jacobian) Let S∗ ∈W be an equilibrium point of
the S-flow (2.2), i.e. F(S∗) = RS∗(ΩS∗) = 0. Then regarding the spectrum σ

(
∂F
∂S (S

∗)
)
,

the following assertions hold.

(a) A subset of the spectrum is given by

σ
(

∂F
∂S (S

∗)
)
⊇
⋃
i∈I

{
−〈S∗i ,(ΩS∗)i〉

}
∪
{
(ΩS∗)i j−〈S∗i ,(ΩS∗)i〉

}
j∈J\supp(S∗i )

.

(2.16)
This relation becomes an equation if S∗ is integral, i.e. S∗ ∈W∗. In the latter case,
the eigenvectors are given by

eie>j∗(i) ∈ Rm×n, ei(e j∗(i)− e j)
> ∈ T0, ∀ j ∈ J \{ j∗(i)}, ∀i ∈ I. (2.17)

(b) If S∗ = 1
|J+|1m1>J+ with J+ ⊆ J and |J+| ≥ 2, then

σ
(

∂F
∂S (S

∗)
)
=
⋃
i∈I

{
− (Ω1m)i

|J+|

}
∪

⋃
λ∈σ(Ω)

{
λ

|J+|
}
. (2.18)

(c) Assume the parameter matrix Ω with elements ωii, i ∈ I on the main diagonal, is
nonnegative. If S∗i 6∈ {0,1}n and ωii > 0 hold for some i ∈ I, then the Jacobian
matrix has at least one eigenvalue with positive real part. The real and imaginary
part of the corresponding eigenvector lie in

T+ =
{

V ∈ T0 : supp(V )⊆ supp(S∗)
}
. (2.19)

Proof See Appendix A.

Next, we apply Proposition 6 and the stability criteria stated in Appendix B in order to
classify the equilibria of the S-flow.

Corollary 1 (stability of equilibria) Let Ω be a nonnegative matrix with positive
diagonal entries. Then, regarding the equilibria S∗ ∈ W of the S-flow (2.2), the
following assertions hold.

(a) S∗ ∈W∗ is exponentially stable if, for all i ∈ I,

(ΩS∗)i j < (ΩS∗)i j∗(i) for all j ∈ J \{ j∗(i)}
with { j∗(i)}= argmax j∈J S∗i j. (2.20)

(b) S∗ ∈W∗ is unstable if, for some i ∈ I,

(ΩS∗)i j > (ΩS∗)i j∗(i) for some j ∈ J \{ j∗(i)}
with { j∗(i)}= argmax j∈J S∗i j. (2.21)

(c) All equilibrium points S∗ 6∈ W∗ are unstable.

Proof
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(a) We apply Theorem 3(a) that provides a condition for stability of the S-flow,
regarded as flow on an open subset of Rm×n. Since the stability also holds on
subsets, this shows stability of the S-flow onW .
By Proposition 6(a), the spectrum of ∂F

∂S (S
∗), for S∗ ∈W∗, is given by the right-

hand side of (2.16) and, since Ω is nonnegative, is clearly negative if condi-
tion (2.20) holds.

(b) We take eigenvectors into account and invoke Proposition 16(b). The eigenvectors
are given by (2.17), and if the eigenvalue λ = (ΩS∗)i j− (ΩS∗)i j∗(i) is positive,
then the corresponding eigenvector V = ei(e j∗(i)− e j)

> ∈ T0 is tangent to W .
By Proposition 16(b), there exists an open truncated cone C ⊂ Rm×n such that
δ ·V ∈ C, for sufficiently small δ > 0, and the S-flow (2.1a) is repelled from S∗

within S∗+C. Since V ∈ T0, the (relatively) open subset (S∗+C)∩W ⊂W is
non-empty. This shows the instability of S∗.

(c) By the assumption on Ω , there is an eigenvalue with positive real part due to
Proposition 6(c), and the real and imaginary part of the corresponding eigenvector
lie in T+ ⊆ T0. So the argument of (b) applies here as well using the real part of
the eigenvector.

ut

Remark 4 (selection of stable equilibria) For S∗ to be exponentially stable, Corol-
lary 1(a) requires that every averaged subvector (ΩS∗)i has the same component as
maximal component, as does the corresponding subvector S∗i . This means that the
Ω -weighted average of the vectors S∗j within the neighborhood j ∈ Ni lies in the
Voronoi-cell V j∗(i) (2.6) corresponding to S∗i .

Thus, Corollary 1 provides a mathematical and intuitively plausible definition of
‘spatially coherent’ segmentations of given data, that can be determined by means of the
assignment flow. This also demonstrates how the label (index) selection mechanism
of the replicator equations (1.22), whose spatial coupling defines the assignment
flow (1.20), works from the point of view of evolutionary dynamics [22] when using
the similarity vectors Si(W ) (1.16) as ‘affinity measures’.

2.3.2 Convergence of the S-flow to Equilibria

We make the basic assumption that the parameter matrix Ω has the form

Ω = Diag(w)−1
Ω̂ with w ∈ Rm

>0 and Ω̂
> = Ω̂ ∈ Rm×m. (2.22)

Matrices of the form (2.22) include as special cases parameters satisfying

Ω = Ω
>, (symmetric weights) (2.23a)

w = Ω̂1m. (normalized weights) (2.23b)

An instance of Ω satisfying (2.23b) are nonnegative uniform weights with symmetric
neighborhoods, i.e.

ωik =
1
|Ni| , ∀k ∈Ni and k ∈Ni ⇔ i ∈Nk. (2.24)

Note that in the following basic convergence theorem, neither Ω nor Ω̂ is assumed to
be row-stochastic or nonnegative.
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Theorem 1 (convergence to equilibria) Let Ω be of the form (2.22). Then the S-
flow (2.2) converges to an equilibrium point S∗ = S∗(S0) ∈W , for any initial value
S0 ∈W .

Proof See Appendix A.

Proposition 7 Let Ω be nonnegative with positive diagonal entries, and let S∗ ∈W
be an equilibrium point of the S-flow (2.2) which satisfies one of the instability criteria
of Corollary 1 (b) or (c). Then the set of starting points S0 ∈W for which the S-flow
converges to S∗ has measure zero inW .

Proof By [18], there exists a center-stable manifold Mcs(S∗) which is invariant
under the S-flow and tangent to Ec⊕Es at S∗. Here, Ec and Es denote the center and
stable subspace of ∂F

∂S (S
∗), respectively. Any trajectory of the S-flow converging to

S∗ lies inMcs(S∗). Therefore, it suffices to show that the dimension of the manifold
Mcs(S∗)∩W is smaller than the dimension of W . Note that Mcs(S∗)∩W is a
manifold since bothMcs(S∗) andW are invariant under the S-flow. We have

dim
(
Mcs(S∗)∩W

)
= dim

(
(Ec⊕Es)∩T0

)
= dim(T0)−dim(Eu∩T0)

= dim(W)−dim(Eu∩T0),
(2.25)

where Eu denotes the unstable subspace of ∂F
∂S (S

∗). Since ∂F
∂S (S

∗) has an eigenvalue
with positive real part and a corresponding eigenvector lying in T0 (cf. proof of Corol-
lary 1), we have dim(Eu∩T0)≥ 1 and therefore dim

(
Mcs(S∗)∩W

)
≤ dim(W)−1.

ut

Remark 5 (consequences for the assignment flow) If S∗ ∈ W is a hyperbolic equi-
librium point, then the S-flow locally behaves as its linearization near S∗ by the
Hartman-Grobman theorem [21, Section 2.8]. Since a linear flow can only converge
with an exponential convergence rate, this is also the case for the S-flow (2.2)1. More
precisely, if the S-flow converges to a hyperbolic equilibrium S∗ ∈ W then there
exist α,β > 0 such that ‖S(t)−S∗‖ ≤ αe−β t irrespective of whether S∗ is stable or
not. A direct consequence is

∫
∞

0 ‖Si(t)−S∗i ‖1dt < ∞ for all i ∈ I, i.e., assumption of
Proposition 4(b) automatically holds if S∗ is hyperbolic.

Theorem 2 Let Ω be a nonnegative matrix with positive diagonal entries. Then the
set of starting points S0 ∈W for which the S-flow (2.2) converges to a nonintegral
equilibrium S∗ ∈W , has measure zero inW .

Proof Let E = {S∗ ∈ W : F(S∗) = 0} denote the set of all equilibria of the S-flow
inW , which is a compact subset ofW . If E contains only isolated points, i.e., E is
finite, then the statement follows from Proposition 7. In order to take also into account
nonfinite sets E of equilibria, we apply the more general [10, Theorem 9.1]. Some
additional notation is introduced first.

For any index set J ⊆ I× J, set

EJ =
{

S∗ ∈ E : supp(S∗) = J
}
⊂ E . (2.26)

1 Note that this follows by the Hölder continuity of the homeomorphism in the Hartman-Grobman
theorem. The Hölder continuity is shown in [4].
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The set EJ is the relative interior of a convex polytope and therefore a manifold of
equilibria. This follows from the observation that the equilibrium criterion (2.11) is a
set of linear equality constraints for S∗ ∈W , given by

(ΩS∗)i j− (ΩS∗)il = 0 ∀ j, l ∈ supp(S∗i )
S∗i j = 0 ∀ j ∈ J \ supp(S∗i )

}
, ∀i ∈ I. (2.27)

Further, define for ns,nc,nu ∈ N∪{0} with ns +nc +nu = mn the set

E(ns,nc,nu) =
{

S∗ ∈ E : dimEs(S∗) = ns, dimEc(S∗) = nc, dimEu(S∗) = nu
}
, (2.28)

where Ec(S∗), Es(S∗) and Eu(S∗) denote the center, stable and unstable subspace of
∂F
∂S (S

∗). This set can be written as countable union of compact sets. This can be seen
as follows. The map

E →
{

x ∈ Rmn : x1 ≤ x2 ≤ ·· · ≤ xmn
}
, S∗ 7→ Re

(
λ
(

∂F
∂S (S

∗)
))

, (2.29)

where λ (·) denotes the vector of eigenvalues, is a continuous map on a compact set
and therefore proper, i.e., preimages of compact sets under the map (2.29) are compact.
It is clear that the set Us×Uc×Uu with

Us =
{

x ∈ Rns : x1 ≤ ·· · ≤ xns < 0
}
, (2.30a)

Uc =
{

x ∈ Rnc : x = 0
}
, (2.30b)

Uu =
{

x ∈ Rnu : 0 < x1 ≤ ·· · ≤ xnu

}
(2.30c)

can be written as countable union of compact sets. The preimage of this set under the
map (2.29) is E(ns,nc,nu).

To complete the proof, we now argue similar to the proof of Proposition 7: the
existence of nontrivial unstable subspaces for nonintegral equilibria implies that the
center-stable manifold has a smaller dimension.

Let J be the support of any nonintegral equilibrium and let E(ns,nc,nu) be such that
EJ ∩E(ns,nc,nu) 6= /0. As seen in the proof of Corollary 1(c), we have Eu(S∗)∩T0 6= {0}
for any S∗ ∈ EJ , i.e. nu ≥ 1. Since both EJ and E(ns,nc,nu) can be written as countable
union of compact sets, this is also the case for their intersection, i.e., we have

EJ ∩E(ns,nc,nu) =
⋃
l∈N

Kl (2.31)

with Kl ⊆ EJ compact. For any l ∈ N, there exists a center-stable manifoldMcs(Kl)
containing Kl , which is invariant under the S-flow and tangent to Ec(S∗)⊕Es(S∗) at
any S∗ ∈ Kl [10, Theorem 9.1]. Any trajectory of the S-flow converging to a point
S∗ ∈ Kl lies inMcs(Kl). Hence, analogous to the proof of Proposition 7, we have

dim
(
Mcs(Kl)∩W

)
= dim(W)−dim(Eu(S∗)∩T0)≤ dim(W)−1, (2.32)

with any S∗ ∈ Kl , i.e.,Mcs(Kl)∩W has measure zero in W . The countable union⋃
l∈NMcs(Kl)∩W , which contains all trajectories converging to an equilibrium

S∗ ∈ EJ ∩E(ns,nc,nu), has measure zero as well. Since there are only finitely many such
sets EJ ∩E(ns,nc,nu), this completes the proof. ut
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In view of Theorem 2, the following Corollary that additionally takes into account
assumption (2.22), is obvious.

Corollary 2 (Convergence to integral assignments) Let Ω be a nonnegative matrix
with positive diagonal entries which also fulfills the symmetry assumption (2.22). Then
the set of starting points S0 ∈W , for which the S-flow (2.2) does not converge to an
integral assignment S∗ ∈W∗, has measure zero. If Ω is additionally invertible, then
the set of distance matrices D ∈ Rm×n for which the S-flow does not converge to an
integral assignment has measure zero as well.

2.3.3 Basins of Attraction

Corollary 1 says that, if a point S∗ ∈W∗ satisfies the stability criterion (2.20), then
there exists an open neighborhood of S∗ such that the S-flow emanating from this
neighborhood will converge to S∗ with an exponential convergence rate. The subse-
quent proposition quantifies this statement by describing the convergence in balls
around the equilibria which are contained in the corresponding basin of attraction.

Proposition 8 Let Ω be a nonnegative matrix with positive diagonal entries, and let
S∗ ∈W∗ satisfy (2.20). Furthermore, set

A(S∗) :=
⋂
i∈I

⋂
j 6= j∗(i)

{
S ∈ Rm×n : (ΩS)i j < (ΩS)i j∗(i)

}
with { j∗(i)}= argmax j∈J S∗i j, (2.33)

which is an open convex polytope containing S∗. Finally, let ε > 0 be small enough
such that

Bε(S∗) :=
{

S ∈W : max
i∈I
‖Si−S∗i ‖1 < ε

}
⊂
(
A(S∗)∩W

)
. (2.34)

Then, regarding the S-flow (2.2), the following holds: If S(t0) ∈ Bε(S∗) for some point
in time t0, then S(t) ∈ Bε(S∗) for all t ≥ t0 and limt→∞ S(t) = S∗. Moreover, we have

‖Si(t)−S∗i ‖1 ≤ ‖Si(t0)−S∗i ‖1 · e−βi(t−t0), ∀i ∈ I, (2.35a)

where

βi = min
S∈Bδ (S∗)∩W

Si j∗(i) · min
j 6= j∗(i)

(
(ΩS)i j∗(i)− (ΩS)i j

)
> 0 (2.35b)

and δ > 0 is chosen small enough such that S(t0) ∈ Bδ (S∗)⊂ Bε(S∗).
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Proof For each i ∈ I, we have with S∗i = e j∗(i)

d
dt
‖Si−S∗i ‖1

=
d
dt

(
1−Si j∗(i)+ ∑

j 6= j∗(i)
Si j

)
(using ∑

j∈[n]
Si j = 1)

(2.36a)

=
d
dt
(2−2Si j∗(i)) (2.36b)

(2.2)
= −2Si j∗(i)

(
(ΩS)i j∗(i)−〈Si,(ΩS)i〉

)
(2.36c)

≤ −2Si j∗(i)

(
(ΩS)i j∗(i)−Si j∗(i)(ΩS)i j∗(i)− max

j 6= j∗(i)
(ΩS)i j ∑

j 6= j∗(i)
Si j

)
(2.36d)

= −2Si j∗(i)(1−Si j∗(i))
(
(ΩS)i j∗(i)− max

j 6= j∗(i)
(ΩS)i j

)
(2.36e)

(2.36b)
= −Si j∗(i)‖Si−S∗i ‖1 · min

j 6= j∗(i)

(
(ΩS)i j∗(i)− (ΩS)i j

)
. (2.36f)

Choosing δ > 0 such that S(t0) ∈ Bδ (S∗)⊂ Bε(S∗), it follows that βi given by (2.35b)
is positive. Consequently

d
dt
‖Si−S∗i ‖1 ≤−βi‖Si−S∗i ‖1 (2.37)

and by Gronwall’s Lemma (2.35a) holds. Hence, maxi∈I ‖Si− S∗i ‖1 monotonically
decreases as long as S(t) ∈ Bδ (S∗). This guarantees that S(t) stays in Bδ (S∗)⊂ Bε(S∗)
and converges toward S∗. ut

Note that if S(t) is close to S∗, then the convergence rate (2.35) of S(t) is approximately
governed by

βi ≈ min
j 6= j∗(i)

(
(ΩS∗)i j∗(i)− (ΩS∗)i j

)
. (2.38)

Proposition 8 provides a criterion for terminating the numerical integration of the
S-flow and subsequent ‘safe’ rounding to an integral solution. For this purpose, the
following proposition provides an estimate of ε defining (2.34).

Proposition 9 Let S∗ ∈W∗ satisfy (2.20). A value ε > 0 that is sufficient small for
the inclusion (2.34) to hold, is given by

εest = min
i∈I

min
j 6= j∗(i)

2 ·
(ΩS∗)i j∗(i)− (ΩS∗)i j

(Ω1m)i +(ΩS∗)i j∗(i)− (ΩS∗)i j
> 0. (2.39)

Proof Let S ∈W be a point such that

max
i∈I
‖Si−S∗i ‖1 < ε = εest. (2.40)

We have to show that S ∈ A(S∗), with A(S∗) given by (2.33).
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Since ‖Si−S∗i ‖1 = 2−2Si j∗(i), we have

Si j∗(i) > 1− ε

2
, Si j ≤ ∑

l 6= j∗(i)
Sil = 1−Si j∗(i) <

ε

2
, ∀ j 6= j∗(i). (2.41a)

Hence, for any i ∈ I and any j 6= j∗(i), we get with j∗(k), k ∈ I similarly defined as
j∗(i) in (2.20),

(ΩS)i j∗(i)− (ΩS)i j
(1.14)
= ∑

k∈Ni

ωikSk j∗(i)− ∑
k∈Ni

ωikSk j (2.42a)

= ∑
k∈Ni

j∗(k)= j∗(i)

ωik

>1− ε

2︷ ︸︸ ︷
Sk j∗(i)+ ∑

k∈Ni
j∗(k)6= j∗(i)

ωik

≥0︷ ︸︸ ︷
Sk j∗(i)− ∑

k∈Ni
j∗(k)= j

ωik

≤1︷︸︸︷
Sk j − ∑

k∈Ni
j∗(k)6= j

ωik

<
ε

2︷︸︸︷
Sk j , (2.42b)

and by dropping the second nonnegative summand,

>
(

1− ε

2

)
∑

k∈Ni
j∗(k)= j∗(i)

ωik− ∑
k∈Ni

j∗(k)= j

ωik−
ε

2 ∑
k∈Ni

j∗(k)6= j

ωik (2.42c)

and using the subvectors of S∗ are unit vectors,

=
(

1− ε

2

)
(ΩS∗)i j∗(i)− (ΩS∗)i j−

ε

2
(
(Ω1m)i− (ΩS∗)i j

)
(2.42d)

= (ΩS∗)i j∗(i)− (ΩS∗)i j−
ε

2

(
(Ω1m)i +(ΩS∗)i j∗(i)− (ΩS∗)i j

)
(2.42e)

(2.39)
≥ 0. (2.42f)

This verifies S ∈ A(S∗). ut

Figure 2.1 illustrates the sets A(S∗) and Bε(S∗) defined by (2.33) and (2.34), for
some examples in the simple case of two data points and two labels. The beige
and green regions in the left panel illustrate that the condition S(t0) ∈ A(S∗) neither
guarantees that the S-flow converges to S∗ nor to stay in A(S∗). This demonstrates the
need for the sets Bε(S∗), shown as shaded squares in Figure 2.1. Note that Bε(S∗) 6= /0
only if S∗ ∈ A(S∗) 6= /0, i.e. if the stability condition (2.20) is fulfilled.

If uniform weights Ω are used for averaging, then the estimate (2.39) can be cast
into a simple form that no longer depends on S∗.

Corollary 3 Let Ω defined by (1.14) be given by uniform weights ωik =
1
|Ni| , k ∈Ni,

i ∈ I. Then the value ε > 0 that achieves the inclusion (2.34) can be chosen as

εunif =
2

1+maxi∈I |Ni|
> 0. (2.43)
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Fig. 2.1 Illustration of the approximation of the basins of attraction for the case |I| = |J| = 2. The
plots show the phase portrait of the S-flow (2.2) for three different row-stochastic matrices Ω . The four
points S∗ ∈W∗ marked with { , , , }, the corresponding sets A(S∗) (2.33) are shown as colored regions,
and the balls Bε (S∗) (2.34) around the equilibria for which convergence to the equilibria is guaranteed
are shown as shaded squares, with ε = εest(S∗,Ω) from (2.39). Finally, the boundary between the basins
of attraction is marked with a thick red curve. In the center and right panel, only the constant labelings
S∗ ∈ {

(
0 1
0 1

)
,
(

1 0
1 0

)
} fulfill the stability criterion (2.20), i.e. S∗ ∈ A(S∗). As for the other two points S∗ ∈W∗,

we have either A(S∗) = /0 (center panel) or S∗ 6∈ A(S∗) 6= /0 (right panel).

Proof Let j∗(i) be defined as in (2.20). We have

(ΩS∗)i j∗(i)− (ΩS∗)i j =
|{k ∈Ni : j∗(k) = j∗(i)}|− |{k ∈Ni : j∗(k) = j}|

|Ni|
(2.44a)

≥ 1
|Ni|

> 0 (2.44b)

by assumption and integrality of the numerator in (2.44a). Monotonicity of the function
x 7→ x

1+x implies

2 ·
(ΩS∗)i j∗(i)− (ΩS∗)i j

1+(ΩS∗)i j∗(i)− (ΩS∗)i j
≥ 2 ·

1
|Ni|

1+ 1
|Ni|

=
2

1+ |Ni|
(2.45)

and hence εunif ≤ εest, with εest given by (2.39). The assertion, therefore, follows from
Proposition 9. ut

2.4 Convergence Properties of the Linear Assignment Flow

This section analyzes the convergence of the linear assignment flow to equilibria and
limit points. To apply the standard theory, we rewrite the matrix-valued (V ∈ Rm×n)
equation of the linear assignment flow (2.5) into a vector-valued (V ∈ Rmn) one, using
again V , for simplicity.

Equation (2.5) then takes the form

V̇ = AV +b, V (0) = 0, (2.46a)
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where

A = RŜ(Ω ⊗ In). (2.46b)

Note that matrix A is exactly the second summand in the Jacobian (2.13) of the S-flow.
The first summand of (2.13) is due to the dependence of the replicator matrix on the
flow. The linear assignment flow (2.5) ignores this dependency by assuming Ŝ ∈W to
be fixed.

The following Lemma says that under the assumption b ∈R(A), the asymptotic
properties of (2.46a) can be inferred from the homogeneous system.

Lemma 2 Let ΨA,b,V0(t) denote the flow of the dynamical system (2.46) but with
initial condition V (0) = V0 and assume b ∈ R(A). Then the equation ΨA,b,V0(t) =
ΨA,0,V0+A+b(t)−A+b holds, where A+ denotes the pseudoinverse of A.

Proof For b ∈R(A) we have AA+b = b and therefore with Duhamel’s formula [29,
p. 72]

ΨA,b,V0(t) = etAV0 +
∫ t

0
e(t−τ)Ab dτ = etAV0 +

∫ t

0
e(t−τ)AA dτA+b (2.47a)

= etAV0 +(etA− In)A+b =ΨA,0,V0+A+b(t)−A+b. (2.47b)

ut

As the translation of the flow by−A+b does not change the convergence properties
(except for translating the equilibria), we can focus on the corresponding homogeneous
system

V̇ = AV, V (0) =V0. (2.48)

Using the eigensystem of A, the solution to (2.48) can be represented in the following
well-known way.

Lemma 3 Let A be a diagonalizable matrix with eigenvalues λi, corresponding eigen-
vectors vi. Further let V0 = ∑i civi with ci ∈ R. The solution of the linear dynamical
system (2.48) can be written as

V (t) = ∑
i

cieλitvi. (2.49)

Without loss of generality, let λ1 be the dominant eigenvalue, i.e. the eigenvalue with
maximal real part. If λ1 is unique and c1 6= 0, then

lim
t→∞

V (t) = lim
t→∞

c1eλ1tv1. (2.50)

The hyperplane of initial values with c1 = 0 separates two half-spaces which are the
regions of attraction for the limit points in the directions v1 and −v1, respectively.

Lemma 3 implies the following properties of the system (2.48).

Proposition 10 Any linear dynamical system of the form (2.48) with diagonalizable
A has the following properties
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(a) If A has an eigenvalue with positive real part, then any finite equilibrium is
unstable and the set of initial points converging to these equilibria is a null set.

(b) If all eigenvalues of A are real, then the trajectory does not spiral around a
subspace through the origin infinitely often, i.e. 0 neither is a spiral sink nor a
spiral source.

(c) The set of equilibria is the nullspace N (A).
(d) The stable (resp. unstable) manifold is spanned by the eigenvectors of A corre-

sponding to eigenvalues with negative (resp. positive) real part. All initial points
which do not belong to the center-stable manifold diverge to infinity.

The following proposition complements Proposition 10 by examining the spectrum of
the matrix A.

Proposition 11 Let A = RŜ(Ω ⊗ In) be the system matrix of the linear assignment
flow (2.46a). Then the following holds.
(a) If the diagonal of Ω is nonnegative and contains at least one positive element, the

matrix A has at least one eigenvalue with positive real part. This means that all
finite equilibria are unstable.

(b) If Ω has the form (2.22) (i.e. Ω is a row-wise positive scaling of a symmetric
matrix), then A has only real eigenvalues. As a consequence, any initial value
converges either to a finite equilibrium or to a fixed limit point at infinity.

(c) If Ω is invertible, then rank(A) = m(n−1). Furthermore,N (A) is spanned by the
vectors {ei⊗1n : i ∈ I} and the restriction A|T0 is invertible. Thus, 0 is the only
finite equilibrium.

(d) If Ω is invertible and positive definite, then the m(n−1) nonzero eigenvalues of A
are positive as well. Consequently, the restriction A|T0 is positive definite and any
initial value, except for the origin, diverges to infinity.

Proof (a) Because the trace of A is positive—cf. (A.26)—A must have at least one
positive eigenvalue. The statement on the stability of the equilibria follows from
Proposition 10(a).

(b) Using the notation A∼ B for the similarity of the matrices A and B, we have

A = RŜ(Ω ⊗ In)
(2.22)
= RŜ(Diag(w)−1

Ω̂ ⊗ In) (2.51a)

= RŜ(Diag(w)−1⊗ In)(Ω̂ ⊗ In) (2.51b)

= RŜ(Diag(w)⊗ In)
−1(Ω̂ ⊗ In) (2.51c)

∼ (Diag(w)⊗ In)
1
2 RŜ(Diag(w)⊗ In)

− 1
2

· (Diag(w)⊗ In)
− 1

2 (Ω̂ ⊗ In)(Diag(w)⊗ In)
− 1

2

(2.51d)

= RŜ(Diag(w)⊗ In)
− 1

2 (Ω̂ ⊗ In)(Diag(w)⊗ In)
− 1

2 (2.51e)

∼ R
1
2
Ŝ
(Diag(w)⊗ In)

− 1
2 (Ω̂ ⊗ In)(Diag(w)⊗ In)

− 1
2 R

1
2
Ŝ
, (2.51f)

where R
1
2
Ŝ

denotes the symmetric positive semidefinite square root of RŜ. The last
matrix is symmetric and therefore all of the matrices above only have real eigen-
values. By Proposition 10(b), the system converges either to a finite equilibrium
or towards a fixed point at infinity.
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(c) We have rank(A) = rank(RŜ(Ω ⊗ In)) = rank(RŜ) = m(n−1), which yields the
first statement. The second statement follows from

RŜ(Ω ⊗ In)(ei⊗1n) = RŜ(Ωei⊗ In1n) = RŜ(Ωei⊗1n) = 0, (2.52)

since RŜi
1n = 0, ∀i ∈ I. With Proposition 10(c) we conclude that 0 is the only

finite equilibrium.
(d) RŜ is positive semidefinite and we have

σ(RŜ(Ω ⊗ In)) = σ((Ω ⊗ In)
1
2 RŜ(Ω ⊗ In)

1
2 ). (2.53)

Hence, by Sylvester’s law, the matrices (Ω ⊗ In)
1
2 RŜ(Ω ⊗ In)

1
2 and RŜ have the

same inertia. Thus, the center-stable manifold contains only the origin. Proposi-
tion 10(d) yields divergence to infinity.

ut

Remark 6 If Ω is not a row-wise positive scaling of a symmetric matrix, the resulting
matrix A may have complex eigenvalues. This can be seen for the choice

Ŝ =
1
2

(
1 1
1 1

)
, Ω =

1
2

(
1 1
−1 1

)
, (2.54)

for which the matrix A has the eigenvalues σ(A) = { 1
2 +

1
2 i, 1

2 −
1
2 i,0,0}. Note that Ω

is a row-wise scaling of a symmetric matrix but not a row-wise positive scaling.
The same matrix Ŝ and the matrix

Ω =
1
2

(
−1 1
1 −1

)
(2.55)

yield only nonpositive eigenvalues σ(A) = {− 1
2 ,0,0,0}.

For uniform positive weights (2.24), Ω has nonpositive eigenvalues. The existence
of the eigenvalue 0 depends on the size of the graph and the size of the neighborhood.
If Ω is a randomly chosen or a matrix of the form (2.22) and estimated from data, it
generally has negative eigenvalues.

To analyze the asymptotic behavior of the lifted flow

W (t) = ExpW0

(
V (t)

)
= expW0

(V (t)
W0

)
, (2.56)

it is enough to lift the line in direction of the maximal eigenvector to the assignment
manifold, as examined next.

Lemma 4 Let v be a vector which has its maximal entries at the positions {i1, . . . ik}=
argmaxi vi. Then the line in direction v lifted at p ∈ S converges to a specific point on
a k-dimensional face of S given by

lim
t→∞

expp(tv) =
1

∑l∈[k] pil
∑

l∈[k]
pil eil . (2.57)

In particular, if v has a unique maximal entry, limt→∞ expp(tv) converges to the
corresponding unit vector.
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Proof Set vmax =maxi vi and consider expp(tv)= expp(t(v−vmax1n))=
pet(v−vmax1n)

〈p,et(v−vmax1n)〉 .
In the numerator, every entry which does not correspond to a maximal entry of v con-
verges to 0 for t→ ∞, whereas the other entries converge to the corresponding entry
in p. The denominator normalizes the expression, which yields the result. ut

Applying this lemma to each vertex in I, we get the following statement on the
convergence of the lifted linear assignment flow to integral assignments.

Corollary 4 Under the assumptions of Lemma 3, if v1
W0

has a unique maximal entry
for each vertex, then the lifted flow (2.56) converges to an integral assignment.

Because W0 and the dominant eigenvector of A depend on real data in practice, the
assumptions of Corollary 4 are typically satisfied.

We conclude this section by comparing the convergence properties of the S-flow
to those of the linear assignment flow.

Remark 7 (S-flow vs. linear assignment flow) If Ω is nonnegative on the diagonal
with at least one positive entry, the Jacobian matrices of the S-flow (at nonintegral
points) and the Jacobian matrix of the linear assignment flow, i.e. A, have at least one
eigenvalue with positive real part (see Proposition 6(c) and Proposition 11(a)). Thus,
for both flows and such an Ω , the nonintegral equilibria are unstable (Corollary 1(c)
and Proposition 11(a)).

Theorem 1 and Proposition 11(b) state that for both flows a sufficient condition for
convergence is that Ω has the form (2.22). Let Ω have both properties, i.e. nonnegative
on the diagonal with at least one positive entry and row-wise positive scaling of a
symmetric matrix. Then, the set of initial values converging to a nonintegral point is
negligible (Proposition 7, Theorem 2 and Proposition 10(a)).

For a given initial value, the two flows generally converge to different limit points
and their regions of attraction generally look different. However, for small finite time-
points, the linear assignment flow approximates the assignment flow and (after the
appropriate transformation) the S-flow very well [33].

3 Discretization, Numerical Examples and Discussion

3.1 Discretization, Geometric Integration

We confine ourselves to the simplest geometric scheme worked out by [33] for numer-
ically integrating the assignment flow (1.20). Applying this scheme to the S-flow (2.2)
that has the same structure as (1.20), yields the iteration

S(t+1) = Fh(S(t)), Fh(S) = expS(hΩS), h > 0, t ∈ N0, (3.1)

where h denotes a fixed step size and the iteration step t represents the points of time
th.

The following proposition shows that using this numerical method is ‘safe’ in
the sense that, by setting h to a sufficiently small value, the approximation of the
continuous-time solution S(t) by the sequence

(
S(th)

)
t≥0 generated by (3.1) can

become arbitrarily accurate.
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Proposition 12 Let L> 0 be the Lipschitz constant of the mapping F (2.2) defining the
S-flow. Then there exists a constant C > 0 such that the solution S(t) to the S-flow (2.2)
and the sequence

(
S(th)

)
t≥0 generated by (3.1) satisfy the relation

∥∥S(th)−S(t)
∥∥≤ C

2L
he(t+1)Lh, ∀t ∈ N. (3.2)

Proof See Appendix A.

Proposition 8 asserts the existence of regions of attraction for stable equilibria
S∗ ∈W of the continuous-time S-flow (2.2). The following proposition extends this
assertion to the discrete-time S-flow (3.1).

Proposition 13 Let Ω , S∗ ∈W∗, A(S∗) and Bε(S∗) be as in Proposition 8. Then, for
the sequence (S(t))t∈N generated by (3.1), the following holds. If S(t0) ∈ Bε(S∗) for
some time point t0 ∈N, then S(t) ∈ Bε(S∗) for all t ≥ t0 and limt→∞ S(t) = S∗. Moreover,
we have ∥∥S(t)i −S∗i

∥∥
1 ≤

∥∥S(t0)i −S∗i
∥∥

1 · γ
t−t0
i (3.3)

with γi ∈ (0,1), for each i ∈ I.

Proof Let

βi = βi(S) := min
{
(ΩS)i j∗(i)− (ΩS)i j

}
j 6= j∗(i). (3.4)

For S ∈ A(S∗), we have βi(S)> 0 and with S∗i = ei j∗(i), Fh,i(S) ∈ ∆n,

∥∥Fh,i(S)−S∗i
∥∥

1 = 2−2Fh,i j∗(i)(S) (3.5a)

= 2−2
Si j∗(i)

Si j∗(i)+∑ j 6= j∗(i) Si je
h(ΩS)i j−h(ΩS)i j∗(i)

(3.5b)

≤ 2−2
Si j∗(i)

Si j∗(i)+(1−Si j∗(i))e−hβi
(3.5c)

= ‖Si−S∗i ‖1
e−hβi

Si j∗(i)+(1−Si j∗(i))e−hβi︸ ︷︷ ︸
<1

. (3.5d)

Choosing δ > 0 with S(t0) ∈ Bδ (S∗)⊂ Bε(S∗), we set

γi = max
S∈Bδ (S∗)

e−hβi(S)

Si j∗(i)+(1−Si j∗(i))e−hβi(S)
∈ (0,1). (3.6)

and thus get ‖Fh,i(S)−S∗i ‖1≤ γi‖Si−S∗i ‖1 for S∈Bδ (S∗), which implies Fh(Bδ (S∗))⊆
Bδ (S∗)⊂ Bε(S∗) and the exponential convergence rate (3.3) of S(t). ut
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3.2 Numerical Examples, Discussion

We illustrate in this section by a range of counter-examples that violating assump-
tion (2.22) can make the assignment flow behave quite differently from what the
assertions of Section 2 predict. In fact, we use violations of the assumptions as a
guiding principle for constructing alternative asymptotic behavior (Section 3.2.2).

In addition, we briefly discuss the influence of the parameter matrix Ω on the
spatial shape of labelings returned by the assignment flow. Finally, we illustrate
that our results on the region of attraction of the S-flow towards labelings turns the
termination criterion proposed by [2] into a mathematically sound one, provided a
proper geometrical scheme is used for numerically integrating the assignment flow.

3.2.1 Vanishing Diagonal Averaging Parameters

We consider a small dynamical system that violates the basic assumption of Corollary 1,
that all diagonal entries of the parameter matrix Ω of the S-flow (2.2) are positive. As
a consequence, an entire line of nonintegral points S∗ is locally attracting the flow.

Example 2 Let m = |I|= 3 and n = |J|= 2, and let the parameters of the S-flow (2.2)
be given by the row-stochastic matrix

Ω = {ωik}k∈Ni,i∈I =
1
4

0 2 2
1 2 1
1 1 2

 . (3.7)

One easily checks that any point S∗ on the line L

L=


p 1− p

1 0
0 1

 : p ∈ [0,1]

⊂W (3.8)

is an equilibrium of the S-flow satisfying F(S∗) = 0. In particular, this includes
nonintegral points with p ∈ (0,1). The eigenvalues of the Jacobian are given by

σ
(

∂F
∂S (S

∗)
)
=
{

0,− 1
2 ,−

p+2
4 ,− p

2 ,−
1−p

2 ,− 3−p
4

}
⊂ R≤0 (3.9)

and are nonpositive. The phase portrait depicted by Figure 3.1 illustrates that L locally
attracts the flow.

This small example demonstrates that violation of the basic assumption—here,
specifically, ω11 of (3.7) is not positive—leads to S-flows with properties not covered
by the results of Section 2. Note that Theorem 2 is also based on this assumption and
does not apply to the present example: there is an open set of starting points S0 ∈W
for which the S-flow converges to nonintegral equilibria S∗ ∈W .

Recalling Corollary 4, we see that for the linear assignment flow (2.5) continuous
sets on the boundary of the assignment manifold, like line L in Figure 3.1, cannot be
limit points.
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Fig. 3.1 Phase portrait for the flow of Example 2. We graphically depict the S-flow with Ω given by (3.7),
by its first column. This describes the flow completely, since n = |J|= 2. The left panel shows the phase
portrait of the flow within the planes {S21 = 1} and {S31 = 0}. The plane {S11 = 1

2 } is depicted by the
right panel. The line L of equilibria given by (3.8) is marked red and located in the lower right vertex in the
right plot. The phase portrait illustrates that this line attracts the flow within a small neighborhood.

3.2.2 Constructing 3×3 Systems with Various Asymptotic Properties

In this section, we construct a family of S-flows (2.1a) in terms of a class of nonnegative
parameter matrices Ω , that may violate assumption (2.22) which underlies Theorem 1.
Accordingly, for a small problem size n = 3, we explicitly specify flows that exhibit
one of the following behaviors:

1. t 7→ S(t) converges towards a point S∗ ∈W as t→ ∞;
2. t 7→ S(t) is periodic with some period t1 > 0;
3. t 7→ S(t) neither converges to a point nor is periodic.

These cases are discussed below as Example 3 and illustrated by Figure 3.2. They
demonstrate that assumption (2.22) is not too strong, because violation may easily
imply that the flow fails to converge to an equilibrium.

Let D denote the set of doubly stochastic, circulant matrices. We consider the case
m = |I|= |J|= n and therefore have D ⊂W . Let

P ∈ {0,1}n×n, Pi j =

{
1, if i− j ≡ 1 (modn),
0, else

(3.10)

denote the permutation matrix that represents the n-cycle (1, . . . ,n). Then D is the
convex hull of the matrices {P,P2, . . . ,Pn} with Pn = In, and any element M ∈ D
admits the representation

M = ∑
k∈[n]

µkPk with µ ∈ ∆n. (3.11)

Since the matrices P,P2, . . . ,Pn ∈ Rn×n are linearly independent, the vector µ ∈ ∆n
is uniquely determined. We will call µ the representative of M ∈ D. The following
Lemma characterizes two matrix products on D in terms of the corresponding matrix
representatives.
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Lemma 5 Let µ(1),µ(2) ∈ ∆n be the representatives of any two matrices M(1),M(2) ∈
D. Then the element-wise Hadamard product and the ordinary matrix product, respec-
tively, are given by

M(1)�M(2) = ∑
k∈[n]

ηkPk with η = µ
(1)�µ

(2) ∈ Rn
≥0, (3.12)

M(1)M(2) = ∑
k∈[n]

µkPk with µ = M(1)
µ
(2) ∈ ∆n. (3.13)

Proof We note that the kth power of P is given by

(Pk)i j =

{
1, if i− j ≡ k (modn),
0, else.

(3.14)

This implies Pk�Pl = δklPk for k, l ∈ [n], with δkl denoting the Kronecker delta, and

M(1)�M(2) =

(
∑

k∈[n]
µ
(1)
k Pk

)
�
(

∑
l∈[n]

µ
(2)
l Pl

)
= ∑

k,l∈[n]
µ
(1)
k µ

(2)
l Pk�Pl

= ∑
k∈[n]

µ
(1)
k µ

(2)
k Pk.

(3.15)

As for (3.13), we compute

M(1)M(2) = ∑
k, j∈[n]

µ
(1)
k µ

(2)
j Pk+ j = ∑

i∈[n]
∑

k+ j≡i(modn)
µ
(1)
k µ

(2)
j Pi (3.16a)

(3.14)
= ∑

i∈[n]
∑

k∈[n]
µ
(1)
k (Pk

µ
(2))i Pi = ∑

i∈[n]
(M(1)

µ
(2))i Pi. (3.16b)

ut

The following proposition shows that the S-flow onD can be expressed by the evolution
of the corresponding representative.

Proposition 14 Let Ω ∈ D and suppose the S-flow (2.1a) is initialized at S(0) ∈ D.
Then the solution S(t) ∈ D evolves on D for all t ∈ R. In addition, the corresponding
representative p(t) ∈ ∆n of S(t) = ∑k∈[n] pk(t)Pk satisfies the replicator equation

ṗ = Rp(Ω p). (3.17)

Proof Let S = ∑k∈[n] pkPk ∈ D with p ∈ ∆n. Lemma 5 implies

S�ΩS = ∑
k∈[n]

pk(Ω p)k Pk. (3.18)

Therefore, for any i ∈ [n],

〈Si,(ΩS)i〉= 〈1n,Si� (ΩS)i〉=
〈
1n,
(
S� (ΩS)

)
i

〉
= ∑

k∈[n]
pk(Ω p)k 〈1n,(Pk)i〉︸ ︷︷ ︸

=1

= 〈p,Ω p〉. (3.19)
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Since this equation holds for any i ∈ [n], the right-hand side of the S-flow (2.1a) can
be rewritten as

RS(ΩS) = S� (ΩS)−〈p,Ω p〉S (3.18)
= ∑

k∈[n]

(
pk(Ω p)k Pk−〈p,Ω p〉pkPk

)
(3.20a)

= ∑
k∈[n]

vkPk with v = p� (Ω p)−〈p,Ω p〉p = Rp(Ω p). (3.20b)

Since p ∈ ∆n, we have 〈v,1n〉 = 0, that is v is tangent to ∆n. Hence, by (3.20), Ṡ =

∑k∈[n] ṗkPk = RS(ΩS) is determined by ṗ = v = Rp(Ω p), whose solution p(t) evolves
on ∆n. ut

The following proposition introduces a restriction of parameter matrices Ω ∈ D that
ensures, for any such Ω , that the product ∏ j∈[n] p j changes monotonously depending
on the flow (3.17).

Proposition 15 Let Ω = ∑k∈[n] µkPk ∈ D be parametrized by

µ = αen +
β

n
1n + ∑

k<
⌊ n

2

⌋γk(ek− en−k) ∈ ∆n, α,β ,γ1, . . . ,γb n
2 c−1 ∈ R. (3.21)

Suppose p(t) ∈ S = rint(∆n) solves (3.17). Then

d
dt ∏

j∈[n]
p j(t)


< 0, if α > 0
= 0, if α = 0
> 0, if α < 0

 , for p(t) 6= 1
n 1n. (3.22)

Proof Set πp := ∏ j∈[n] p j. By virtue of (3.17) and 〈1n,Ω p〉 = 〈Ω>1n, p〉 = 1 (Ω is
doubly stochastic and p ∈ ∆n), we have

d
dt

πp = πp ∑
j∈[n]

(
(Ω p) j−〈p,Ω p〉

)
= πp

(
1−n〈p,Ω p〉

)
. (3.23)

Hence, since πp > 0 for p ∈ S , d
dt πp has the same sign as 1

n −〈p,Ω p〉. Regarding the
term

〈p,Ω p〉= ∑
k∈[n]

µk〈p,Pk p〉, (3.24)

we have the following three cases:

(α) for all k < n, the inequality 〈p,Pk p〉 ≤ 〈p, p〉 = 〈p,Pn p〉 holds, with equality if
and only if p = 1

n 1n;
(β ) ∑k∈[n]〈p,Pk p〉= 〈p,1n×n p〉= 1;
(γ) for all k ∈ [n], 〈p,Pk p〉= 〈p,Pn−k p〉, since P−1 = P>.
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Inserting (3.21) into (3.24) and applying (α),(β ),(γ) gives

〈p,Ω p〉= α〈p, p〉+β
1
n

and 〈p, p〉> 1
n ∑

k∈[n]
〈p,Pk p〉= 1

n
for p 6= 1

n 1n.

(3.25)
Since 〈µ,1n〉= α +β = 1, we further obtain

〈p,Ω p〉


> 1

n , if α > 0

= 1
n , if α = 0

< 1
n , if α < 0

 , for all p ∈ ∆n \{ 1
n 1n}. (3.26)

Combining (3.26) and (3.23) yields (3.22). ut

Remark 8 Based on Proposition 15, we observe: If α > 0, then p(t) moves towards
the (relative) boundary of the simplex ∆n, for any p(0) 6= 1

n 1n. If α < 0, then p(t)
converges towards the barycenter 1

n 1n. For α = 0, the product ∏ j∈[n] p j(t) is constant
over time.

The scalars γk in (3.21) steer the skew-symmetric part of Ω . Consequently, if γk = 0
for all k, then Ω is symmetric and the S-flow converges to a single point by Theorem 1.
Depending on the skew-symmetric part, the S-flow may not converge to a point, as
Example 3 below will demonstrate for few explicit instances and n = 3. Note that, in
this case n = 3, (3.21) describes a parametrization rather than a restriction of Ω ∈ D.

Example 3 Let n = 3. The matrix Ω ∈ D take the form

µ = αe3 +
β

3 13 + γ(e1− e2), (3.27)

Ω =

µ3 µ2 µ1
µ1 µ3 µ2
µ2 µ1 µ3

= α

1 0 0
0 1 0
0 0 1

+
β

3

1 1 1
1 1 1
1 1 1

+ γ

 0 −1 1
1 0 −1
−1 1 0

 (3.28)

with the constraint µ ∈ ∆3, i.e.

α +β = 1, α +
β

3
≥ 0,

β

3
≥ |γ|. (3.29)

We examine the behavior of the flow (3.17), depending on the parameters α and γ .
Note, that the flow does not depend on the parameter β that merely ensures Ω to be
row-stochastic.

Case α < 0. As already discussed (Remark 8), p(t) converges to the barycenter in
this case. Depending on γ , this may happen with (γ 6= 0) or without (γ = 0) a spiral as
depicted by Figure 3.2 (a) and (b).

Case α = 0. We distinguish the two cases γ = 0 and γ 6= 0. If γ = 0, then we have
Ω = 1

3 13×3 and therefore ṗ = RpΩ p≡ 0, i.e., each point p∗ ∈ ∆3 is an equilibrium.
In contrast, if γ 6= 0, then we have the (standard) rock-paper-scissors dynamics [25,
Chapter 10]:

ṗ = γ

p1(p3− p2)
p2(p1− p3)
p3(p2− p1)

 6= 0, for p ∈ ∆3 \{e1,e2,e3,
1
3 13}. (3.30)
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(a) α < 0, γ = 0 (b) α < 0, γ 6= 0 (c) α = 0, γ 6= 0

(d) α > 0, γ = 0 (e) α > |γ|> 0 (f) α = |γ|> 0 (g) 0 < α < |γ|

Fig. 3.2 Phase portraits for the flows ṗ = Rp(Ω p) of Example 3. Ω is parameterized as specified
by (3.28). Parameter α controls whether the flow evolves towards the barycenter (α < 0) as in (a) and (b),
or towards the boundary of the simplex (α > 0) as in (d)-(g). Parameter γ controls the rotational component
of the flow. In (c), the flow neither evolves towards the barycenter nor towards the boundary, and the
rotational component of the flow causes periodic orbits. If α > 0, then the convergence of the flow depends
on the size of γ . If 0 ≤ |γ| < α as in (d) and (e), then the flow converges to a point on the boundary. If
|γ| ≥ α as in (f) and (g), then the flow spirals towards the boundary without converging to a single point.

Starting at a point p0 ∈ rint(∆3)\{ 1
3 13}, the curve t 7→ p(t) moves along the closed

curve
{

p ∈ ∆3 : ∏ j p j = ∏ j p0, j
}

, i.e., the curve t 7→ p(t) is periodic; see Figure 3.2
(c).

Case α > 0. We distinguish again the two cases γ = 0 and γ 6= 0. If γ = 0, then
the flow reduces to ṗ = αRp p whose solution converges to

lim
t→∞

p(t) = 1
|J∗| ∑

j∈J∗
e j ∈ ∆3, with J∗ = argmax

j∈[3]
p j(0). (3.31)

As for the remaining case α > 0 and γ 6= 0, we distinguish α > |γ| and α ≤ |γ|
as illustrated by Figure 3.2 (e), (f) and (g). If α ≤ |γ|, then we have a generalized
rock-paper-scissors game [25, Chapter 10]. The curve t 7→ p(t) spirals towards the
boundary of the simplex ∆3 and does not converge to a single point. In contrast, if
α > |γ|, then the flow converges to a point on the boundary. In fact, the vertices of the
simplex are attractors.

Example 3 is devoted to the S-flow (2.1a) that parametrizes the assignment
flow (2.1b), as specified by Proposition 2. The following examples illustrate how
the assignment flow may behave if the S-flow does not converge to an equilibrium
point.

Example 4 This example continues Example 3. Accordingly, we consider the case
n = 3 and assume Ω ∈ D. Let the distance matrix D, whose row vectors define the
mappings (1.16) corresponding to the assignment flow, be given by

D =

0 1 1
1 0 1
1 1 0

 . (3.32)
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e1

e2

e3

W1

W2

W3

e1

e2

e3

W1

W2

W3

e1

e2

e3

W2

Ωcenter Ωcycle Ωspiral

Fig. 3.3 Trajectories of the assignment flows in example 4. The input data is given in (3.32) and (3.33).
The flow for the matrix Ωcenter converges to a point in the interior of the assignment manifold. This limit
point differs from the barycenter. The trajectory for the averaging matrix Ωcycle is a closed curve. The
trajectory for Ωspiral is spiraling towards the boundary of the simplex. For the sake of clarity, the trajectory
of only one data point is plotted for Ωspiral. The trajectories for the other data points can be obtained from
that one by permuting the label indices.

Then, if Ω ∈ D, the initial value S(0) = exp1W (−ΩD) of the S-flow (2.1a) lies in D
as well. Hence, the above observations of Example 3 for the S-flow hold. The resulting
assignment flow t 7→W (t) then also evolves in D which can be verified using (2.3).
As for the averaging parameters Ω , we consider the following three matrices in D:

Ωcenter =

0 0 1
1 0 0
0 1 0

 , Ωcycle =
1
3

1 0 2
2 1 0
0 2 1

 , Ωspiral =
1
5

2 0 3
3 2 0
0 3 2

 . (3.33)

Figure 3.3 displays the trajectories of the assignment flow for these averaging matrices.
The symmetry of these plots results from W (t) ∈ D.

Matrix Ωcenter corresponds to the parameters (α,β ,γ) = (− 1
2 ,

3
2 ,

1
2 ) of (3.28), for

which the S-flow converges to the barycenter. As a consequence, W (t) converges to a
point inW\{1W}.

Matrix Ωcycle corresponds to the parameters (α,β ,γ) = (0,1, 1
3 ), for which the

S-flow has periodic orbits. Since these orbits are symmetric around the barycenter,
i.e.

∫ t1
0

(
S(t)−1W

)
dt = 0 with t1 being the period of the trajectory, the trajectory

t 7→W (t) is also periodic as a consequence of equation (2.3).
Finally, matrix Ωspiral corresponds to the parameters (α,β ,γ) = (0.1,0.9,0.3), for

which the S-flow spirals towards the boundary of the simplex. It is not clear a priori if
t 7→W (t) does not converge to a single point either. The trajectory of W (t) shown by
Figure 3.3 suggests that the assignment flow also spirals towards the boundary of the
simplex without converging to a single point.

Remark 9 Examples 3 and 4 considered the special case m = |I|= |J|= n = 3. We
observed in further experiments similar behaviors also in the case |J| < |I|. For
example, it can be verified, for |J|= 2 and Ω = Ωcycle from Example 4, that the S-flow
possesses a (unstable) limit cycle, i.e. a periodic orbit.

The above examples also demonstrate that several symmetries in the input data are
required, e.g. Ω ∈ D and S0 ∈ D, in order to obtain nonconvergent orbits. However,
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small perturbations like numerical errors or the omnipresent noise in real data will
break these symmetries. Therefore, it is very unlikely to observe such behavior of the
S-flow and the assignment flow, respectively, in practice.

3.2.3 Geometric Averaging and Spatial Shape

We design and construct a small academical example that, despite its simplicity,
illustrates the following important points:

– the region of attraction due to Corollary 3, here for the special case of uniform
averaging parameters Ω (and likewise more generally for nonuniform Ω (Propo-
sition 9)), that enables to terminate the numerical scheme and rounding to the
correct labeling;

– the influence of Ω on the spatial shape of patterns created through data labeling,
which provides the basis for pixel-accurate ‘semantic’ image labeling;

– undesired asymptotic behavior of the numerically integrated assignment flow—
cf. Remark 10 below—cannot occur when using proper geometric numerical
integration, like the scheme (3.1) or any scheme devised by [33].

Example 5 We consider a 12× 12 RGB image u : I→ [0,1]3 shown by Figure 3.4.
The three unit vectors e j, j ∈ J = [3] define the labels that are marked by the colors red,

input image S∗

Fig. 3.4 Illustration of input and output of Example 5. The input image consisting of three colors, which
was used for computing the distance matrix D, is shown on the left. This distance matrix was used to
initialize the S-flow, whose limit is illustrated by the image on the right. This is a minimal example that
demonstrates how stability conditions (2.20) constrain spatial shape.

green and blue. For spatial regularization we used 3×3 neighborhoods Ni, i ∈ I with
uniform weights ωik =

1
|Ni| , k ∈Ni, with shrunken neighborhoods if they intersect the

boundary of the underlying quadratic domain. The distance matrix D that initializes
the S-flow by S0 = exp1W (−ΩD), was set to Di j = 10 · ‖ui− e j‖2, i ∈ I, j ∈ J.

Adopting the termination criterion from [2], we numerically integrated the S-flow
using the scheme (3.1), until iteration T when the average entropy dropped below
10−3, i.e.

− 1
|I| log |J| ∑

i∈I, j∈J
S(T )i j logS(T )i j < 10−3. (3.34)

The resulting assignment S(T ) was rounded to the integral assignment S∗ ∈W∗ de-
picted by the right panel of Figure 3.4. We observe the following.
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(i) The resulting labeling S∗ differs from the input image although exact (integral)
input data are used.
This conforms to Corollary 1(b), which enables to recognize the input data as
unstable. As a consequence, the green and blue labels at the corners of the
corresponding quadrilateral shapes in the input data are replaced by the flow.
The resulting labeling S∗ is stable, as one easily verifies using Corollary 1(a).
This simple example and the corresponding observation points to a fundamental
question to be investigated in future work: how can Ω be used for ‘storing’ prior
knowledge about the shape of labeling patterns?

(ii) Using the estimate (2.43) which is the special case of (2.39) in the case of
uniform weights, we computed

εest = εunif = 0.2. (3.35)

Since the distance between S∗ and the assignment S(T ) obtained after terminating
numerical integration due to (3.34), satisfied

max
i∈I
‖S(T )i −S∗i ‖1 ≈ 0.00196 < εest, (3.36)

we had the guarantee due to Proposition 13 that S(t) converges for t > T to S∗,
i.e. that no label indicated by S(T ) can change anymore. With regard to Propo-
sition 12, the estimate (3.2) implies for sufficiently small step size h > 0 that
the continuous S-flow S(hT ) also lies in the attracting region Bε(S∗). Proposi-
tion 8 then states the convergence of the S-flow to S∗. Eventually, the continuous
assignment flow (1.20) converge to S∗ by Proposition 4.

Remark 10 (numerical integration and asymptotic behavior) The authors of [2]
adopted a numerical scheme from [19] which, when adapted and applied to (1.1), was
shown in [5] to always converge to a constant solution as t→ ∞, i.e. a single label is
assigned to every pixel, which clearly is an unfavorable property. Irrespective of the
fact that uniform positive weights were used by [2], that satisfy assumption (2.22),
this strange asymptotic behavior resulted from the fact that the adaption of the discrete
scheme of [19] implicitly uses different step sizes for updating the flow Si at different
locations i ∈ I.

Our results in this paper show that the continuous-time assignment flow does not
exhibit this asymptotic behavior, under appropriate assumptions on the parameter
matrix Ω . In addition, point (ii) above and Proposition 13 show that using a proper ge-
ometric scheme from [33] turns condition (3.34) into a sound criterion for terminating
the numerical scheme, followed by safe rounding to an integral labeling.

4 Conclusion

We established in this paper that under reasonable assumptions on the weight param-
eters Ω , the assignment flow approach is a sound method for contextual data classi-
fication on graphs. Favourable properties like convergence to integral assignments
and existence of corresponding basins of attraction extend to sequences generated by
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discrete-time schemes for geometric integration. This shows that geometric numerical
integration of the assignment flow yields sound numerical algorithms. A range of
counter-examples demonstrate that these conditions are not too strong, since violating
them may quickly lead to unfavorable behavior of the assignment flow regarding
classification.

The results provide a proper basis and justify recent work on learning the as-
signment flow parameters Ω from data [16,31,32], on extending the approach to
unsupervised data classification on graphs [34,35] or taking additional spatial con-
straints into account [28]. Our future work will focus on deeper parametrizations
of assignment flows using the same mathematical framework and on studying their
properties and performance for statistical data classification on graphs.

A Proofs

A.1 Proof of Proposition 4

Proof (a) Let βi := 1
2 min{S∗i j∗(i)−S∗i j} j 6= j∗(i) > 0. Since

lim
t→∞

Si j∗(i)(t)−Si j(t) = S∗i j∗(i)−S∗i j ≥ 2βi > 0, ∀ j ∈ J \{ j∗(i)}, (A.1)

there exists t1 ≥ 0 such that

Si j∗(i)(t)−Si j(t)> βi, ∀t ≥ t1, ∀ j ∈ J \{ j∗(i)}. (A.2)

We estimate

‖Wi(t)− e j∗(i)‖1 (A.3a)

= 1−Wi j∗(i)+ ∑
j 6= j∗(i)

Wi j = 2−2Wi j∗(i)
(2.3)
= 2−2

exp
(∫ t

0 Si j∗(i)(τ)dτ

)
∑ j∈J exp

(∫ t
0 Si j(τ)dτ

) (A.3b)

= 2
∑ j 6= j∗(i) exp

(∫ t
0 Si j(τ)dτ

)
∑ j∈J exp

(∫ t
0 Si j(τ)dτ

) (A.3c)

= 2
∑ j 6= j∗(i) exp

(∫ t
0
(
Si j(τ)−Si j∗(i)(τ)

)
dτ

)
1+∑ j 6= j∗(i) exp

(∫ t
0
(
Si j(τ)−Si j∗(i)(τ)

)
dτ

) (A.3d)

≤ 2 ∑
j 6= j∗(i)

exp
(∫ t

0

(
Si j(τ)−Si j∗(i)(τ)

)
dτ

)
(A.3e)

= 2 ∑
j 6= j∗(i)

exp
(∫ t1

0

(
Si j(τ)−Si j∗(i)(τ)

)
dτ +

∫ t

t1

( <−βi︷ ︸︸ ︷
Si j(τ)−Si j∗(i)(τ)

)
dτ

)
(A.3f)

≤ 2 ∑
j 6= j∗(i)

exp
(∫ t1

0

(
Si j(τ)−Si j∗(i)(τ)

)
dτ

)
· e−βi(t−t1) (A.3g)

= 2eβit1 ∑
j 6= j∗(i)

exp
(∫ t1

0

(
Si j(τ)−Si j∗(i)(τ)

)
dτ

)
︸ ︷︷ ︸

=:αi>0

·e−βit , (A.3h)

which proves (2.7).
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(b) Let J∗(i) := argmax j∈J S∗i j . For any j, l ∈ J∗(i), we have∫
∞

0

∣∣Si j(t)−Sil(t)
∣∣dt ≤

∫
∞

0

∣∣Si j(t)−S∗i j
∣∣dt +

∫
∞

0

∣∣Sil(t)−S∗il
∣∣dt

≤ 2
∫

∞

0
‖Si(t)−S∗i ‖1dt < ∞,

(A.4)

where the last inequality follows from the hypothesis of (2.8). Thus, the improper integral∫
∞

0
(
Si j(t)−Sil(t)

)
dt ∈ R exists.

If j ∈ J∗(i), we obtain

Wi j(t)
(2.3)
=

exp
(∫ t

0 Si j(τ)dτ

)
∑l∈J exp

(∫ t
0 Sil(τ)dτ

) (A.5a)

=

(
1+ ∑

l∈J\J∗(i)
exp
( →−∞︷ ︸︸ ︷∫ t

0

(
Sil(τ)−Si j(τ)

)
dτ

)

+ ∑
l∈J∗(i)\{ j}

exp
(∫ t

0

(
Sil(τ)−Si j(τ)

)
dτ

))−1
(A.5b)

−→

(
1+ ∑

l∈J∗(i)\{ j}
exp
(∫ ∞

0

(
Sil(τ)−Si j(τ)

)
dτ

))−1

∈ (0,1] for t→ ∞, (A.5c)

whereas for any j ∈ J \ J∗(i)

Wi j(t) =
exp
(∫ t

0 Si j(τ)dτ

)
∑l∈J exp

(∫ t
0 Sil(τ)dτ

) (A.6a)

=

( ≥0︷ ︸︸ ︷
∑

l∈J\J∗(i)
exp
(∫ t

0

(
Sil(τ)−Si j(τ)

)
dτ

)

+ ∑
l∈J∗(i)

exp
(∫ t

0

(
Sil(τ)−Si j(τ)

)
dτ︸ ︷︷ ︸

→∞

))−1
(A.6b)

−→ 0 for t→ ∞. (A.6c)

ut

A.2 Proof of Proposition 6

Proof (a) Since σ
(

∂F
∂S (S

∗)>
)
= σ

(
∂F
∂S (S

∗)
)
, we may alternatively regard the transpose of the Jacobian

∂F
∂S (S

∗)> =


B>1

. . .
B>m

+Ω
>⊗ In ·


RS∗1

. . .
RS∗m

 (A.7)

with B>i = Diag
(
(ΩS∗)i

)
−〈S∗i ,(ΩS∗)i〉In− (ΩS∗)iS∗i

>. We have for each i ∈ I,

B>i 1n =−〈S∗i ,(ΩS∗)i〉1n, RS∗i
1n = 0, (A.8a)

B>i e j =
(
(ΩS∗)i j−〈S∗i ,(ΩS∗)i〉

)
e j, RS∗i

e j = 0, ∀ j∈ J \ supp(S∗i ). (A.8b)
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Hence, the transposed Jacobian possesses the following eigenpairs:

∂F
∂S (S

∗)> · ei⊗1n =−〈S∗i ,(ΩS∗)i〉 · ei⊗1n, ∀i ∈ I, (A.9a)
∂F
∂S (S

∗)> · ei⊗ e j =
(
(ΩS∗)i j−〈S∗i ,(ΩS∗)i〉

)
· ei⊗ e j, ∀ j ∈ J \ supp(S∗i ), ∀i ∈ I. (A.9b)

If S∗ ∈W∗, then |supp(S∗i )| = 1 for each i ∈ I and therefore (A.9) specifies all mn eigenpairs and
the entire spectrum, which proves (2.16). In this case, the eigenvectors of ∂F

∂S (S
∗) can also be stated

explicitly: Since RS∗ = 0, we have

∂F
∂S (S

∗) =

B1

. . .
Bm

 . (A.10)

Each block Bi fulfills

BiS∗i =−〈S∗i ,(ΩS∗)i〉S∗i , (A.11a)

Bi(S∗i − e j) =
(
(ΩS∗)i j−〈S∗i ,(ΩS∗)i〉

)
(S∗i − e j) ∀ j ∈ J \ supp(S∗i ). (A.11b)

Hence, the corresponding eigenvectors of ∂F
∂S (S

∗) are

ei⊗S∗i , ei⊗ (S∗i − e j), ∀ j ∈ J \ supp(S∗i ), ∀i ∈ I. (A.12)

(b) Since ΩS∗ = 1
|J+| (Ω1m)1>J+ for S∗ = 1

|J+|1m1>J+ , we have

Bi = (Ω1m)i ·
(

1
|J+| Diag(1J+ )− 1

|J+| In− 1
|J+|2

1J+1>J+

)
, (A.13)

RS∗i
= 1
|J+| Diag(1J+ )− 1

|J+|2
1J+1>J+ (A.14)

for all i ∈ I, i.e., the Jacobian matrix simplifies to

∂F
∂S (S

∗) = Diag(Ω1m)⊗B0 +Ω ⊗RS1

with B0 =
1
|J+| Diag(1J+ )− 1

|J+| In− 1
|J+|2

1J+1>J+ . (A.15)

Let {(λi,wi)}i∈Ĩ ⊂ C×Cm be the set of all eigenpairs of Ω indexed by Ĩ, and let {v1, . . . ,v|J+|−1} be a
basis of

{
v ∈ Rn : 〈v,1J+ 〉= 0, supp(v)⊆ J+

}
. Note that |Ĩ|< m if and only if Ω is not diagonalizable.

A short calculation shows

B0e j =− 1
|J+| e j, RS1 e j = 0, ∀ j ∈ J \ J+, (A.16a)

B01J+ =− 1
|J+|1J+ , RS1 1J+ = 0, (A.16b)

B0v j = 0, RS1 v j =
1
|J+| v j, ∀ j ∈ {1, . . . , |J+|−1}. (A.16c)

Hence, the Jacobian has the following mn− (m−|Ĩ|)(|J+|−1) eigenpairs:(
− (Ω1m)i

|J+| ,ei⊗ e j

)
, ∀ j ∈ J \ J+, ∀i ∈ I, (A.17a)(

− (Ω1m)i
|J+| ,ei⊗1J+

)
, ∀i ∈ I, (A.17b)(

λi
|J+| ,wi⊗ v j

)
, ∀ j ∈ {1, . . . , |J+|−1}, ∀i ∈ Ĩ. (A.17c)

If |Ĩ|= m, we thus have a complete set of mn eigenpairs. If |Ĩ|< m, we may consider a diagonalizable
perturbation Ω̃ of Ω . By the same argument, we get a complete set of eigenpairs for the perturbed
Jacobian matrix. Consequently, we obtain (2.18) by continuity of the spectrum.
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(c) We show that the real and imaginary parts of the corresponding eigenvector lie in the linear subspace

T+ = T+(S∗) =
{

V ∈ Rmn : 〈Vi,1n〉= 0, supp(Vi)⊆ supp(S∗i ), ∀i ∈ I
}

(A.18)

To this end, we show the two inclusions

imRS∗ ⊆ T+ ⊆ kerB, (A.19)

where RS∗ and B denote the block diagonal matrices

B =

B1

. . .
Bm

 , RS∗ =


RS∗1

. . .
RS∗m

 . (A.20)

As for the first inclusion, we use the orthogonal projection onto T+ given by

ΠT+ =

ΠT+,1

. . .
ΠT+,m


with ΠT+,i = Diag(1Ji )−

1
|Ji |

1Ji 1
>
Ji
, Ji = supp(S∗i ) ∀i ∈ I. (A.21)

One can verify that ΠT+RS∗ = RS∗ which implies imRS∗ ⊆ imΠT+ = T+, i.e. the first inclusion
of (A.19).
As for the second inclusion, we have to take into account that S∗ is an equilibrium point, i.e. by (2.11)

(ΩS∗)i j = 〈S∗i ,(ΩS∗)i〉 ∀ j ∈ supp(S∗i ) ∀i ∈ I. (A.22)

Since B is a block diagonal matrix, it suffices to examine each block

Bi = Diag
(
(ΩS∗)i

)
−〈S∗i ,(ΩS∗)i〉In−S∗i (ΩS∗)>i (A.23)

separately. Since

Bie j = (ΩS∗)i je j−〈S∗i ,(ΩS∗)i〉e j− (ΩS∗)i jS∗i =−〈S∗i ,(ΩS∗)i〉S∗i , ∀ j ∈ supp(S∗i ) (A.24)

is independent of j ∈ supp(S∗i ), we get Biv = 0 for any v ∈Rn with 〈v,1n〉= 0 and supp(v)⊆ supp(S∗i ).
This verifies the second inclusion of (A.19).
As a consequence of the two inclusions (A.19), any eigenvector V of RS∗ (Ω ⊗ In) corresponding to a
nonvanishing eigenvalue λ 6= 0 has a real and imaginary part lying in imRS∗ ⊆ T+ ⊆ kerB. Therefore,
(λ ,V ) is also an eigenpair of ∂F

∂S (S
∗) = B+RS∗ (Ω ⊗ In). It remains to show that

RS∗ (Ω ⊗ In) =


ω11RS∗1

· · · ω1mRS∗1
...

...
ωm1RS∗m · · · ωmmRS∗m

 (A.25)

has at least one eigenvalue with positive real part. Since the trace

tr
(
RS∗ (Ω ⊗ In)

)
= ∑

i∈I
ωii tr

(
RS∗i

)
= ∑

i∈I
ωii ∑

j∈J
(S∗i j−S∗i j

2)︸ ︷︷ ︸≥ 0, ∀i ∈ I
> 0, for some i ∈ I

> 0 (A.26)

is positive by assumption, the existence of such an eigenvalue is guaranteed.
ut
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A.3 Proof of Theorem 1

The proof follows after two preparatory Lemmata. Let Λ ⊂W be the limit set of the orbit {S(t) : t ≥ 0}, i.e.

Λ = Λ(S0) =
{

S∗ ∈W : ∃(tk)k∈N ⊂ R≥0 with tk → ∞, S(tk)→ S∗
}
. (A.27)

The set Λ 6= /0 is non-empty since W is compact.

Lemma 6 Every point S∗ ∈ Λ of the limit set (A.27) is an equilibrium point satisfying the condition of
Proposition 5(a), which under assumption (2.22) reads

(Ω̂S∗)i j = 〈S∗i ,(Ω̂S∗)i〉 ∀ j ∈ suppS∗i ∀i ∈ I. (A.28)

Proof The assertion follows from [19, Proposition 1] if the flow Ṡ = F(S) on W admits a Lyapunov
function f : W → R, i.e. d

dt f (S(t)) = 〈∇ f (S(t)),F(S(t))〉 ≥ 0, with equality only at an equilibrium.
The function f : W → R,

f (S) = 〈S,Ω̂S〉 (A.29)

is a Lyapunov function for the S-flow (2.2), since

d
dt

f
(
S(t)

)
= 2〈Ω̂S, Ṡ〉= 2∑

i∈I
〈(Ω̂S)i, Ṡi〉

〈1n ,Ṡi〉=0
= 2∑

i∈I

〈
(Ω̂S)i−〈Si,(Ω̂S)i〉1n, Ṡi

〉
(A.30a)

(2.2),(2.22)
= ∑

i∈I

2
wi

∑
j∈J

Si j

(
(Ω̂S)i j−〈Si,(Ω̂S)i〉

)2
≥ 0, (A.30b)

with equality only if S satisfies the equilibrium criterion (A.28). ut

Next, we introduce some additional notation. Let S∗ ∈Λ be an equilibrium with S(tk)→ S∗. The weighted
Kullback-Leibler divergence is defined by

Dw
KL(S

∗,S) =

{
−∑i∈I wi ∑ j∈supp(S∗i )

S∗i j log Si j
S∗i j

, if supp(S∗)⊆ supp(S),

∞, else,
(A.31a)

= ∑
i∈I

wiDKL(S∗i ,Si), (A.31b)

with weights w ∈ Rm
>0 from (2.22) and the supports

suppS = {(i, j) ∈ I× J : Si j 6= 0}, (A.32a)

suppSi = { j ∈ J : Si j 6= 0}. (A.32b)

Analogously to [19], we consider the index sets

J0(i) =
{

j ∈ J : (Ω̂S∗)i j = 〈S∗i ,(Ω̂S∗)i〉
}
, (A.33a)

J−(i) =
{

j ∈ J : (Ω̂S∗)i j > 〈S∗i ,(Ω̂S∗)i〉
}
, (A.33b)

J+(i) =
{

j ∈ J : (Ω̂S∗)i j < 〈S∗i ,(Ω̂S∗)i〉
}

(A.33c)

and define the continuous functions Q : W → R≥0 and V : W → R≥0 ∪{∞} by

Q : W → R≥0, Q(S) = ∑
i∈I

wi ∑
j∈J+(i)

Si j, (A.34a)

V : W → R≥0 ∪{∞}, V (S) = Dw
KL(S

∗,S)+2Q(S). (A.34b)

The equilibrium criterion (A.28) implies

supp(S∗i )⊆ J0(i) and J−(i),J+(i)⊆ J \ supp(S∗i ) ∀i ∈ I, (A.35)

i.e. V (S∗) = Q(S∗) = 0. Using the Lyapunov function (A.29), we have the following.



40 A. Zern et al.

Lemma 7 (cf. [19, Proposition 2]) There exists ε > 0 such that, if ‖S(t)−S∗‖< ε and f (S(t))< f (S∗)
with f given in (A.29), then d

dt V (S(t))< 0.

Proof Since S(t) ∈W for all t ≥ 0, we have Dw
KL(S

∗,S(t))< ∞. Hence

d
dt

Dw
KL(S

∗,S(t))

(A.31)
= −∑

i∈I
wi ∑

j∈supp(S∗i )
S∗i j

Ṡi j

Si j

(A.36a)

(2.2)
= −∑

i∈I
∑

j∈supp(S∗i )
S∗i j
(
(Ω̂S)i j−〈Si,(Ω̂S)i〉

)
(A.36b)

= 〈S,Ω̂S〉−〈S∗,Ω̂S〉 (2.22)
= 〈S,Ω̂S〉−〈S,Ω̂S∗〉 (A.36c)

= 〈S,Ω̂S〉−〈S∗,Ω̂S∗〉+ 〈S∗,Ω̂S∗〉−〈S,Ω̂S∗〉 (A.36d)

∑ j∈J Si j=1
= 〈S,Ω̂S〉−〈S∗,Ω̂S∗〉+∑

i∈I
∑
j∈J

Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j

)
(A.36e)

(A.33)
= 〈S,Ω̂S〉−〈S∗,Ω̂S∗〉︸ ︷︷ ︸

= f (S)− f (S∗)<0

+∑
i∈I

∑
j∈J−(i)

Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j︸ ︷︷ ︸

<0

)
+∑

i∈I
∑

j∈J+(i)
Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j︸ ︷︷ ︸

>0

)
.

(A.36f)

We now focus on Q(S) (A.34a) that is added to the KL-divergence to define V (S) in (A.34b). We have for
each j ∈ J+(i)

〈Si,(Ω̂S)i〉− (Ω̂S)i j −→ 〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j > 0 as S→ S∗. (A.37)

Since the limit is positive, there exists ε > 0 such that ‖S−S∗‖< ε implies

〈Si,(Ω̂S)i〉− (Ω̂S)i j ≥
3
4

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j

)
, ∀ j ∈ J+(i), ∀i ∈ I. (A.38)

Consequently,

d
dt

Q
(
S(t)

) (2.2)
(A.34a)
= ∑

i∈I
∑

j∈J+(i)
Si j

(
(Ω̂S)i j−〈Si,(Ω̂S)i〉

)
(A.39a)

≤ −3
4 ∑

i∈I
∑

j∈J+(i)
Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j

)
. (A.39b)

Substituting (A.36) and (A.39) into (A.34b), we finally obtain

d
dt

V (S(t)) =
d
dt

Dw
KL(S

∗,S(t))+2
d
dt

Q(S(t))

≤ 〈S,Ω̂S〉−〈S∗,Ω̂S∗〉+∑
i∈I

∑
j∈J−(i)

Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j

)
− 1

2 ∑
i∈I

∑
j∈J+(i)

Si j

(
〈S∗i ,(Ω̂S∗)i〉− (Ω̂S∗)i j

) (A.40a)

< 0. (A.40b)

ut



Assignment Flows for Data Labeling on Graphs: Convergence and Stability 41

Proof (Proof of Theorem 1) Let S∗ ∈Λ be any equilibrium point and (tk)k∈N a corresponding sequence
due to (A.27). We show that Dw

KL(S
∗,S(t))→ 0 for t→∞, which is equivalent to the assertion S(t)→ S∗ to

be shown.
Choose ε > 0 according to the Lemma 7. There exists ε1 > 0 such that the (relatively) open set

U = {S ∈W : V (S) < ε1} is contained in {S ∈W : ‖S− S∗‖ < ε}. The function t 7→ f (S(t)) is strictly
increasing unless the orbit {S(t) : t ≥ 0} consists of an equilibrium. Hence, f (S(t)) < f (S∗) for all
t ≥ 0. Since S(tk)→ S∗, we get S(tk0 ) ∈U for some k0 ∈ N. Since then t 7→ V (S(t)) is decreasing, i.e.
V (S(t))<V (S(tk0 ))< ε1 for all t > tk0 , and because V (S(t)) is decreasing and V (S(tk))→V (S∗) = 0, we
get

0≤ Dw
KL(S

∗,S(t))≤V (S(t))→ 0 for t→ ∞, (A.41)

which implies S(t)→ S∗ for t→ ∞. ut

A.4 Proof of Proposition 12

Proof For any t ∈N0, we set

Y (t)(τ) = Fτ (S(t))
(3.1)
= expS(t) (τΩS(t)) (A.42a)

and thus have

Y (t)(h) = S(t+1), Y (t)(0) = S(t), Y (0)(0) = S0. (A.42b)

Formula (1.12) implies

Ẏ (t)(τ) =
d

dτ
expS(t) (τΩS(t)) = RY (t)(τ)(ΩS(t)) = G(Y (t)), (A.43)

where we defined the shorthand G(Y (t)).
Now, with S(t) solving the S-flow (2.2), we estimate with any T ≥ th,

S(T )−Y (t)(T − th) (A.44a)

= S(th)−Y (t)(0)+
∫ T−th

0

d
dτ

(
S(th+ τ)−Y (t)(τ)

)
dτ (A.44b)

(A.43),(2.2)
= S(th)−Y (t)(0)+

∫ T−th

0

(
F
(
S(th+ τ)

)
−G

(
Y (t)(τ)

))
dτ (A.44c)

= S(th)−Y (t)(0)+
∫ T−th

0

(
F
(
S(th+ τ)

)
−F

(
Y (t)(τ)

))
dτ

+
∫ T−th

0

(
F
(
Y (t)(τ)

)
−G

(
Y (t)(τ)

))
dτ

(A.44d)

= S(th)−Y (t)(0)+
∫ T−th

0

(
F
(
S(th+ τ)

)
−F

(
Y (t)(τ)

))
dτ

+
∫ T−th

0

∫
τ

0

d
dτ

(
F
(
Y (t)(τ)

)
−G

(
Y (t)(τ)

))∣∣∣
τ=λ

dλdτ

(A.44e)

= S(th)−Y (t)(0)+
∫ T−th

0

(
F
(
S(th+ τ)

)
−F

(
Y (t)(τ)

))
dτ

+
∫ T−th

0

∫
τ

0

(
dF
(
Y (t)(λ )

)[
G
(
Y (t)(λ )

)]
−dG

(
Y (t)(λ )

)[
G
(
Y (t)(λ )

)])
dλdτ.

(A.44f)

By assumption, F given by (2.2) is C1, as is G given by (A.43) which has the same form. Consequently,
regarding the integrand of the last integral, since W is compact there exists a constant C such that∥∥∥dF

(
Y (t)(λ )

)[
G
(
Y (t)(λ )

)]
−dG

(
Y (t)(λ )

)[
G
(
Y (t)(λ )

)]∥∥∥≤C, ∀Y (t) ∈W. (A.45)
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Hence,

‖S(T )−Y (t)(T − th)‖ (A.46a)

≤ ‖S(th)−Y (t)(0)‖+
∫ T−th

0

∥∥F
(
S(th+ τ)

)
−F

(
Y (t)(τ)

)∥∥dτ

+C
∫ T−th

0

∫
τ

0
dλdτ

(A.46b)

≤ ‖S(th)−Y (t)(0)‖+L
∫ T−th

0
‖S(th+ τ)−Y (t)(τ)‖dτ

+
C
2
(T − th)2

(A.46c)

Applying Gronwall’s inequality [29, Lemma 2.7] yields

‖S(T )−Y (t)(T − th)‖ ≤
(
‖S(th)−Y (t)(0)‖+ C

2
(T − th)2

)
eL(T−th) (A.47)

and setting T = (t +1)h

∥∥S
(
(t +1)h

)
−Y (t)(h)

∥∥ (A.42b)
=

∥∥S
(
(t +1)h

)
−S(t+1)∥∥ (A.48a)

(A.42b)
≤

(
‖S(th)−S(t)‖+ Ch2

2

)
eLh. (A.48b)

Thus,

‖S(th)−S(t)‖ ≤
(
‖S
(
(t−1)h

)
−S(t−1)‖+ Ch2

2

)
eLh (A.49a)

≤
((
‖S
(
(t−2)h

)
−S(t−2)‖+ Ch2

2

)
eLh +

Ch2

2

)
eLh (A.49b)

=
∥∥S
(
(t−2)h

)
−S(t−2)∥∥e2Lh +

Ch2

2
(
e2Lh + eLy) (A.49c)

= ‖S(0)−S(0)‖︸ ︷︷ ︸
=0 by (A.42b)

etLh +
Ch2

2 ∑
k∈[t]

ekLh (A.49d)

=
Ch2

2

( e(t+1)Lh−1
eLh−1

−1
)
=

Ch2

2
eLh etLh−1

eLh−1
(A.49e)

and using eLh ≥ 1+Lh

≤ C
2L

he(t+1)Lh, ∀t ∈N. (A.49f)

ut

B Stability Statements for Dynamical Systems

We state basic results from the literature which are used to analyze the stability of the equilibria of the
S-flow in Section 2.3.

Theorem 3 Let x∗ be an equilibrium point of the system ẋ(t) = F(x(t)) with F ∈C1(U,Rn).

(a) If all eigenvalues of the Jacobian matrix ∂F
∂x (x

∗) have negative real part, then x∗ is exponentially stable.

(b) If the Jacobian matrix ∂F
∂x (x

∗) has an eigenvalue with positive real part, then x∗ is unstable.
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Statement (a) can be found in [29, Theorem 6.10]. For statement (b) we refer to [24, Proposition 6.2.1].
These stability criteria concern flows ẋ(t) = F(x(t)) on an open subset U ⊆ Rn.

Since we regard the S-flow as a flow on the compact set W , we need a few additional arguments. In [24,
Section 6.8.4], a direct proof of theorem 3(b) is sketched. Since we employ techniques that are used in that
proof for our own analysis, we summarize the main statements in the following proposition for the reader’s
convenience. Informally, the proposition states that, if ∂F

∂x (x
∗) has an eigenvalue with positive real part, then

there exists an open truncated cone at x∗ where the flow ẋ = F(x) is repelled from x∗.

Proposition 16 Let x∗ be an equilibrium point of ẋ(t) = F(x(t)) with F ∈C1(U,Rn). Then

(a) There exist a sufficiently small ε1 > 0 and a (real) similarity transform

V−1 ∂F
∂x (x

∗)V =

(
Asc 0
0 Au

)
= A, (B.1)

such that
(i) Re(λ )≤ 0 for all eigenvalues λ of Asc,

(ii) Re(λ )> 0 for all eigenvalues λ of Au,
(iii) 〈ysc,Ascysc〉 ≤ ε1

4 ‖ysc‖2
2,

(iv) 〈yu,Auyu〉 ≥ ε1‖yu‖2
2.

(b) Suppose ∂F
∂x (x

∗) has at least one eigenvalue λ with Re(λ ) > 0. Considering an affine coordinate
transform y =V−1(x− x∗) with V ∈ GLn(R) from (a), the resulting flow

ẏ = G(y) =V−1F(V y+ x∗), (B.2)

which has the equilibrium y∗ = 0 with ∂G
∂y (0) =V−1 ∂F

∂x (x
∗)V = A, has the following property. There

exist η > 0, δ > 0 and ε > 0, such that if the flow starts at some point in the open truncated cone

Uη ,δ =
{

y =
( ysc

yu

)
∈ Rn : ‖ysc‖2

2 < η‖yu‖2
2, ‖y‖2 < δ

}
⊂ Bδ (0) =

{
y ∈ Rn : ‖y‖2 < δ

}
, (B.3)

then the solution will not cross the conical portion of ∂Uη ,δ , i.e.{
y ∈ Rn : ‖ysc‖2

2 = η‖yu‖2
2, ‖y‖2 < δ

}
, (B.4)

and it fulfills ‖y(t)‖ ≥ ‖y(0)‖eεt as long as y(t) ∈Uη ,δ , i.e., y(t) leaves the ball Bδ (0) at some time
point. Especially, the equilibrium y∗ = 0 is unstable. This property is accordingly transferred to the
equilibrium x∗ of ẋ(t) = F(x(t)) using x(t) =V y(t)+ x∗.

We note that if ∂F
∂x (x

∗) is diagonalizable with real eigenvalues then the similarity transform in proposi-
tion 16(a) is just the diagonalization. In general, if v ∈ Cn is an eigenvector of ∂F

∂x (x
∗) corresponding to an

eigenvalue λ ∈ C with Re(λ )> 0 and V ∈ GLn(R) is given by Proposition 16(a), then V−1 Re(v) =
( 0

yu

)
and V−1 Im(v) =

( 0
ỹu

)
.
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17. Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.,
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