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ABSTRACT. This paper extends the recently introduced assignment flow approach for supervised im-
age labeling to unsupervised scenarios where no labels are given. The resulting self-assignment flow
takes a pairwise data affinity matrix as input data and maximizes the correlation with a low-rank ma-
trix that is parametrized by the variables of the assignment flow, which entails an assignment of the
data to themselves through the formation of latent labels (feature prototypes). A single user parameter,
the neighborhood size for the geometric regularization of assignments, drives the entire process. By
smooth geodesic interpolation between different normalizations of self-assignment matrices on the pos-
itive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly,
our approach can be characterized from different viewpoints, e.g. as performing spatially regularized,
rank-constrained discrete optimal transport, or as computing spatially regularized normalized spectral
cuts. Regarding combinatorial optimization, our approach successfully determines completely positive
factorizations of self-assignments in large-scale scenarios, subject to spatial regularization. Various ex-
periments including the unsupervised learning of patch dictionaries using a locally invariant distance
function, illustrate the properties of the approach.
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1. INTRODUCTION

Overview, contribution. Assignment flows [ÅPSS17] correspond to a smooth dynamical system
for contextual data labeling (classification) on an arbitrary given graph. The basic supervised setting
assumes a set of prototypes to be given, that are assigned to the data by numerically computing the
flow. ‘Contextual’ means that decisions within local neighborhoods affect each other and are taken
into account.

Assignment flows are defined using information geometry [Lau87, AN00]. An elementary sta-
tistical manifold provides both a target space for data embedding and a state space on which the
assignment flow evolves. Corresponding vector fields are parametrized and thus enable to learn the
adaptivity of contextual label assignments, rather than parameters of a fixed regularizer as with tradi-
tional graphical models of variational approaches to inverse problems. Modular compositional design
facilitates extensions beyond the basic supervised scenario, including those investigated in the present
paper. Smoothness enables the design of efficient algorithms using geometric integration [ZSPS19].
The assignment flow for supervised labeling is specified in Section 2.5. We refer to [Sch19] for further
discussion and a review of our recent work.

The availability of prototypes as class representatives is a strong requirement in practice. In many
applications either prototypes are not available or it is not clear what prototypes represent the classes
properly. A basic remedy is to cluster the data in a preprocessing step. However, the clustering step
then does not take into account the framework in which the resulting prototypes are subsequently used
for classification. In our recent work [ZZPS19a], we took a step towards a more natural approach: the
assignment flow for supervised classification was extended so as to enable the adaption of prespecified
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prototypes. While this adaption is based on the same framework that is used for subsequent contextual
classification, some initial prototypes still have to be given.

In this paper, we adopt a completely unsupervised scenario where no prototypes are given at all.
Data are merely given in terms of pairwise distances or affinity values forming a distance or affin-
ity matrix. This includes the basic scenarios of pattern recognition and machine learning: distances
between Euclidean feature vectors, Riemannian distances between manifold-valued features, and ker-
nel matrices after embedding given feature vectors into reproducing kernel Hilbert space (RKHS)
[HSS08]. Our approach utilizes various relaxations of a graph partitioning problem that naturally
arises when the missing prototypes of the supervised setting are removed and replaced by a copy of
the given data, from which prototypes have to be learned from scratch. The relaxations involve vari-
ants of corresponding self-assignment matrices that are parametrized by the assignment flow. A key
parameter is the scale of the supervised assignment flow in terms of the size of local neighborhoods
where evolving assignments driven by the flow affect each other. This parameter determines how fine
or coarse the resulting partition is, and how many corresponding prototypes can be recovered under
additional assumptions.

A key property of our approach is that no bias affects the emergence of these prototypes, and that
the very same framework is used for both learning these prototypes and subsequent contextual data
labeling (classification). In addition, a single component of the supervised assignment flow has only
to be modified in order to extend this approach to the completely unsupervised setting. In particular,
geometric schemes for numerically integrating the assignment flow [ZSPS19] still apply.

Related work. The literature on clustering and unsupervised learning is vast. No attempt is made
to review it here. We confine ourselves to elucidating common and different aspects of our approach
from three different viewpoints that have become prominent in the literature: (i) spectral relaxation
and clustering using normalized graph Laplacians [SM00, vL07]; (ii) regularized transport of discrete
probability measures [BCPD99, Pey18]; (iii) matrix factorization and aspects of combinatorial opti-
mization [RW95, ZS05, KYP15, YC16]. From each viewpoint, our approach can be characterized
as combining tight relaxation of graph partitioning, geometric spatial regularization of assignments,
and geometric numerical integration in a mathematically novel way. The present paper considerably
elaborates the conference version [ZZPS19b].

Organization. We introduce basic notation and collect background in Section 2, including the
supervised assignment flow as basic framework. Section 3 shows how the graph partitioning problem
and various relaxations emerge within this framework, after replacing the prototypes by the data and
assigning them to themselves. We highlight differences between two major relaxations and show how
latent prototypes emerge as the assignment flow evolves. After terminating the self-assignment flow
at some labeling, these prototypes can be recovered explicitly under additional assumptions (weighted
averaging in feature space has to be well-defined and computationally feasible). A family of self-
assignment flows, based on the relaxations of Section 3, is defined in Section 4. It is shown that the
latent prototypes maximize cluster separability. In this sense, the self-assignment flow performs self-
supervision. Related work is discussed in Section 5. The approach is illustrated in Section 6 using
various basic examples of image analysis and more advanced examples, including unsupervised and
locally invariant patch learning, assignment, and transfer to novel data. In order to highlight the broad
applicability of our approach, an experiment using weighted graph data is included, too.
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2. PRELIMINARIES

We collect in this section material required in subsequent sections.

2.1. Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N and 1n = (1, 1, . . . , 1)> ∈ Rn. The
cardinality of a finite set S is denoted by |S|. The following spaces of matrices will be used.

• Sn: symmetric n× n matrices
• Sn+: symmetric nonnegative n× n matrices
• Rn×c+ : nonnegative n× c matrices
• Pc: symmetric positive definite c× c matrices

‖ · ‖ denotes the Euclidean norm and the Frobenius norm for vectors and matrices, respectively. All
other norms will be indicated by a corresponding subscript. For a matrix A ∈ Rn×c, Ai, i ∈ [n]
denote the row vectors and Aj , j ∈ [c] denote the column vectors, A> ∈ Rc×n the transpose and A†

the Moore-Penrose generalized inverse ofA. tr(A) =
∑

i∈[n]Ai,i denotes the trace of a square matrix
A ∈ Rn×n. ∆n = {p ∈ Rn+ : 〈1n, p〉 = 1} denotes the probability simplex. The orthogonal projection
onto a closed convex set C is denoted by ΠC .

2.2. Scatter Matrices. We collect basic concepts of statistical pattern recognition [DK82]. They will
be used for interpreting self-assignment flows from a corresponding angle in Section 4.3.

Let
Fn = {fi ∈ Rd, i ∈ I} (2.1)

denote given data in terms of feature vectors in a Euclidean space. Suppose these data are classified
corresponding to the partition

I =
⋃̇

j∈[c]
Ij , |Ij | = nj ,

∑
j∈[c]

nj = n = |I|, c ∈ N, (2.2)

that is, datum fi belongs to class j iff i ∈ Ij .
We define the empirical quantities

Pj =
nj
n
, j ∈ [c] (prior probabilities) (2.3a)

mj =
1

nj

∑
i∈Ij

fi, j ∈ [c] (class-conditional mean vectors) (2.3b)

m =
∑
j∈[c]

Pjmj =
1

n

∑
i∈[n]

fi (mean vector) (2.3c)

and the scatter matrices (empirical covariance matrices)

St =
1

n

∑
i∈[n]

(fi −m)(fi −m)>, (2.4a)

Sw =
∑
j∈[c]

Pj ·
1

nj

∑
i∈Ij

(fi −mj)(fi −mj)
> =

1

n

∑
j∈[c]

∑
i∈Ij

(fi −mj)(fi −mj)
>, (2.4b)

Sb =
∑
j∈[c]

Pj(mj −m)(mj −m)>. (2.4c)

Sw is called the within-class scatter matrix, whereas Sb is called the between-class scatter matrix. St
is called the total scatter matrix since

St = Sw + Sb, (2.5)
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as an elementary computation shows.
In supervised scenarios the class-label assignments i ∈ Ij are known and the decomposition (2.5)

can be computed. Assuming Sw has full rank, a basic objective for dimension reduction by extracting
lower-dimensional features from the data Fn is then given by the class-separability measure

tr(S−1w Sb). (2.6)

Defining the features by Y >x, for some matrix Y ∈ Rd×c to be determined, transforms (2.6) to
tr((Y >SwY )−1Y >SbY ). Maximizing this objective with respect to Y simultaneously maximizes the
between-class variation and minimizes the within-class variation. The column vectors of the optimal
Y are given by dominant generalized eigenvectors of the matrix pencil (Sb, Sw). The map Y >x to
a lower-dimensional space preserves the structure of the data, as represented by the scatter matrices
Sw, Sb, as much as possible.

Our viewpoint in this paper differs. Since we assume unlabelled (unclassified) data, the decom-
position (2.5) is unknown. Accordingly, we are interested in the more involved problem to compute
class representatives mj , j ∈ [c] from the data Fn so as to obtain good clusters based on the objective
(2.6), see Section 4.3.

2.3. Sketching Large Affinity Matrices. In order to cope with large-scale scenarios, we will have
to compress large symmetric and positive semi-definite matrices K ∈ Sn. The problem is to obtain a
computationally feasible approximation of the best rank-` approximation

K` = U1D`(K)U>1 , `� n, (2.7)

whereD` and U1 ∈ Rn×` contain the dominant eigenvalues and eigenvectors of the spectral decompo-
sitionK = UD(K)U>. Computing (2.7) directly for large n using the Singular Value Decomposition
(SVD) is too expensive. Computationally feasible approximations [GM16] result in the compressed
matrix

K̂` = CA†C> (2.8a)

that is parametrized by a sketching matrix S ∈ Rn×` with

C = KqS, A = S>K2q−1S, q ∈ N (2.8b)

and hence has rank at most `. A† is the Moore-Penrose generalized inverse of A and q ∈ {1, 2, 3} is
a small integer in practice. Choosing q > 1 is more expensive due to the multiplication of the large
matrix K of (2.8b) but yields in theory a better approximation of (2.7) by (2.8a) with respect to the
spectral norm.

In this paper, we confine ourselves to the following computationally cheap version of this method
for computing (2.8a), based on uniform sampling of ` columns directly fromK. Assuming w.l.o.g. that
they form the first ` columns of K, the corresponding partition [n] = [`] ∪

(
[n] \ [`]

)
and S =

(
I`
0

)
yields with q = 1

K =

(
A B1

B1 B2

)
, C =

(
A
B1

)
, (2.9)

and using AA†A = A,

K̂` =

(
A
B1

)
A†
(
A B1

)
=

(
A AA†B1

B1A
†A B1A

†B1

)
. (2.10)

Assuming the A has full rank, we obtain the classical Nyström extension

K̂` =

(
A B1

B1 B1A
−1B1

)
(2.11)
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introduced in machine learning by [WS01], studied much earlier in linear algebra – see, e.g., the Schur
compression matrix and references in [And79] – and analyzed by [DM05].

2.4. The Positive Definite Matrix Manifold Pn. The following is taken from [Bha06]. The set

Pn = {S ∈ Sn : λi(S) > 0, ∀i ∈ [n]} (2.12)

of symmetric and positive definite matrices form a smooth Riemannian manifold with tangent spaces
TSPn ∼= Sn identified with Sn and Riemannian metric

〈S1, S2〉S = tr(S−1S1S
−1S2), S1, S2 ∈ Sn, S ∈ Pn (2.13a)

and corresponding norm

‖T‖S = ‖S−1/2TS−1/2‖, T ∈ Sn, S ∈ Pn. (2.13b)

For any A,B ∈ Pn, there exists a unique geodesic joining A and B given by

γ(s) = A1/2
(
A−1/2BA−1/2

)s
A1/2, s ∈ [0, 1]. (2.14)

2.5. Representation of Assignments. The assignment flow is a basic dynamical system for labeling
data given on a graph [ÅPSS17]. We refer to [Sch19] for the mathematical background and a review
of recent developments.

2.5.1. Assignment Manifold. Let (F , dF ) be a metric space and

Fn = {fi ∈ F : i ∈ I}, |I| = n. (2.15)

given data. Assume that a predefined set of prototypes

F∗ = {f∗j ∈ F : j ∈ J }, |J | = c. (2.16)

is given. Data labeling denotes the assignments

j → i, f∗j → fi (2.17)

of a single prototype f∗j ∈ F∗ to each data point fi ∈ Fn. The set I is assumed to form the vertex set
of an undirected graph G = (I, E) which defines a relation E ⊂ I × I and neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (2.18)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i).
The assignments (labeling) (2.17) are represented by matrices in the set

Wc
∗ =

{
W ∈ {0, 1}n×c : W1c = 1n, rank(W ) = c

}
(2.19)

with unit vectors Wi, i ∈ I, called assignment vectors, as row vectors. Moreover the rank constraint
ensures that exactly c labels are assigned. These assignment vectors are computed by numerically
integrating the assignment flow below (2.36), in the following elementary geometric setting. The
integrality constraint and the rank constraint of (2.19) is relaxed and vectors

Wi = (Wi,1, . . . ,Wi,c)
> ∈ S, i ∈ I, (2.20)

that we still call assignment vectors, are considered on the elementary Riemannian manifold

(S, g), S = {p ∈ ∆c : p > 0} (2.21)

with
1S =

1

c
1 ∈ S, (barycenter) (2.22)

tangent space
T0 = {v ∈ Rc : 〈1, v〉 = 0} (2.23)
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and tangent bundle TS = S × T0, orthogonal projection

Π0 : Rc → T0, Π0 = ΠT0 = I − 1S1> (2.24)

and the Fisher-Rao metric

gp(u, v) =
∑
j∈J

ujvj

pj
, p ∈ S, u, v ∈ T0. (2.25)

Based on the linear map

Rp : Rc → T0, Rp = Diag(p)− pp>, p ∈ S (2.26)

satisfying
Rp = RpΠ0 = Π0Rp, (2.27)

exponential maps and their inverses are defined as

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉
, (2.28a)

Exp−1p : S → T0, q 7→ Exp−1p (q) = Rp log
q

p
, (2.28b)

expp : T0 → S, expp = Expp ◦Rp, (2.28c)

exp−1p : S → T0, exp−1p (q) = Π0 log
q

p
. (2.28d)

Remark 2.1. Applying the map expp to a vector in Rc = T0 ⊕ R1 does not depend on the constant
component of the argument, due to (2.27).

Remark 2.2. The map Exp corresponds to the e-connection of information geometry, rather than
to the exponential map of the Riemannian connection [AN00]. Accordingly, the affine geodesics
(2.28a) are not length-minimizing. But they provide a close approximation and are more convenient
for numerical computations.

The assignment manifold is defined as

(W, g), W = S × · · · × S. (n = |I| factors) (2.29)

PointsW ∈ W are row-stochastic matricesW ∈ Rn×c with row vectorsWi ∈ S, i ∈ I that represent
the assignments (2.17) for every i ∈ I. We set

T0 = T0 × · · · × T0 (n = |I| factors) (2.30)

with tangent vectors V ∈ Rn×c, Vi ∈ T0, i ∈ I. All the mappings defined above factorize in a
natural way and apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn
) etc.

2.5.2. Assignment Flow. Based on (2.15) and (2.16), the distance vector field

DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)>
, i ∈ I (2.31)

is well-defined. These vectors are collected as row vectors of the distance matrix

DF ∈ Rn×c+ . (2.32)

The likelihood map and the likelihood vectors, respectively, are defined as

Li : S → S, Li(Wi) = expWi

(
− 1

ρ
DF ;i

)
=

Wie
− 1
ρ
DF;i

〈Wi, e
− 1
ρ
DF;i〉

, i ∈ I, (2.33)
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where the scaling parameter ρ > 0 is used for normalizing the a-priori unknown scale of the compo-
nents of DF ;i that depends on the specific application at hand.

A key component of the assignment flow is the interaction of the likelihood vectors through geo-
metric averaging within the local neighborhoods (2.18). Specifically, using the weights

Ωi =
{
wi,k : k ∈ Ni, wi,k > 0,

∑
k∈Ni

wi,k = 1
}
, i ∈ I, (2.34)

the similarity map and the similarity vectors, respectively, are defined as

Si : W → S, Si(W ) = ExpWi

( ∑
k∈Ni

wi,k Exp−1Wi

(
Lk(Wk)

))
, i ∈ I. (2.35)

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the argument

inside the brackets of the right-hand side would just be the negative Riemannian gradient with respect
toWi of the center of mass objective function comprising the points Lk, k ∈ Ni, i.e. the weighted sum
of the squared Riemannian distances between Wi and Lk [Jos17, Lemma 6.9.4]. In view of Remark
2.2, this interpretation is only approximately true mathematically, but still correct informally: Si(W )
moves Wi towards the geometric mean of the likelihood vectors Lk, k ∈ Ni. Since ExpWi

(0) = Wi,
this mean is equal to Wi if the aforementioned gradient vanishes.

The assignment flow is induced by the system of nonlinear ODEs

Ẇ = RWS(W ), W (0) = 1W , (2.36a)

Ẇi = RWiSi(W ), Wi(0) = 1S , i ∈ I, (2.36b)

where 1W ∈ W denotes the barycenter of the assignment manifold (2.29). System (2.36a) collects all
systems (2.36b), for every vertex i ∈ I. The latter systems are coupled within local neighborhoodsNi
due to the similarity vectors Si(W ) given by (2.35). The solutionW (t) ∈ W is numerically computed
by geometric integration [ZSPS19] and determines a labeling W (T ) ∈ Wc

∗ for sufficiently large T
after a trivial rounding operation.

2.6. Greedy k-Center Metric Clustering. In order to handle large-scale scenarios, the following
simple but effective algorithm from [HP11] can be employed for data reduction in a preprocessing
step. The algorithm approximates the k-center clustering along with a performance guarantee and
only requires linear complexity O(nc) with respect to the (large) number of data points n. By using
a min-max objective (see (2.38) below), selected data points are evenly spread among all data points
and hence do not introduce a bias beforehand.

The task of k-center clustering is as follows. Given data points Fn from a metric space (F , dF ),
determine a subset

Fc = {fj : j ∈ J } ⊂ Fn, |J | = c. (2.37)

that solves the combinatorially hard optimization problem

E∗∞ = min
Fc⊂Fn,|Fc|=c

E∞(Fc), E∞(Fc) = max
f∈Fn

dF (f,Fc), (2.38)

where dF (f,Fc) = minf ′∈Fc dF (f, f ′).
A greedy approximation is computed as follows. Start with a first initial point f1, e.g. chosen

randomly in Fn. Then select the remaining c − 1 points f2, . . . , fc successively by determining the
point that is most distant from the current subset of already selected points, to obtain a set Fc that is
a 2-approximation E∞(Fc) ≤ 2E∗∞ of the optimum (2.38) [HP11, Thm. 4.3]. As a consequence, the
subset of c points of Fc are almost uniformly distributed within Fn, as measured by the metric dF .
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3. SELF-ASSIGNMENT

This section prepares the generalisation of the assignment flow (2.36) from supervised labeling to
completely unsupervised labeling, where prototypes (2.16) no longer are involved but are determined
simultaneously. Our approach is (i) to assign given data (2.15) to itself in terms of a self-affinity
matrix parameterized by the assignment matrixW ∈ Rn×c (Section 3.2), which ensures computational
feasibility since c � n, and (ii) to generalize later on the likelihood map (2.33) accordingly (Section
4.1). Except for this more general definition of the likelihood map L(W ), the subsequent similarity
map S(W ) given by (2.35) remains unaltered, as do numerical schemes for integrating the flow (2.36)
[ZSPS19].

In fact, we define a one-parameter family of self-assignment matrices by geodesic interpolation of
two extreme points on the positive definite manifold, that admit natural probabilistic interpretations
of the corresponding self-assignments. Properties of these matrices also provide the basis for the
interpretation of the resulting self-assignment flows (Section 3.3) and for pointing out connections to
related work (Section 5).

3.1. From Labeling to Partitioning. Since the prototypes F∗ are unknown, we replace them by the
given data Fn. Along with Fn and the underlying graph G = (I, E), we assume a weighted similarity
matrix

KF ∈ Sn+ (3.1)
to be given with entries

KF ;i,k = (KF )i,k = kF (fi, fk), i, k ∈ I (3.2)

measuring the similarity of the data points fi, fk in terms of a nonnegative symmetric function kF .
Matrix KF is positive definite if kF evaluates the inner product of a data embedding into a corre-
sponding reproducing kernel Hilbert space (RKHS) space [HSS08]. A basic example is a Euclidean
feature space (F , dF ) with norm dF (fi, fk) = ‖fi − fk‖ and

kF (fi, fk) = e−dF (fi,fk)
2/σ2

. (3.3)

Let W ∈ Wc
∗ be a labeling. The column vectors W j , j ∈ J , of W indicate which data points fi are

assigned to j-th cluster Ij corresponding to the partition

I =
⋃̇
j∈J
Ij (3.4)

of the data set Fn. Define the diagonal matrix

C(W ) := Diag(W>1n) = Diag(n1, . . . , nc) ∈ Sc+ (3.5a)

with the cardinalities of each cluster

nj := |Ij |, j ∈ J (3.5b)

as entries. The quadratic form
1

2
〈W j ,KFW

j〉 =
1

2

∑
i,k∈I

kF (fi, fk)Wi,jWk,j =
1

2

∑
i∈Ij

kF (fi, fi) +
∑

i,k∈Ij : i 6=k
kF (fi, fk) (3.6)

measures the size of cluster Ij by the first sum of the right-hand side, which for common kernel
functions like (3.3) is proportional to the number nj of data points assigned to cluster j, and the
connectivity in terms of the weights kF (fi, fk) of all edges ik ∈ E connecting points i and k in this
cluster. Assuming that all clusters are non-empty, which amounts to the assumption

rank(W ) = c, (3.7)
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we normalize the preceding expression by the cardinality and sum over all clusters, to obtain∑
j∈J

1

2nj
〈W j ,KFW

j〉 =
1

2

∑
j∈J

1

nj

∑
i∈Ij

kF (fi, fi) +
∑
j∈J

1

nj

∑
i,k∈Ij : i 6=k

kF (fi, fk) (3.8a)

=
1

2

∑
j∈J

1

nj
(W>KFW )j,j

(3.5a)
=

1

2
tr
(
C(W )−1W>KFW

)
(3.8b)

=
1

2
tr
(
KFA0(W )

)
, (3.8c)

with

A0(W ) = WC(W )−1W>, W ∈ Wc
∗. (3.8d)

For common kernel functions like (3.3), the first sum of the right-hand side of (3.8a) is just a con-
stant. Objective (3.8c) therefore essentially measures the normalized similarity weights not cut by the
partition of the underlying graph.

Thus, the problem to partition the data and the underlying graph into c clusters takes the form

max
W

tr
(
KFA0(W )

)
subject to W ∈ Wc

∗. (3.9)

We record basic properties of the matrix A0(W ).

Lemma 3.1. Let W ∈ Wc
∗ . Then the matrix A0(W ) given by (3.8d) is

(a) nonnegative and symmetric,
(b) doubly stochastic,

A0(W )1n = A0(W )>1n = 1n, (3.10)

(c) and completely positive,
A0(W ) = Y Y >, Y ≥ 0. (3.11)

Proof. (a) is immediate. (b) follows from (3.5a) and the constraint W ∈ Wc
∗ (recall (2.19)). (c) holds

with Y = Y (W ) = WC(W )−1/2. �

Property (c) reflects the combinatorial difficulty of problem (3.9) – see, e.g., [Bom18] and refer-
ences therein. Therefore, we next discuss various relaxations.

3.2. Self-Assignment Matrices, Relaxation. We start with the definitions of two basic self-assignment
matrices. The first relaxation based on (3.8d) drops both the integrality constraint and the rank con-
straint.

Definition 3.1 (Self-Affinity Matrix). The self-affinity matrix is defined as the factorization

A0(W ) := WC(W )−1W>, W ∈ W. (3.12)

The second definition is based on the observation that equivalent expressions for the normalizing
matrix

C(W ) = W>W if W ∈ Wc
∗ (3.13)

differ after relaxing the feasible set Wc
∗ . Dropping the integrality constraint but keeping the rank

constraint yields the set of full-rank assignment matrices

Wc =
{
W ∈ W : rank(W ) = c

}
(full-rank assignments) (3.14)

and the following definition.



SELF-ASSIGNMENT FLOWS 11

Definition 3.2 (Self-Influence Matrix). The self-influence matrix is defined as the factorization

A1(W ) := W (W>W )−1W>, W ∈ Wc. (3.15)

Definitions 3.1 and 3.2 differ by the normalizing matrices C(W ) and W>W , both of which are
positive definite. It is then natural to define a one-parameter family of factorized matrices in terms of
a geodesic (2.14) on the positive definite manifold Pc that connects C(W ) and W>W , which gives
rise to the following definition.

Definition 3.3 (Self-Assignment Matrix). The self-assignment matrix with parameter s is defined as
the factorization

As(W ) := Wγs(W )−1W>, s ∈ [0, 1], W ∈

{
W, if s = 0,

Wc, if s > 0,
(3.16a)

with normalizing matrix

γs(W ) = C(W )
1
2
(
C(W )−

1
2W>WC(W )−

1
2
)s
C(W )

1
2 ∈ Pc. (3.16b)

Note that Definition 3.3 corresponds to Definition 3.1 and 3.2 if s = 0 and s = 1, respectively.
The following proposition collects properties of self-assignment matrices defined above. Property

(h) refers to a relation between matrices A1

(
W (t)

)
and A1

(
W (t′)

)
, for any t, t′ ∈ [0, T ]: they share

the same eigenvalues.

Proposition 3.2 (Properties of Self-Assignment Matrices). Let A0(W ) and A1(W ) be given Defini-
tion 3.1 and 3.2, respectively. Then the following properties either hold or not:

self-affinity A0(W ) self-influence A1(W )

admissible assignments W ∈ W W ∈ Wc

(a) symmetric 3 3
(b) positive semi-definite 3 3
(c) nonnegative 3 7
(d) doubly stochastic 3 7
(e) completely positive 3 7
(f) rank ≤ c = c
(g) orthogonal projection 7 ΠR(W )

(h) iso-spectral 7 3
(i) eigenvalues ∈ [0, 1] {0, 1}
(j) multiplicity (λ = 1) = 1 = c
(k) multiplicity (λ = 0) ≥ n− c = n− c
(l) eigenvector(s) (λ = 1) 1n

(
W (W>W )−

1
2
)j
, j ∈ J

Proof. (a)-(f) are clear. We focus on (g)-(l).
(g) On easily checkes that A1(W ) = A1(W )2 is idempotent whereas A0(W ) is not. Taking into

account (a) implies the assertion for s = 1.
(h) Follows from (i) and (j) for s = 1.
(i) Case s = 0. The lower eigenvalue bound 0 follows from (a),(b), the upper bound 1 from (d) and

[BP94, Thm. 5.3]. Case s = 1. This is immediate due to (g).
(j) Case s = 0. W ∈ W implies that A0(W ) is strictly positive. (i) and [BP94, Thm. 1.4] then imply

the assertion. Case s = 1. This is immediate due to (f),(g).
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(k) Both assertions follow from (f).
(l) Case s = 0 follows from (d) and [BP94, Thm. 5.3]. Case s = 1. Setting Y = W (W>W )−1/2,

one directly computes A1(W )Y = Y and Y >Y = Ic.
�

The last definition of this section concerns the ‘difference’ between the normalizing matricesC(W )
and W>W of Definitions 3.1–3.3.

Definition 3.4 (Cluster-Confusion Matrix). The cluster-confusion matrix is defined as the matrix
factorization

B(W ) := C(W )−1W>W ∈ Rc×c+ , W ∈ W. (3.17)

Proposition 3.3 (Properties of the Cluster-Confusion Matrix). The cluster-confusion matrix B(W )
has the following properties:
(a) entry-wise positive: B(W ) > 0
(b) row stochastic: B(W )1c = 1c
(c) pure clusters: B(W ) = Ic if and only if W ∈ Wc

∗ .
(d) rank lower bound: 0 ≤ tr

(
B(W )

)
≤ rank(W ) with equality if W ∈ Wc

∗

Proof. (a)-(c) directly follow from the definitions of B(W ) and W c
∗ . (d) follows from tr(B(W )) =

tr(A0(W )) together with Prop. 3.2 (c) and (i). �

3.3. Relaxations: Interpretation. We take a closer look at the relaxations of problem (3.9).

3.3.1. Self-Affinity Matrix. Following [ÅPSS17], we interpret each entry of the assignment matrix
W ∈ W as posterior probability

P (j|i) = Wi,j , j ∈ J , i ∈ I (3.18)

of label j, conditioned on the observation of the data point fi. According to the completely unsuper-
vised scenario here, we adopt the uniform prior distribution

P (i) =
1

n
, i ∈ I (3.19)

of the data. Marginalization yields the label distribution

P (j) =
∑
i∈I

P (j|i)P (i) =
1

n

(
W>1n

)
j
, (3.20)

which measures the size of cluster Ij in terms of the relative mass of assignments. Invoking Bayes’
rule, we compute the distribution analogous to (3.18), but with the roles of data and labels reversed,
to obtain

Q(k|j) =
P (j|k)P (k)

P (j)
=

Wk,j∑
i∈IWi,j

=
(
C(W )−1W>

)
j,k
. (3.21)

The probability of the self-assignments fi ↔ fk, i, k ∈ I then result from marginalization over the
labels

A0;i,k(W ) :=
∑
j∈J

Q(k|j)P (j|i) =
∑
j∈J

Wi,j

(
C(W )−1W>

)
j,k

=
(
WC(W )−1W>

)
i,k
. (3.22)

This expression explains the relaxation that is at the basis of Definition 3.1. It specifies the probability
that two vertices i and k get assigned the same label (no matter which one), i.e. that they belong to the
same cluster.
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Finally, the derivation of problem (3.9) – cf. (3.8) – showed that optimizing the assignments in order
to maximize the correlation (inner product) of A0(W ) and KF amounts to cover the most similar data
points by the components of the partition (clusters).

f ′1 f1

f ′2 f2

f ′3 f3

f ′4 f4

f ′5 f5

Labeling Data

Prototypes

W C(W )−1W>

FIGURE 3.1. The self-affinity matrix A0(W ) due to Definition 3.1 comprises the
probabilities for each pair of data points fi, fk ∈ I to belong to the same cluster.
The factorization (3.22) of A0(W ) admits the interpretation that optimizing the as-
signments W implicitly forms prototypes f∗j , j ∈ J that are assigned to the data
themselves so as to maximize the correlation with pairwise similarities given as en-
tries of the matrix KF .

3.3.2. Recovery of Latent Prototypes. Although problem (3.9) does not involve prototypes (2.16),
such prototypes can be recovered from the solution W to the problem relaxation discussed in Section
3.3.1. Specifically, the probabilitiesQ(i|j) given by (3.21) indicate the contribution of each data point
fi to cluster j. Consequently, adopting the manifold assumption that the data Fn are sampled on a
Riemannian manifold, prototypes can be recovered as weighted Riemannian means by solving

f∗j = arg min
f∈F

∑
i∈I

(
C(W )−1W>

)
j,i
d2F (f, fi), j ∈ J . (3.23)

In the basic case of Euclidean data Fn ⊂ Rd, this problem yields the closed form averages

f∗j =
∑
i∈I

(
C(W )−1W>

)
j,i
fi, j ∈ J . (3.24)

Figure 3.1 illustrates the data self-assignment via the self-affinity matrix and latent prototypes.

3.3.3. Self-Influence Matrix. Let W ∈ Wc be given and temporarily assume that d-dimensional Eu-
clidean feature vectors are given as data Fn and collected as row vectors in the matrix

F = (f1, . . . , fn)> ∈ Rn×d. (3.25)

Let the matrix
F ∗ = (f∗1 , . . . , f

∗
c )> ∈ Rc×d (3.26)

collect the prototypes. Given W and F , a least-squares fit yields

F ∗ = arg min
G∈Rc×d

1

2
‖WG− F‖2F = (W>W )−1W>F, (3.27)
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which is well-defined since W ∈ Wc has full rank. Using these prototypes in turn for predicting data
F̂ by assignment yields

F̂ = WF ∗ = W (W>W )−1W>F = ΠR(W )F = A1(W )F. (3.28)

Finally, optimizing the assignments W in order to obtain the best prediction of the data itself, gives
with A1(W )2 = A1(W )

arg min
W∈Wc

1

2
‖A1(W )F − F‖2F = arg max

W∈Wc
tr
(
A1(W )FF>

)
, (3.29)

and the initial assumption of Euclidean data can be dropped by replacing the Euclidean Gram ma-
trix FF> by a general inner product matrix KF corresponding to the embedding of the data into a
reproducing kernel Hilbert space.

As a result, the relaxation of problem (3.9) due to Definition 3.2 can be interpreted as finding the
best c-dimensional subspace R(W ) spanned by the (soft) indicator vectors of the c clusters (column
vectors of W ) for self-prediction of the given data.

Another related ‘spectral’ interpretation results from rewriting the objective in the form

tr
(
A1(W )KF

)
= tr

(
W (W>W )−1W>KF

)
= tr

(
(W>W )−

1
2W>KFW (W>W )−

1
2
)

(3.30a)

= tr
(
Y (W )>KFY (W )

)
, Y (W ) = W (W>W )−

1
2 . (3.30b)

We conclude from Prop. 3.2 that Y (W ) varies over the compact Stiefel manifold,

Y (W ) ∈ St(c, n) = {X ∈ Rn×c : X>X = Ic}, (3.31)

and that the objective (3.30) is the Rayleigh quotient whose maximizer Y spans the subspace of the
c dominant eigenvectors of KF [HM96, Ch. 1]. Note, however, that Y (W ) cannot vary freely but is
parameterized by W ∈ Wc.

Difference between A0(W ) and A1(W ). A1(W ) differs from A0(W ) in that the normalizing
matrix C(W ) of the former self-assignment matrix is replaced by W>W in the latter. A consequence
due to Prop. 3.2 is that A1(W ) is no longer doubly stochastic and may have negative entries. Hence
the probabilistic interpretation (3.22) of the factorization of A0(W ) no longer holds for A1(W ). On
the other hand, unlike A0(W ), matrix A1(W ) has fixed rank c and embeds data in a corresponding
subspace.

Formulas (3.24) and (3.27) for the formation of latent prototypes (Euclidean case) are the same
when using A0(W ) or A1(W ), up to the different normalizing matrices. And how these prototypes
are used to represent the data is made explicit by Figure 3.1 and Eq. (3.28), respectively. Both matrices
A0(W ) and A1(W ) are equivalent for labelings W ∈ Wc

∗ .

3.3.4. Cluster-Confusion Matrix. Using (3.18) and (3.21) the entries of the cluster-confusion matrix
(3.17) take the form

Bj,l(W ) :=
∑
i∈I

P (l|i)Q(i|j) =
(
C(W )−1W>W

)
j,l
, j, l ∈ J . (3.32)

This expression may be interpreted as probability that clusters Ij and Il are connected, as opposed to
the case of integral assignments (labelings) W ∈ Wc

∗ , in which case B(W ) = Ic and all clusters are
disjoint (hard partition).
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4. SELF-ASSIGNMENT FLOWS

In this section, we generalize the assignment flow (2.36) to the unsupervised scenario discussed
in Section 3. Generalizing the likelihood map (2.33) is the major step (Section 4.1). The remaining
components of the assignment flow remain unchanged, except for starting the flow at the perturbed
barycenter of the assignment manifold in order to break the symmetry through the data, in the ab-
sence of labels and any prior information (Section 4.2). Next, we complement in Section 4.3 the
interpretations of the relaxations underlying the self-assignment flow (Section 3.3) and show that the
latent prototypes determined by the flow maximize class separability. Finally, numerical aspects are
discussed in Section 4.4.

4.1. Generalized Likelihood Map. In the supervised case, for a given distance matrix DF (2.31),
local label assignment is simply achieved by determining separately the smallest component of the
vectors DF ;i, for every vertex i ∈ I. This corresponds to solving

min
W∈W

tr(DFW
>) (4.1)

and the likelihood map (2.33) lifts the scaled negative gradient of this objective function to S . In view
of problem (3.9) and the family of self-assignment matrices due to Definition 3.16, a natural approach
to generalize this supervised set-up to the unsupervised case is to consider the problem

max
W

Es(W ) subject to W ∈

{
W, if s = 0

Wc, if s ∈ (0, 1]
(4.2a)

Es(W ) = tr
(
KFAs(W )

)
(4.2b)

and to replace −DF in the likelihood map by the gradient ∂Es(W ). For s = 0 and s = 1, we have

∂E0(W ) = 2KFWC(W )−1 − 1n diag
(
C(W )−1W>KFWC(W )−1

)>
, (4.3a)

∂E1(W ) = 2
(
In −A1(W )

)
KFW (W>W )−1. (4.3b)

In order to substantiate this approach, we interpret these gradients using the concepts from Section 3.3.
For illustration, letKF = FF> be a Euclidean inner product matrix, with F given by (3.25). Equation
(3.24) determining the latent prototypes as averages weighted by the likelihood Q(i|j), Eq. (3.21),
reads

f∗j =
∑
i∈I

(
C(W )−1W>

)
j,i
fi =

(
C(W )−1W>F

)
j
, (F ∗)> = F>WC(W )−1. (4.4)

We have

∂E0(W ) = 2FF>WC(W )−1 − 1n diag
(
(F>WC(W )−1)>F>WC(W )−1

)> (4.5a)

= 2F (F ∗)> − 1n diag(F ∗(F ∗)>)>, (4.5b)(
∂E0(W )

)
i,j

= 2〈fi, f∗j 〉 − ‖f∗j ‖2 = −‖fi − f∗j ‖2 + ‖fi‖2, (4.5c)

where the prototypes f∗j = f∗j (W ) depend on W . The last term on r.h.s. of (4.5c) does not depend
on j and hence is factored out – cf. Remark 2.1 – when lifting the vector (4.5c) to the assignment
manifold as follows. Hence, we ignore this term and generalize the likelihood map (2.33) to

L0;i(Wi) = expWi

(1

ρ
∂E0(W )i

)
= expWi

(
− 1

ρ

(
‖fi − f∗j ‖2

)
j∈J

)
, (4.6)

which amounts to replace the distance vectors DF ;i, for given prototypes in the supervised case, by
a varying squared distance depending on latent prototypes, that emerge when the assignments W (t)
follow the assignment flow.
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Now let s = 1. We return to the ‘spectral’ interpretation in terms of (3.30) and (3.31). The Rie-
mannian gradient of the Rayleigh quotient E1(Y ) = tr(Y >KFY ) over the compact Stiefel manifold
(3.31) equipped with the standard Euclidean metric reads [AMS09, Sec. 4.8])

gradE1(Y ) = 2(In − Y Y >)KFY ∈ TY St(c, n). (4.7)

Next we relate the Euclidean gradient (4.3b) to the Riemannian gradient (4.7), taking into account the
parametrization Y (W ) ∈ St(c, n) in (3.30), to obtain

∂E1(W ) = 2
(
In −A1(W )

)
KFW (W>W )−1 (4.8a)

= 2
(
In − Y (W )Y (W )>

)
KFY (W )(W>W )−

1
2 (4.8b)

= gradE1(Y (W ))(W>W )−
1
2 . (4.8c)

Since the second factor in (4.8c) is non-singular, we conclude

∂E1(W ) = 0 ⇔ gradE1(Y (W )) = 0. (4.9)

In words, W ∈ Wc is a stationary point if and only if Y (W ) ∈ St(c, n) is a stationary point of
the Rayleigh quotient over the compact Stiefel manifold. Consequently the gradient (4.3b) is directly
linked to the search direction on the compact Stiefel manifold, in order to determine the invariant
subspace corresponding to the c dominant eigenvectors of KF .

As a consequence of these considerations, we define for arbitrary s ∈ [0, 1] the generalized likeli-
hood map as

Ls;i(Wi) = expWi

(1

ρ
∂Es(W )i

)
, (4.10)

with Es(W ) given by (4.2).

4.2. Self-Assignment Flows. Besides replacing the likelihood map (2.33) by the generalized likeli-
hood map (4.10), no further changes are required in order to generalize the assignment flow (2.36) to
the unsupervised case, except for the initialization which cannot both start at the barycenter and break
the symmetry, without any prior information. This will be achieved by taking a small perturbation of
the barycenter as initial point.

Accordingly, we define the one-parameter family of self-assignment flows

Ẇ = RWS(W ), W (0) = exp1W (−εDF ,0), 0 < ε� 1 (4.11a)

W (t) ∈

{
W, if s = 0,

Wc, if s ∈ (0, 1].
(4.11b)

The matrix DF ,0 is computed using the given data Fn as explained in Section 2.6. The flow W (t) is
restricted to the submanifold of full-rank assignments if s > 0.

Proposition 3.2 and Eq. (3.13) yield the following.

Corollary 4.1. Let W (t) solve (4.11). Then, for any t ≥ 0,
(i) the self-affinity matrix A0

(
W (t)

)
is doubly stochastic and completely positive, if s = 0;

(ii) the self-influence matrixA1

(
W (t)

)
is iso-spectral, i.e. its eigenvalues satisfy λ1 = · · · = λc = 1

and λn−c = · · · = λn = 0, if s = 1.
(iii) A0

(
W (T )

)
= A1

(
W (T )

)
if W (T ) ∈ Wc

∗ .

Property (iii) relates to the fact that W (t) solving (4.11) approaches a labeling W (T ) ∈ Wc
∗ for

sufficiently large T after a trivial rounding step. We point out, however, that solving (4.11) generally
yields different paths W (t), t ∈ [0, T ] depending on s ∈ [0, 1] and corresponding to the different
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relaxations, as discussed in Section 3.3. Once a labeling W (T ) ∈ Wc
∗ has been computed, using any

s ∈ [0, 1], the solution is a local optimum of the partitioning problem (3.9). This is what Corollary
4.1(iii) says.

Remark 4.1. All these considerations remain valid with the effective number ĉ of clusters in place of
c, if ĉ should be smaller than c; see Definition 4.1 below.

4.3. Self-Assignment Performs Self-Supervision. We interpret the assignment flow from another
angle that complements the interpretations discussed in Section 3.3.

In Section 3.3.2, we showed that running the assignment flow entails learning of latent prototypes
that can be explicitly recovered if weighted means in the data space are well-defined and compu-
tationally feasible. Let us temporarily adopt the Euclidean situation (3.24). With these recovered
prototypes at hand, we get back to Section 2.2 and ask how our approach relates to the supervised
situation where the quality of the clustering can be assessed by objectives like (2.6). Assuming a la-
beling W = W (T ) ∈ Wc

∗ has been determined, let the recovered prototypes f∗j , j ∈ J play the role
of the empirical means mj , j ∈ J . We compute in terms of the data matrix F (3.25) the quantities
(2.3)

Pj =
1

n
〈W j , 1n〉 =

1

n
|Ij |, j ∈ J (prior probabilities) (4.12a)

f∗j = F>
(
WC(W )−1

)j
, j ∈ J (class-conditional mean vectors) (4.12b)

f∗ =
1

n
F>1n, (mean vector) (4.12c)

and in turn the scatter matrices (2.4)

St =
1

n

∑
i∈I

(fi − f∗)(fi − f∗)> =
1

n
F>
(
I − 1

n
1n1>n

)
F, (4.13a)

Sw(W ) =
1

n

∑
j∈J

∑
i∈Ij

(fi − f∗j )(fi − f∗j )> =
1

n
F>
(
I −A0(W )

)
F, (4.13b)

Sb(W ) =
∑
j∈J

Pj(f
∗
j − f∗)(f∗j − f∗)> =

1

n
F>
(
A0(W )− 1

n
1n1>n

)
F. (4.13c)

Regarding the dependency on W , we observe that the within-class scatter matrix Sw(W ) involves the
term F>A0(W )F and the between-class scatter Sb(W ) the term−F>A0(W )F . Hence, by minimiz-
ing the objective (3.9), we simultaneously minimize tr(Sw) and maximize tr(Sb):

arg min
W

tr
(
Sw(W )

)
⇔ arg max

W
tr
(
Sb(W )

)
⇔ arg max

W
tr
(
A0(W )FF>

)
. (4.14)

We conclude that the latent prototypes determined by the self-assignment flow turns a completely
unsupervised scenario into a supervised one, in agreement with established measures for class sepa-
rability like (2.6). This interpretation also remains valid when the relaxation with s = 1 and objective
(3.29) is used to compute a labeling W , due to Corollary 4.1(iii).

Moreover, since the approach only depends on the inner product matrix FF>, it generalizes to data
embeddings into a reproducing kernel Hilbert space and a corresponding data affinity matrix KF with
entries (3.2).

Remark 4.1 applies to the above considerations. Just replace below (c,J ) by (ĉ, Ĵ ).
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4.4. Geometric Numerical Integration. We distinguish the two cases (4.11b).

Case s = 0. We directly apply the methods studied by [ZSPS19]. To make this paper self-contained,
we merely state the simplest scheme, the geometric Euler method. This explicit scheme with fixed
step-size h > 0 reads

W
(k+1)
i = Exp

W
(k)
i

(
hR

W
(k)
i

S(W (k))
)
, i ∈ I. (4.15)

It ensures that the self-assignment flow (4.11a) evolves properly on the assignment manifoldW . The
iteration (4.15) stops when the average entropy of the assignments W (K) drops at some iteration
k = K below the predefined threshold 10−3, which indicates (almost) unique label assignments and
hence stationarity of the flow evolution. Then numerical integration is terminated and a labeling
W ∈ W ĉ

∗, ĉ ≤ c, is determined using W (K) in a trivial postprocessing step by selecting the most
likely label for each row W

(K)
i , i ∈ I and removing the c− ĉ zero-columns (corresponding to empty

clusters) from the resulting labeling W ∈ W ĉ
∗ .

Definition 4.1 (Effective Number ĉ of Clusters (Labels)). We call the just described number

ĉ ≤ c (4.16)

the effective number of clusters or labels, respectively. It is determined by the homogeneity of the data
Fn and by the scale

|Ni|, i ∈ I (scale) (4.17)

at which regularization is performed by the assignment flow through the similarity map (2.35). We
denote the corresponding index set of labels by

Ĵ ⊂ J , |Ĵ | = ĉ. (4.18)

Case s = 1. Integration of the self-assignment flow (4.11a) restricted to the open submanifold
Wc of full-rank assignments (3.14) is more involved. Corresponding geodesics only locally exist
onW , i.e. full-rank assignment matrices cannot be guaranteed during the numerical integration pro-
cess (4.15). Clearly, if the data affinity matrix KF has high rank (induced by heterogeneous data) and
if the scale (4.17) for regularization is not chosen too large, a full-rank labeling W ∈ Wc may be
returned by the self-assignment flow, that is well-defined in view of the relation (4.9).

In order to handle other cases while still using the numerical scheme (4.15) or more sophisticated
ones [ZSPS19], we simply replace the inverse normalizing matrix by its pseudo-inverse,

(W>W )−1 ←− (W>W )†. (4.19)

Whenever this regularization of the normalizing matrix becomes ‘active’, we extract the effective
number ĉ in a postprocessing step, as described above in the case s = 0.

5. RELATED WORK AND DISCUSSION

The literature on clustering is vast. We therefore restrict the discussion to few major methodolog-
ical directions in the literature: Graph cuts and spectral relaxation (Section 5.1), discrete regularized
optimal transport (Section 5.2) and combinatorial optimization for graph partitioning (Section 5.3).
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5.1. Graph Cuts and Spectral Relaxation. Summing up the weights (affinities) of edges that are
cut provides a natural quality measure for graph partitioning. To avoid unbalanced partitions, such
measures are normalized in various ways, and spectral relaxations of the resulting combinatorial opti-
mization problem renders the computation of good suboptimal solutions feasible. We refer to [vL07]
for a survey.

We focus on two basic balanced cut-criteria that can be expressed by the graph Laplacian

LF = DK,F −KF , DK,F = Diag(KF1n) (5.1)

and indicator vectors. The ratio-cut criterion reads

min
U∈Rn×c

tr(U>LFU) subject to U ≥ 0, U>U = Ic, (5.2)

whereas the normalized-cut (Ncut) criterion [SM00] additionally uses the degree matrix DK,F for
normalization,

min
U∈Rn×c

tr(U>LFU) subject to U ≥ 0, U>DK,FU = Ic. (5.3)

Due to the conjunction of nonnegativity and orthogonality constraints, both problems (5.2) and (5.3)
are difficult to optimize globally. Spectral relaxation means to drop the element-wise nonnegativity
constraint. Then the relaxed problems (5.2) and (5.3) amount to solving an eigenvalue problem and
a generalized eigenvalue problem, respectively. The price to pay in either case is that the physical
interpretation ofU as indicator variables is lost and must be recovered by an additional post-processing
step, which is usually done by applying the classical k-means algorithm.

A direct relation to the proposed self-assignment flow is apparant in the case s = 1. Substituting
Y = D

1/2
K,FU in the spectral relaxation of (5.3) results in the problem

max
Y ∈Rn×c

tr
(
Y >K̃FY

)
subject to Y >Y = Ic, (5.4)

that is, the Rayleigh quotient of the normalized affinity matrix K̃F = D
−1/2
K,F KFD

−1/2
K,F has to be

maximized over the compact Stiefel manifold (3.31). As already discussed for s = 1 in connection
with (3.30), assignments W following the self-assignment flow parametrize points Y (W ) ∈ St(c, n)
on the compact Stiefel manifold that maximize the Rayleigh quotient: Eq. (4.8c) shows that the driving
force of the self-assignment flow (generalized likelihood map) is directly linked to the gradient ascent
of the Rayleigh quotient over the compact Stiefel manifold. Finally, when the numerical integration of
the self-assignment flow terminates, then the resulting labeling W ∈ Wc

∗ together with (3.13) ensures
Y (W ) ≥ 0. Hence, after re-substitution, U(W ) = D

−1/2
K,F Y (W ) is directly feasible for the original

problem (5.3) and hence no ‘projection’ by k-means is required as post-processing.
The common way to take into account spatial regularization in spectral clustering is to augment

given features by spatial coordinates. However, this strategy suffers from a conceptual shortcoming,
since augmentation makes the same feature vector differ when it is observed at two different spatial
locations. In contrast, the self-assignment flow performs unbiased spatial regularization by smooth
geometric averaging and recognizes closeness of features no matter where they are observed.

5.2. Discrete Regularized Optimal Transport. The theory of optimal transport [Vil09, San15] has
become a major modeling framework for data analysis. Here we focus on discrete optimal transport
and computational aspects [BCPD99, Pey18].

We consider the case s = 0 and the self-affinity matrix A0(W ). Since A0(W ) is doubly stochastic
(Prop. 3.2), maximizing the objective E0(W ) (4.2b) may be interpreted as a discrete optimal transport
problem with cost matrix KF and uniform marginal measures (3.19). These marginals correspond
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to the data Fn and a copy of the data, respectively, resulting in data self-assignment as discussed in
Section 3.3.1.

For further interpretation, we consider the Euclidean case KF = FF>. Inserting the explicit form
(3.12) of A0(W ) into the objective E0(W ) and using (4.4), we obtain

E0(W ) = tr(KFWC(W )−1W>) = tr(WF ∗F>). (5.5)

Maximizing this objective function reveals what this problem relaxation actually means: A linear as-
signment problem in terms of the assignment matrix W with varying inner product matrix F ∗(W )F>

as costs. Moreover, since W ∈ W , we have a fixed marginal W1c = 1n and a the second marginal
W>1n = diag

(
C(W )

)
which is free. Alltogether, a quite difficult problem is solved in terms of

W : latent prototypes F ∗ are formed by transporting the uniform prior measure to the support of the
respective clusters, so as to maximize the correlation E0(W ) of the assignments W and the inner
product matrix F ∗F>.

We point out a key property of the assignment flow that makes this approach work: It is the spatial
regularization performed by the similarity map (2.35) that drives the entire process, in addition to the
underlying geometry that makesW (t) converge towards hard assignments (labelings). In fact, without
spatial regularization, the self-affinity matrix A0(W ) = In would maximize E0(W ) assuming the
similarity kF (fi, fk) is maximal if fi = fk, which means that every given data point fi forms its own
cluster. This trivial solution is ruled out, by construction, through the factorization with rank upper
bounded by c and through geometric spatial averaging of the assignments. The corresponding scale in
terms of the sizes of the neighborhoods (2.18) determines how coarse or fine the spatial arrangement
of the resulting clusters will be.

We informally summarize this discussion: Data self-assignment is defined by uniform marginal
measures and a coupling measure parametrized by the assignment flow. Structure in the data is induced
by imposing a low-rank constraint (factorization) on the coupling measure (transport plan) and through
spatial regularization of the flow of assignments.

5.3. Combinatorial Optimization. Zass and Shashua [ZS05] studied the formulation of the cluster-
ing problem

max
W∈Rn×c

tr(KFWW>) subject to (5.6a)

(a) W ≥ 0, (b) rank(W ) = c, (c) W>W = Ic, (d) WW>1n = 1n (5.6b)

in terms of the completely positive factorization WW> and the constraints (a)–(d). We notice that
the orthogonality constraint (c) with respect to the columns of W implies (b), and that (a) together
with (d) says that WW> is doubly stochastic. The authors show that (a)–(d) imply that W ∈ Wc

∗ is a
labeling. This problem formulation differs from more classical conditions ensuring W ∈ Wc

∗ [RW95,
Lemma 2.1],

W ≥ 0, W1c = 1n, W>1n = (n1, . . . , nc)
>, tr(W>W ) = n, (5.7)

in that the cluster sizes (third constraint) do not have to be specified beforehand.
Regarding relaxation, the authors of [ZS05] argue that the orthogonality constraint (c) is the weak-

est one. They propose a two-step procedure after dropping the constraints (b) and (c): approximation
of the data similarity matrix KF by a doubly stochastic matrix using the Sinkhorn iteration, followed
by a gradient ascent iteration with stepsize control so as to respect the remaining constraints. The
same set-up was proposed by [YC16] except for determining a locally optimal solution by a single
iterative process using DC-programming. Likewise, [KYP15] explored symmetric nonnegative fac-
torizations but ignored the constraint enforcing that WW> is doubly-stochastic, which is crucial for
cluster normalization.
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Our approach uses the factorization As(W ) given by (3.16) instead of WW>. While the orthog-
onality constraint (c) is dropped as well, the constraints (a) and (d) are ‘built in’ by construction, and
constraint (b) may additionally hold (cf. Definition 4.16 and the corresponding discussion). Further-
more, optimization is achieved by a single smooth and continuous process, the self-assignment flow
(4.11), which enables to apply numerous discrete numerical schemes [ZSPS19], all of which respect
the constraints. Finally, geometric regularization within local neighborhoods of each vertex of the un-
derlying graph through the similarity map (2.35) enforces the formation of ‘natural’ clusters, whenever
assigning the same label to close vertices is more likely to be correct.

6. EXPERIMENTS

In this section, we demonstrate and evaluate the performance of the proposed one-parameter family
(4.11) of self-assignment flows (SAF) for unsupervised data labeling, using various datasets and feature
spaces (Figure 6.1).

After describing specific details of the implementation (Section 6.1), we report the study of the
two model parameters in Section 6.2, and the influence of affinity matrix sketching for data reduction
in a preprocessing step, to make learning from large data sets computationally feasible. In Section
6.3, we compare our approach to various methods: basic clustering, normalized spectral cuts with
spatial regularization, and partitioning using a variational decomposition of the piecewise constant
Mumford-Shah model. We focus on an attractive application of our approach in Section 6.4: Learning
patch dictionaries using the SAF based on a locally invariant distance function. Finally, as a sanity
check, we report the application of the SAF to problem data on a graph from a domain that is unrelated
to image analysis, to substantiate our claim that our approach applies to any data given on any graph,
in principle.

6.1. Implementation Details. Throughout this paper, the SAF (4.11) was numerically integrated
using the geometric explicit Euler scheme (4.15) with step-size h = 0.1, as described in Section 4.4.
For parameter values s ∈ (0, 1], we applied (4.19) to avoid numerical problems when the effective
number of clusters ĉ < c (Def. 4.1) actually was smaller than c. The SAF with s = 0 does not
encounter any such problems, due to the different normalization involved in (3.12). We adopted
from [ÅPSS17] the numerical renormalization step for the assignments with ε = 10−10, to avoid
numerical issues for assignments very close to the boundary of the assignment manifold. Numerical
integration was terminated when the average entropy of the assignments dropped below the threshold
of 10−3, which indicates that the current iterate is very close to an almost unique assignment (labeling)
W (k) ∈ W ĉ

∗ .
Unless specified otherwise, the default value ρ = 0.1 (distance normalization in (2.33)) and uni-

form weights wi,k = 1/|Ni| (2.34) for assignment regularization were used in all experiments, with
neighborhoods Ni of equal size

|N | := |Ni|, ∀i ∈ Î, (6.1)

for interior pixels Î ⊂ I.
Data Fn were embedded using the standard Gaussian kernel (3.3) with parameter σ =

√
0.1,

in order to compute the affinity matrix KF (3.2). For larger datasets, a sketch of KF was used
as described in Section 2.3, with parameters q = 1 and ` = 100 random samples drawn without
replacement; see Section 6.2 for a validation. Finally, the initial value W (0) of (4.11a) was chosen as
small perturbation of the barycenter (4.11a) with ε = 10−2 and initial distance matrixDF ,0, computed
with the inexpensive greedy k-center clustering algorithm, as explained in Section 2.6.
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Seastar Fingerprint Cactus

FIGURE 6.1. Input image data used in the numerical experiments (Fig. 6.2, 6.5,
6.6, 6.8, 6.9). Close-up views enable to compare the influence of model parameters
on local image structure in comparison to alternative approaches from related work.
Both the Euclidean RGB-space and locally invariant patch spaces were used as feature
spaces. Regarding the latter, additional real image data are processed in Figures 6.10
and 6.11. The results of graph network data are depicted by Figure 6.12 in order to
highlight that our approach more generally applies to data on graphs, beyond image
feature data.

6.2. Influence of Model Parameters. The self-assignment flow (SAF) has three model parameters:
The parameter s of the self-assignment matrix As(W ) (3.16a), the neighborhood size |N | controlling
the scale of regularization, and the upper bound c on the effective number ĉ of labels (4.16).

6.2.1. Influence of s, |N | and c. Figure 6.2 shows both labelings and recovered prototypes below
each panel, depending on s and |N |. We set c = 16 which is sufficiently large, since ĉ < c quickly
happens when lowering s even at the smallest scale of 3 × 3 pixels. ĉ further drops down with larger
scale. Regarding the parameter s, we observe:

Small s: Spatial regularization is more aggressively enforced, leading to compact codes in terms
of smaller numbers ĉ of prototypes.

Large s: Distances in the feature space have more impact. Local image structure is better pre-
served at the cost of a larger number ĉ of prototypes.

The second observation underlines the relation of the self-assignment flow, for s = 1, to spatially
regularized normalized cuts as worked out in Section 5.1.

Figure 6.2 illustrates that depending on the application, the properties of the SAF can be continu-
ously controlled by setting the parameter s, thanks to the geodesic interpolation (3.16).

6.2.2. Evolution of Cluster Sizes, Entropy, and Rank Lower Bound. Figure 6.3 illustrates the evolution
of the SAF in terms of the following measurements.

Cluster sizes: For smaller values of s, more iterations are required for cluster formation. This
conforms with the observation in Section 6.2.1 that the SAF then promotes spatial regular-
ization. Conversely, larger values of s yield more balanced (uniform) cluster sizes. This is
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FIGURE 6.2. Influence of the model parameters s ∈ [0, 1] parametrizing the SAF
in terms of the self-assignment matrix (3.16), the neighborhood size |N | controlling
the scale of spatial regularization, and the effective number ĉ ≤ c = 16 of labels.
Recovered prototypes are displayed below each labeling and aligned to each other
(using linear assignment of the clusters) to ease visual comparison. Prototypes that
‘died out’ are marked by a cross. We observe that due the geodesic interpolation
(3.16), the influence of spatial regularization (small s: compact image codes) relative
to the influence of distances in the feature space (large s: preserving local image
structure) can be continuously controlled.

consistent with the observation made in Section 6.2.1 that, in this case, the SAF more care-
fully explores the feature space and preserves local image structure.

Average entropy: The panels illustrate that the initial assignment is an ε-perturbation of the
barycenter on the assignment manifold, and that the termination criterion was reached in all
experiments. In agreement with the preceding point, the SAF converges faster for larger values
of s.

Rank lower bound: The third row of Figure 6.3 displays the lower bound tr
(
B(W (k))

)
of

rank(W (k)) due to Proposition 3.3(d). After termination of the SAF, this lower bound be-
comes sharp at W ∈ W ĉ

∗ and attains the number ĉ of effective prototypes.

6.2.3. Influence of Affinity Matrix Sketching. We evaluate the influence of sketching the data affinity
matrix KF in a preprocessing step, as described in Section 2.3, using the parameter value q = 1 and
varying sample sizes `.
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FIGURE 6.3. Evolution of relative cluster sizes, average entropy and lower bound of
rank(W (k)) as a function of the SAF, depending on the iterations k for the experiment
with |N | = 11 × 11 depicted by Fig. 6.2. TOP: Smaller values of s promote spatial
regularization. Hence more iterations are required to form clusters. Larger values of s
yield more uniform cluster sizes which reflects the stronger influence of feature sim-
ilarity and the preservation of local image structure. CENTER: The average entropy
illustrates the random initialization ε-close to the barycenter and that the termination
criterion is reached in all experiments. The entropy decays faster for larger values of
s. BOTTOM: The lower rank bound due to Proposition 3.3(d) becomes sharp when
the SAF terminates at some labeling W ∈ W ĉ

∗ and attains the number ĉ of effective
labels.

To this end, we focused on the experiment with s = 0, |N | = 3 × 3 depicted by Figure 6.2 and
compared the labelings obtained with and without sketching KF . To handle the latter case where KF
requires ≈ 177 GB of memory, we computed on the fly the entries for every matrix-vector multiplica-
tion on GPUs using the software library KeOps1, rather than holding the matrix in memory.

Figure 6.4 displays the relative error of different label assignments after sketching, depending on
the sample size `, where 100% corresponds to all n = 321 × 481 columns of KF . For each value `,
100 runs were made using different random seeds. Figure 6.4 displays the average error along with
the standard deviation. The corresponding curves show that ` = 100 samples, i.e. merely 0.065% of
all data points, suffice to eliminate the effect of data reduction by sketching the input affinity matrix.

6.3. Comparison to Other Methods. We compared the SAF to the following methods:

Nearest neighbor clustering: k-means and k-center clustering (no spatial regularization), to
show the influence of spatial regularization performed by the SAF on both labeling and pro-
totype formation;

1B. Charlier, J. Feydy, and J.-A. Glauns, KeOps Kernel Operations on the GPU, 2018,
https://www.kernel-operations.io/keops/index.html
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FIGURE 6.4. This plot shows the average relative labeling error together with the
standard deviation, that result from data reduction by sketching the data affinity matrix
KF in a preprocessing step. for SAF is approximated by the matrix sketching method
(see Sec. 2.3) in dependency of the number of sampled pixels l represented in %.
The curves show that merely 0.065% of all data points (corresponding to ` = 100
randomly sampled columns of KF ) suffice to eliminate the effect of data reduction.

AF: supervised assignment flow [ÅPSS17] with spatial regularization, using fixed prototypes
computed beforehand using nearest neighbor clustering, to highlight that the SAF simultane-
ously performs unsupervised label learning and label assignment;

Spectral clustering: We computed partitions using normalized spectral cuts [SM00] after aug-
menting feature vectors by spatial coordinates xi, i ∈ I for spatial regularization. The result-
ing data affinity matrix was given by

KF i,k = exp
(
− ( 1

σ2 ‖fi − fk‖22 + α‖xi − xk‖22)
)
, i, k ∈ I, (6.2)

with parameter α > 0 controlling the influence of spatial regularization.
Fast partitioning: A variational decomposition of the piecewise-constant Mumford-Shah ap-

proach to image partitioning proposed by [SW14], using the publicly available implementa-
tion “Pottslab” from the authors. The method operates directly on the values in the feature
space instead of using a reformulation with labels. Therefore, the number of clusters can
be large. For this reason, we applied an additional k-means clustering step to the (over-
segmented) results in order to have a direct comparison in terms of labels and prototypes.

Two variants of the SAF were evaluated for comparison: (i) using uniform weights for spatial regular-
ization; (ii) using nonuniform weights determined in ”non-local means fashion” by

wi,k =
w̃i,k
〈w̃i, 1n〉

with w̃i,k =

{
exp

(
− 1

ρ‖Pi − Pk‖
2
F

)
, if k ∈ Ni,

0, else,
(6.3)

where Pi denotes the patch centered at pixel i. Throughout, the patch size as well as the neighborhood
size |N | for geometric averaging was chosen to be 5× 5 pixels.

The user parameters of all other methods were manually tuned so as to obtain best comparable
results.

6.3.1. Nearest Neighbor Clustering, Supervised Assignment Flow. Figure 6.5 displays the results.
The close-up view of the results of nearest neighbor clustering shows noisy label assignments even
in homogeneous regions, due to the absence of spatial regularization. By contrast, the AF returns
spatially coherent labelings. However, since the labels (prototypes) are fixed beforehand, their assign-
ments yield partitions that may locally look unnatural (see close-up views). Note that the prototypes
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FIGURE 6.5. Comparison of the SAF to nearest neighbor clustering and supervised
assignment flow (AF). Inspecting the results and the close-up views shows: Near-
est neighbor clustering yields noisy label assignments due to the absence of spatial
regularization. The AF returns spatially coherent partitions that may locally look un-
natural (see close-up views), since the prototypes are fixed and do not adapt to the
spatial components of the resulting partition. The unsupervised SAF learns labels
adaptively during label assignment. The resulting partitions have a natural spatial
structure with increased details if s = 1. The latter effect is considerably enhanced,
independent of s, when nonuniform weights are used.
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FIGURE 6.6. Comparison of the SAF to spectral clustering using feature vectors
augmented by spatial coordinates and normalized cuts, and to fast partitioning that
approximates the piecewise constant Mumford-Shah model. Spatial regularization
as performed by spectral clustering is clearly suboptimal, since weak regularization
returns noisy partitions where strong regularization yields biased clusters (e.g. red
cluster). See the last paragraph of Section 5.1 for an explanation. Fast partitioning
yields good labelings but does not consistently enforce the scale of spatial regular-
ization through the choice of γ – see, e.g. the small red clusters in the panel on the
right-hand side. This reflects that fast partitioning directly operates on the feature
space rather then separating data representation from inference, as does the SAF.

displayed for the AF were recomputed after convergence from the resulting partition and, therefore,
differ from the nearest neighbor prototypes that were used as input labels for computing the AF.

In comparison with these methods, the SAF yields more natural partitions due to forming the labels
during label assignment and preserves fine structure for s = 1, in agreement with the experiments
discussed in Section 6.2. This latter effect is considerably enhanced when nonuniform weights are
used, independently of s, without compromising the quality of the spatial structure of the resulting
partitions.

6.3.2. Spatial Feature Augmentation and Normalized Spectral Cuts. Figure 6.6 displays the corre-
sponding results for spectral clustering and fast partitioning, respectively, using two parameter values
enforcing weak and strong spatial regularization in either case.

We observe that spectral clustering is highly sensitive to the value of α. Small values yield noisy
partitions, whereas larger values yield biased partitions (e.g. red cluster). We attribute this strange
behavior to the conceptual deficiency of spatial regularization performed by feature augmentation, as
discussed in the last paragraph of Section 5.1.

Fast partitioning returned the closest labelings to those computed by the SAF. The scale of spa-
tial regularization is not consistently enforced everywhere, however, as e.g. the small red dots on the
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cactus arms reveal. We attribute this to the above-mentioned fact that fast partitioning directly oper-
ates on the feature space, rather than separating data representation from inference using labels and
label assignments. In addition, the variational decomposition may be susceptible to getting stuck in
suboptimal minima.

6.4. Unsupervised Learning and Assignment of Locally Invariant Patch Dictionaries. In this
section, we base the self-assignment flow (SAF) on more advanced features, viz. feature patches, and
a corresponding locally invariant distance function.

6.4.1. Locally Invariant Patch Distances. Let

NP,i, i ∈ Î, nP := |NP,i|, ∀i (6.4)

denote quadratic sections centered at pixel (vertex) i of the underlying image grid graph, with uniform
size nP = 2k + 1 for some k ∈ N, for every i. We only consider region centers at interior grid points
i ∈ Î ⊂ I such that no section NP,i extends beyond the boundary of the graph, which implies

NP,i ⊂ I, ∀i ∈ Î. (6.5)

We define a patch centered at pixel i as the ordered tuple of data points

Pi =
(
fk1 , . . . , fi, . . . , fknP

)
, k1, . . . , knP ∈ NP,i, i ∈ Î, (6.6)

where the particular chosen order does not matter, but should be fixed for all patches. The individual
patch features are denoted by

Pi;m = fm, m ∈ NP,i (6.7)

and the collection of all patches induced by the data Fn is denoted by

P(Fn) =
{
Pi ∈ FnPn : i ∈ Î

}
. (6.8)

In order to define invariant distance functions, we consider the dihedral group

D4 =
{

( 1 0
0 1 ),

(
0 −1
1 0

)
,
(−1 0

0 −1
)
,
(

0 1
−1 0

)
,
(−1 0

0 1

)
,
(
1 0
0 −1

)
, ( 0 1

1 0 ),
(

0 −1
−1 0

)}
⊂ O(2) (6.9)

generated by the following elements of the two-dimensional orthogonal groupO(2): four two-dimen-
sional rotations by {0◦, 90◦, 180◦, 270◦} and the two reflections with respect to the local coordinate
axes, using the center pixel as origin. Since local grid coordinates are mapped onto each other, we can
identify each transformation of the groupD4 with a corresponding permutation σ of the pixel locations
within the patch domain. Accordingly, writing with abuse of notation σ ∈ D4, the corresponding
transformed patch (6.6) is given and denoted by

TσPi =
(
fσ(k1), . . . , fi, . . . , fσ(knP )

)
k1, . . . , knP ∈ N̂P,i, σ ∈ D4. (6.10)

We point out that no interpolation is required to compute these patch transformations.
In addition to the transformations (6.10), we consider all translations Pi 7→ Pk, k ∈ N̂P,i of patch

Pi mapping the center location i to some grid location k within its own region N̂P,i := NP,i ∩ Î
restricted to interior pixels. We factor out these |D4| · nP = 8 · nP degrees of freedom by considering
all corresponding transformations of patch Pi as equivalent. These equivalence classes of patches
provide the basis for invariant patch distances as defined next.

We define the asymmetric patch distance between two patches centered at pixel i ∈ Î and k ∈ Î
by

dF (Pi, Pk) = min
σ∈D4

j∈N̂P,i

∑
m∈[nP ]

dF
(
(TσPj)m, Pk;m

)
(6.11)
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FIGURE 6.7. Visualization of the distance functions (6.11) and (6.12)) evaluated for
a single patch Pk and all patches P(Fn) of size nP = 7 × 7 of the depicted image.
The evaluation of distance (a) amounts to determine the minimal distance of Pk to
all equivalence classes of patches generated by the patches of the entire image. As
a consequence, equivalence classes close to Pk generate the ‘blocky’ graph of the
distance function. Conversely, evaluation of distance (b) amounts to compare the
single equivalence class generated by Pk to all image patches. As a consequence, the
graph of the distance function reflects the original image structure in more detail. The
symmetric distance (rightmost panel) is the pointwise minimum of distance (a) and
(b). It is apparent that neither distance (a) nor (b) dominates the other distance.

and the symmetric patch distance by

d
sym
F (Pi, Pk) = min

{
dF (Pi, Pk), dF (Pk, Pi)

}
. (6.12)

Figure 6.7 illustrates these locally invariant distance functions.

6.4.2. Recovery of Patch Prototypes and Images. Distance (6.12) defines the affinity matrix (3.2) by
(3.3) and in turn the likelihood map (4.10) and the similarity map (2.35). As a consequence, the
self-assignment flow can be integrated to obtain the assignment W (t). We focus in this section on the
recovery of prototypical patches and on ‘explanations’ of input images by assigning these prototypical
patches. The corresponding results are illustrated by numerical examples in the subsequent Sections
6.4.3 and 6.4.4.

According to Section 3.3.2, prototypical patches representing each cluster are determined as weighted
averages

P ∗j = arg min
P∈P(F)

∑
i∈Î

(
C(W )−1W>

)
j,i
d2F (Pi, P ), j ∈ J , (6.13)

with respect to the asymmetric patch distance (6.11), since the prototypical patch P ∈ P(F) is not
contained in the set of all image patches P(Fn) (6.8).

Using these prototypes, the corresponding image is computed as follows. For each prototypical
patch P ∗j , the optimal transformation for the assignment to pixel i is determined as

(σ∗i,j , l
∗
i,j) = arg min

σ∈D4

l∈N̂P,i

∑
m∈[nP ]

dF
(
(TσPl)m, P

∗
j;m

)
. (6.14)

Using these transformations, a prototypical patch is assigned to every pixel i ∈ Î. This implies that,
for each pixel i, patches assigned to pixels j ∈ NP;i may assign a corresponding patch entry to pixel
i. Averaging these entries, normalized by the number of values contributed to pixel i, defines the
restored image value at pixel i.
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FIGURE 6.8. Determination of locally invariant patch prototypes, their assignment
to the original image data and the corresponding partitions (depicted with pseudo-
colors), using the SAF (s = 0 and s = 1), different patch sizes (7×7, 11×11, 15×15)
and numbers of prototypes (c = 4 and c = 10). The underlying transformation group
enables accurate image representations even with c = 4 patches only, provided the
patch size is close to the spatial scale of local image structure (here: 7 × 7 pixels).
This performance deteriorates for larger patch sizes. The SAF with s = 0 yields
partitions that are spatially more regular than the partitions computed with s = 1,
since the latter tend to cover the feature space more uniformly, in agreement with the
result depicted by by Figure 6.2.

6.4.3. Patch-Based Self-Assignment Flow. Figure 6.8 illustrates image partitions, the corresponding
c = 4 and c = 10 prototypical patches of sizes nP ∈ {7 × 7, 11 × 11, 15 × 15}, their assignment to
the input image data as described in the preceding section, based on integrating the SAF with s = 0
and s = 1 and spatial regularization parameter |N | = 3× 3.

In agreement with the discussion of the results depicted by Figure 6.2, we observe that the SAF with
s = 0 returns partitions with a more regular spatial structure, whereas the SAF with s = 1 tends to
cover the feature space more uniformly which is achieved with partitions that have a irregular spatial
structure.
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FIGURE 6.9. Experiment of Fig. 6.8 repeated with a larger patch dictionary leads to
a detailed representation of local image structure. Although overlapping regions of
assigned prototypical patches are averaged at each pixel in order to restore an image,
the result ‘Assignment’ is quite close to the input data ‘Image’ of Fig. 6.7, due to
using the locally invariant patch distance. Panel ‘Difference’ shows the difference
as grayvalue plot (range [0, 0.3]). The lower panel displays a 2D embedding of the
learned prototypical patches. The corresponding colors indicate their assignment in
‘Partition’ and ‘Overlay’. Clusters in the lower panel, e.g. those colored pink and
blue, illustrate the invariance under discrete rotations and reflections.

The image recovered by assigning the prototypical patches exhibits relatively sharp spatial struc-
tures, despite the small number of prototypes (c ∈ {4, 10}) and the pixel-wise averaging of grayvalues
assigned by multiple patches. This illustrates that the small transformation group defined in Section
6.4.1 that does not even require image interpolation, actually is quite powerful. For example, the large
blue region of the partition shown in Figure 6.8 that results from the SAF with s = 0 and 7×7 patches,
indicates the optimal assignment of patches from a single equivalence class only. These patches fit
quite accurately to image structures with different orientations and local edge profiles. This effect
deteriorates when using patch sizes that are much larger than the typical variations of local image
structure, as a comparison of the results for the patch size 15× 15 with c = 4 and c = 10 shows.

For comparison, Figure 6.9 shows the result for a larger number c = 100 of prototypes, which leads
to a detailed representation of local image structure. The lower panel displays a two-dimensional
embedding of the weighted graph with prototypes as patches and the similarities (3.3) as weights.
Representatives of equivalence classes of patches that are close to each other, are grouped together.
Factoring out the group of transformations effectively copes with different edge profiles and orienta-
tions. Panel ‘Difference’ shows the absolute difference between the input image and labeling, ranging
from 0 (black) to 0.3 (white).

6.4.4. Patch Assignment to Novel Data. We repeated the experiment illustrated by Figure 6.8 using
the data shown in Figure 6.10. c = 20 locally invariant prototypical patches of size 7× 7 pixels were
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Locally Invariant Patch Dictionary Learning using the SAF (s = 0)
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FIGURE 6.10. The bottom row shows a dictionary of c = 20 locally invariant patches
of size 7 × 7 pixels, learned from the four images shown in the top row using the
SAF with s = 0 and |N | = 3 × 3 pixels. The second and third row illustrate the
patch assignments with pseudo-colors and the recovered image data, respectively.
Closeness of the restored images to the input data, despite the small size of the patch
dictionary, demonstrates the effectiveness of the underlying discrete transformation
group. The evolution of cluster sizes (bottom row, right panel) illustrates the ability
of the SAF to resolve ‘conflicting’ assignments due to mutually overlapping patches
successfully, along with the formation of invariant patch prototypes, in a completely
unsupervised way.

learned from 4 images using the SAF with s = 0 and |N | = 3× 3 pixels. The restored images shown
in the third row are remarkably close to the input data (first row), despite the small size c = 20 of the
patch dictionary. This demonstrates again the effectiveness of the underlying discrete transformation
group.

Figure 6.11 shows in the top row novel image data. These four images that are semantically similar
to the training images of Figure 6.10 regarding the local image structure and texture (brick/stone,
door/window, grass/ivy). The corresponding partitions and recovered images solely resulted from
assigning the patch dictionary depicted by Figure 6.10 to the data by the supervised assignment flow.
Again, the quality of image represention using this small dictionary is remarkable, except for the stone
wall texture shown in column (c) of Figure 6.11, that is not present in the training data depicted by
Figure 6.10.
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Patch Dictionary Evaluation using the supervised AF
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FIGURE 6.11. Supervised regularized assignment of the locally invariant patch dic-
tionary from Figure 6.10 using the AF, to four novel images (top row). Since these
images are semantically similar to the training data from Figure 6.10, the restored
images are close to the input data, except for image (c) whose stone wall texture is
not present in the training data.

6.5. Regularized Clustering of Weighted Graph Data. Our approach can be applied to any data
given on any undirected weighted graph. For illustration, we included an additional experiment using
data not related to image analysis.

Figure 6.12 shows data in terms of a weighted graph (I, E ,KE) adopted from [GN02]. It represents
the network of American football games between Division IA colleges during the regular season
fall 2000. Teams are subdivided into 12 conferences, mainly based on the geographical distance,
that primarily play against each other in a first period. Afterwards, the conference champions play
against each other in the final games. Each node of the network represents a team. Edge weights
KE i,k represent the number of games played between two teams. Labels for each vertex indicate the
conference to which a team belongs, displayed by a corresponding color in Figure 6.12 (ground truth).
We considered this labeling as ground truth for the task to partition the graph into c = 12 classes.
The initial perturbation of the barycenter (4.11a) in terms of a distance matrix DF ,0 was computed
by assigning feature vectors to each node based on the c dominant eigenvectors of KF , followed by
greedy k-center clustering (Section 2.6). Markers indicate nodes that were assigned to a conference
different from ground truth. Weights were defined as

wi,k =
w̃i,k
〈w̃i, 1n〉

with w̃i,k = KE i,k + Diag(KE1n), (6.15)

i.e. by adding the total number of games played by each team to the diagonal.
The nearest neighbor assignment of the initial distance matrix contains many erroneous assignments

(Figure 6.12, initialization). The results of the SAF with s = 1 reproduces almost the ground-truth
labeling and is also close to the result of applying spectral clustering [SM00] directly to KE . The
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FIGURE 6.12. Weighted graph data of American football games between Division
IA colleges during the regular season fall 2000 are clustered. Each node represents
a team and edge weights indicate the number of games played between two teams.
The colored nodes in ‘Ground Truth’ show the subdivision of the teams into 12 con-
ferences (clusters), that primarily play against each other in a first period. Graph
partitioning with c = 12 was performed using the SAF with s = 0 and s = 1, and
with weights defined by (6.15). Markers indicate labels assigned to nodes that differ
from ground truth. Starting from the initialization (2nd row, left panel) which is noisy,
the SAF with s = 1 returns almost the ground-truth labeling and is also close to the
result of directly applying spectral clustering to KE . The SAF with s = 0 enforces
label assignments that are spatially more regular, and with empty clusters orange and
purple.

SAF with s = 0 enforces assignments with a more regular spatial structure. Both findings agree with
observations made in preceding experiments; see e.g. Figure 6.2.
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7. CONCLUSION

We extended the assignment flow approach to supervised image labeling introduced by [ÅPSS17]
to unsupervised scenarios where no labels are available. The resulting self-assignment flow takes a
pairwise affinity matrix as input data and maximizes the correlation (inner product) with a low-rank
self-assignment matrix, corresponding to a factorization with the variables of the assignment flow. A
single parameter s ∈ [0, 1] determines the self-assignment matrix as smooth geodesic interpolation
of the self-affinity matrix (s = 0) and the self-influence matrix (s = 1), which enables to control the
relative influence of spatial regularization and the preservation of feature-induced local image struc-
ture, respectively. A second parameter, the size |N | of local neighborhoods for geometric averaging
of assignments, controls the scale of the resulting image partition as in the supervised case.

The compositional design of the approach, informally expressed as ‘regularization ◦ data likeli-
hood’ as opposed to ‘regularization + data likelihood’ as in traditional variational approaches, merely
required to generalize the likelihood map (cf. (4.10)) in order to extend the approach to the unsuper-
vised case. In particular, numerical techniques developed by [ZSPS19] for integrating the assignment
flow still apply. Learning patch dictionaries with a locally invariant patch distance function demon-
strated exemplarily, together with a range of further numerical experiments, that our approach can
flexibly cope with all common feature representations, including RKHS embeddings.

We characterized mathematically our approach from different relevant viewpoints, depending on
the parameter s: As rank-constrained discrete optimal transport and as normalized spectral cuts that
are spatially regularized in an unbiased way (rather than adding spatial coordinates as ‘features’).
Additionally, we showed that the formation of prototypes automatically optimizes a classical class
separability measure. Finally, from the viewpoint of combinatorial optimization, our approach suc-
cessfully handles completely positive factorizations of self-assignments in large-scale scenarios, sub-
ject to spatial regularization.

Promising directions of further research include application-dependent extensions of the invariance
group in order to learn compact patch dictionaries using the self-assignment flow in various scenarios.
An open challenging problem concerns the extension of weight parameter estimation for application-
specific adaptive regularization [HSPS19] to the unsupervised self-assignment flow approach.
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(C. Schnörr) IMAGE AND PATTERN ANALYSIS GROUP, HEIDELBERG UNIVERSITY, GERMANY

E-mail address: schnoerr@math.uni-heidelberg.de
URL: https://ipa.math.uni-heidelberg.de

https://www.stpetra.com
https://ipa.math.uni-heidelberg.de

	1. Introduction
	2. Preliminaries
	2.1. Basic Notation
	2.2. Scatter Matrices
	2.3. Sketching Large Affinity Matrices
	2.4. The Positive Definite Matrix Manifold Pn
	2.5. Representation of Assignments
	2.5.1. Assignment Manifold
	2.5.2. Assignment Flow

	2.6. Greedy k-Center Metric Clustering

	3. Self-Assignment
	3.1. From Labeling to Partitioning
	3.2. Self-Assignment Matrices, Relaxation
	3.3. Relaxations: Interpretation
	3.3.1. Self-Affinity Matrix
	3.3.2. Recovery of Latent Prototypes
	3.3.3. Self-Influence Matrix
	3.3.4. Cluster-Confusion Matrix


	4. Self-Assignment Flows
	4.1. Generalized Likelihood Map
	4.2. Self-Assignment Flows
	4.3. Self-Assignment Performs Self-Supervision
	4.4. Geometric Numerical Integration

	5. Related Work and Discussion
	5.1. Graph Cuts and Spectral Relaxation
	5.2. Discrete Regularized Optimal Transport
	5.3. Combinatorial Optimization

	6. Experiments
	6.1. Implementation Details
	6.2. Influence of Model Parameters
	6.2.1. Influence of s, |N| and c.
	6.2.2. Evolution of Cluster Sizes, Entropy, and Rank Lower Bound
	6.2.3. Influence of Affinity Matrix Sketching.

	6.3. Comparison to Other Methods
	6.3.1. Nearest Neighbor Clustering, Supervised Assignment Flow
	6.3.2. Spatial Feature Augmentation and Normalized Spectral Cuts

	6.4. Unsupervised Learning and Assignment of Locally Invariant Patch Dictionaries
	6.4.1. Locally Invariant Patch Distances
	6.4.2. Recovery of Patch Prototypes and Images
	6.4.3. Patch-Based Self-Assignment Flow
	6.4.4. Patch Assignment to Novel Data

	6.5. Regularized Clustering of Weighted Graph Data

	7. Conclusion
	References

