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Abstract. Determining Euclidean transformations for the robust registration of
noisy unstructured point sets is a key problem of model-based computer vision
and numerous industrial applications. Key issues include accuracy of the regis-
tration, robustness with respect to outliers and initialization, and computational
speed.
In this paper, we consider objective functions for robust point registration without
correspondence. We devise a numerical algorithm that fully exploits the intrinsic
manifold geometry of the underlying Special Euclidean Group SE (3) in order
to efficiently determine a local optimum. This leads to a quadratic convergence
rate that compensates the moderately increased computational costs per iteration.
Exhaustive numerical experiments demonstrate that our approach exhibits signif-
icantly enlarged domains of attraction to the correct registration. Accordingly, our
approach outperforms a range of state-of-the-art methods in terms of robustness
against initialization while being comparable with respect to registration accuracy
and speed.

1 Introduction

1.1 Overview and Motivation

Registration of point sets is an important task in many 3D vision applications includ-
ing quality inspection [1, 2], reverse engineering [3], object recognition and detection
[4–7]. In each case, robustness against noise, imprecise initialization and accuracy of
registration are important as well as sufficiently short runtimes. Additionally, large pose
variations between model and shape together with outliers and unstructured point mea-
surements often render this problem quite challenging.

Each approach amounts to the design of an objective function and a numerical algo-
rithm for computing an optimal registration. We review related work in Sec. 1.2. Gener-
ally speaking, since the correspondence between model and measurements is assumed
to be unknown, the overall optimization problem is inherently nonconvex. Hence, ro-
bustness against poor initializations is a crucial issue.

In this context, we focus on an objective criterion that does not require to determine
point correspondences explicitly. The domain of definition is therefore just the entire
set of Euclidean transformations of 3D space, i.e. the Special Euclidean Group SE (3).
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Fig. 1. Left: State-of-the-art methods that do not sufficiently take into account the manifold struc-
ture of Euclidean transformations are susceptible to imprecise initializations of the model (blue)
and the scene (red) to be registered, and may reach a poor local optimum. Right: Taking the in-
trinsic geometry of the underlying manifold into account significantly increases robustness with
respect to poor initialization.

Regarded as a matrix group, this set is a smooth manifold embedded in the correspond-
ing ambient matrix space. We devise a Newton-like optimization algorithm that fully
exploits the intrinsic manifold geometry (up to second order) to efficiently determine a
locally optimal transform representing the registration.

Comparison with a range of state-of-the-art methods (see next section) reveals a sig-
nificantly enlarged domain of attraction to the correct registration, thus alleviating the
problem of poor initializations. Figure 1 illustrates this point, confirmed by exhaustive
numerical experiments reported in section 5.

1.2 Related Work

Registration with Point Correspondence The problem to register two point sets amounts
to the chicken-and-egg problem of determining simultaneously both point correspon-
dences and a rigid transformation. Having solved either problem, the other one becomes
trivial. Consequently, most approaches proceed in an alternating fashion: given an esti-
mate of the transformation, correspondence can be determined followed by improving
the estimated transformation, and so forth. The prototypical representant is the Itera-
tive Closest Point (ICP) algorithm [8] that due to its simplicity still is a state-of-the-art
algorithm [1, 2].

It is well known that this two-step iteration is susceptible to noise and poor ini-
tialization. While numerous robust variants including [9, 10] have been suggested, a
major drawback concerning the representation of the problem remains, in particular
when dealing with unstructured point sets: explicit correspondences increase both the
nonconvexity and nonsmoothness of the objective function, and gaining insight into the
optimization problem is hampered by complicated structure of the domain of optimiza-
tion comprising both Euclidean transformations and correspondence variables.
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Registration without Explicit Correspondence In order to obtain an optimization crite-
ria that avoids computing corresponding points in each iterate, Mitra et al. [11] as well
as Pottmann et al. [6] approximate the objective distance by local quadratic functions
that represent the distance of certain points to the scene.

Another way to avoid the explicit determination of correspondence has been sug-
gested by Tsin and Kanade [12], Jian and Vemuri [13] and Wang et al. [14]. By rep-
resenting point clouds of both the scene and the model by mixture distributions, regis-
tration can be achieved by minimizing the squared L2 distance [12, 13] or the Jensen-
Shannon divergence [14] between two distributions. Compared to [11, 6] this avoids
exhaustive pre-computation of the local distance approximation at the cost of more ex-
pensive function evaluations.

Because we consider this class of approaches as advantageous in connection with
unstructured noisy point sets, we adopt mixture models of model and scene points in
this paper.

Geometric Optimization However, in this case, the optimal rigid body transformation
cannot be determined in closed form. In order to minimize distance measures between
mixture distributions representing unstructured point sets, methods of continuous op-
timization like gradient descent or Newton-like schemes have to be applied. This task
differs from standard applications because the underlying domain where an optimum
has to be computed is a curved space (manifold).

Concerning manifolds related to the orthogonal group (Grassmann and Stiefel man-
ifolds) continuous optimization methods are considered in [15]. Adler et al. [4], for
instance, proposed a corresponding Newton-like algorithm for human spine alignment.
Concerning Euclidean transformations, Li and Hartley [16] presented a Branch and
Bound algorithm that determines the optimal registration of two 3D point sets together
with the correspondence in terms of a permutation matrix.

A decisive advantage of this approach is its independence from initialization be-
cause the global optimum is always found. On the other hand, the runtime scales badly,
e.g. nearly 20 min for 200 points, which excludes industrial applications with hundreds
of points. Furthermore, point sets of equal cardinality are required as input which is not
the case in the standard scenario of matching a model (small point set) with a scene
(large point set).

Pottmann et al. [6] as well as Taylor and Kriegman [17] suggested an iterative reg-
istration algorithm based on successive local approximations of the manifold Euclidean
transformations in terms of the tangent space at the current iterate.

In a similar way, Krishnan et al. [3] proposed an algorithm for multiple point set
alignment. We consider this approximation in more detail below (Section 4) and work
out differences to our approach (Sections 4, 5).

1.3 Contribution

In this paper we devise and study a second-order optimization method that fully exploits
the geometry of the manifold SE (3) of Euclidean transformations in order to minimize
a distance measure between two mixture distributions representing two unstructured
point sets. Additionally, we show that our novel algorithm
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– outperforms state of the art algorithms including ICP and Softassign [8, 9, 1, 2] in
terms of speed of convergence,

– and has a significantly larger basin of quadratic convergence to the correct registra-
tion than previous work based on local approximations of SE (3) [6].

1.4 Organization

In Sect. 2 we recall objective criteria used for point set registration with and without
explicit representation of point correspondences. Section 3 collects elements of differ-
ential geometry needed to detail our optimization approach in Sect. 4, and to point out
differences to related work based on approximate Newton methods.

In Sect. 5, we compare our approach to state-of-the-art point set registration algo-
rithms with respect to runtime and robustness against poor initializations, i.e. the size of
the region of convergence to the correct registration. We conclude and point out further
work in Sect. 6.

2 Objective Functions

Let {ui, i = 1, . . . , N} ⊂ R3 denote a set of scene points obtained by a scanning
device and, let {vj , j = 1, . . . ,M} ⊂ R3 be a point set specified by a given model
description, i.e. a CAD file or a sample scan.

The objective of registration is to find a rigid body transformation Y ∈ SE (3) such
that model and scene points are aligned best. Here, SE (3) denotes the special Euclidean
group parametrized by a proper rotation matrixR ∈ SO (3) and a translation vector t ∈
R3. There are multiple ways to parametrize rotations R like Euler angles, quaternions
etc. For optimization and numerical algorithm design, however, working with the matrix
representation of the group SE (3) Euclidean transforms is most appropriate.

2.1 Explicit Point Correspondences

The most common criterion for point registration is the sum of squared Euclidean dis-
tances of corresponding points given by

min
Y ={R,t}∈SE(3)

N∑
i=1

‖ui −Rvη(i) − t‖22 , (1)

where η(i) : {1, . . . , N} → {1, . . .M} denotes a correspondence function that assigns
a scene point to its model counterparts. As this function is assumed to be unknown,
apart from the optimization with respect to Y , we have to determine the optimal η as
well. To do so, the correspondence function is replaced by weightswij assigning closest
point pairs to each other, that is

min
Y ∈SE(3)

N∑
i=1

M∑
j=1

wij‖ui −Rvj − t‖22 , (2)
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where wij = 1 if j = arg mink‖ui −Rvk − t‖22 and 0 otherwise. Note, that wij =
wij(Y ) depends on the current estimate of the transformation which complicates the
optimization of (2) considerably.

The common approach is to solve alternately for the transformation parametersR, t
and correspondences wij . Drawbacks of related work in connection with unstructured
point sets are discussed in Sect. 1.2.

2.2 Implicit Point Correspondences

An alternative class of approaches [13, 12] for registration utilizes kernel estimates of
functions in terms of given points sets,

s(x) :=
N∑
i=1

µiK
( 1
2σ2

s

‖x− ui‖22
)
, (3a)

m(x) :=
M∑
j=1

νjK
( 1
2σ2

m

‖x−Rvj − t‖22
)
, (3b)

where K(·) denotes a smoothing kernel integrating to 1, and σs, σm are parameters
related to the noise levels. The values µi, νj ≥ 0,

∑
i µi =

∑
j νj = 1 signal the im-

portance of related samples if such information is available and otherwise are set to be
constant, 1/N, 1/M , as in this paper. Thus, s(x),m(x) can be regarded as probability
density estimates with respect to the assignment of points x to the scene and the model,
respectively. We henceforth assume that all user parameters have been fixed beforehand.

Following [12], registrations of model and scene can now be evaluated by prob-
abilistic distance measures of the respective distributions (3) including the Kullback-
Leibler divergence

D(s‖m) =
∫
x

s(x) log
s(x)
m(x)

=
∫
x

s(x) log s(x)−
∫
x

s(x) logm(x) . (4)

We ignore the first term of (4) in the following because it does not depend on the trans-
formation to be determined.

A further and reasonable simplification results from taking into account the noise
level only in terms of a single smoothing parameter σm in (3). Correspondingly, choos-
ing the Gaussian kernel for K in (3) and considering σs → 0, function s(x) becomes a
sum of Dirac distributions. Insertion into the second term of (4) yields

N∑
i=1

log
( 1
M

M∑
j=1

exp
(
− 1

2σ2
m

‖ui −Rvj − t‖22
))

, (5)

where we dropped the constant 1/N and the factor normalizing the Gaussian because
it does not depend on the transformation to be determined.
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We point out that in contrast to the objective function (2), (5) only depends on the
rigid body transformation and not on further variables representing point correspon-
dences.

Furthermore, (5) parallels smoothed objective functions for prototypical clustering
[18] in terms of the log of a sum of Gaussians. A corresponding optimization scheme,
therefore, is given by the fixed point iteration

argmin
Y ∈SE(3)

N∑
i=1

M∑
j=1

ρij

(
Y (k)

)
‖ui −Rvj − t‖22 , (6)

where

ρij (Y ) =
exp

(
− 1

2σ2
m
‖ui −Rvj − t‖22

)∑M
l=1 exp

(
− 1

2σ2
m
‖ui −Rvl − t‖22

) . (7)

This procedure is a variant of the Softassign procedure [9] (without annealing) that is
significantly more robust than procedures based on hard assignments as in (2).

On the other hand, due to the structure of (6) only a linear convergence rate is
achieved as will be confirmed in Sect. 5. This motivates the study of Newton algorithms
that exhibit quadratic convergence rates in general. Furthermore, by fully exploiting the
geometry of the underlying manifold, we increase robustness against poor initializa-
tions.

3 The Manifold of Euclidean Transformations

We collect in this section few basic concepts needed to specify and discuss our opti-
mization approach in Sect. 4. For the mathematical background, we refer to e.g. [19,
20].

3.1 The Lie Group SE (3)

Euclidean transformations Y = {R, t} ∈ SE (3) map a point x to Y x = Rx+ t and
form a group via concatenation: Y1Y2 = {R1, t1}{R2, t2} = {R1R2, t1 + R1t2}.
The inverse element is Y −1 = {R−1,−R−1t}.

For the purpose of optimization and numerical analysis, it is convenient to identify
SE (3) ⊂ GL(4) with a subgroup of all 4 × 4 regular matrices with respect to matrix
multiplication. Keeping symbols for simplicity, this representation reads

Y =
(
R t
0> 1

)
, Y −1 =

(
R> −R>t
0> 1

)
. (8)

In this way SE (3) becomes a differentiable manifold embedded into GL(4), hence a
Lie group.
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3.2 Tangents

With each Lie group is associated its Lie algebra, the vector space tangent to the mani-
fold at I . In case of SE (3) it reads

se (3) =
{(
ΦR Φt
0> 0

) ∣∣∣∣ ΦR> = −ΦR , Φt ∈ R3

}
, (9)

which is easily deduced from the fact that se (3) contains all matrices Φ such that for
all t ∈ R, the matrix exponential exp(tΦ) ∈ SE (3) is a Euclidean transformation, and
R = exp(ΦR) for some skew-symmetric ΦR. The latter is just Rodrigues’ formula for
rotations in 3D.

In the following, we denote the vector space (9) equipped with the canonical inner
product 〈Φ1,Φ2〉 = tr(Φ1

>Φ2) with T := se (3). Furthermore, functions F and its
derivatives defined on SE (3) are evaluated at Y = I without loss of generality, because
during iterative optimization the current iterate Y can be regarded as offset redefining
the model’s original pose.

3.3 Gradients

The gradient∇F of a function F : SE (3)→ R is defined by the relation [19]

〈∇F,Φ〉 = 〈∂F,Φ〉 , ∀Φ ∈ T , (10)

where ∂F is the usual matrix derivative of F given by (∂F )ij = ∂
∂Yij

F . Because
SE (3) is embedded into GL(4), eqn. (10) shows that ∇F − ∂F is orthogonal to all
Φ ∈ T . Thus, ∇F ∈ T is the orthogonal projection π mapping ∂F to T . Using the
same block-factorization as in (9),

∂F =
(
∂F11 ∂F12

∂F21 ∂F22

)
, (11)

this projection can be computed in closed form:

∇F = π(∂F ) =

(
1
2

(
∂F11 − ∂F11

>
)
∂F1,2

0> 0

)
. (12)

3.4 Hessians

In addition to the gradient, optimization with the Newton method requires to compute
the Hessian of a given objective function F (Y ) defined on SE (3). Similar to determin-
ing the gradient in the previous section, the usual definition valid for Euclidean spaces
has to be adapted to the manifold SE (3).

The Hessian of a function F : SE (3)→ R, evaluated at Y = I , is a linear mapping
from T onto itself [20] given by ∇Φ(∇F ) , ∀Φ ∈ T , where the gradient ∇F is given
by (12) and∇ is the Levi-Civita connection defining the covariant derivative∇Φ of the
vector field∇F .



8

To obtain a more explicit expression in terms of the ordinary first- and second-order
derivatives, we denote by {Lk}k=1,...,6 the canonical basis spanning the translational
and skew-symmetric components of tangents Φ =

∑
k φkLk ∈ T defined by eqn. (9).

Then the quadratic form of the Hessian with respect to any Φ is given by [15]

〈∇Φ(∇F ),Φ〉 = ∂2F (Φ,Φ)− 〈∂F, Γ (Φ,Φ)〉 (13)

with ∂2F (Φ,Φ) denoting the bilinear form
∑
ij,kl

∂2F
∂Yij∂Ykl

ΦijΨkl and

Γ (Ψ ,Φ) =
∑
i,j,k

ψiφjΓ
k
ijLk . (14)

We list the so-called Christoffel symbols Γ kij defining the connection∇ in the Appendix.

4 Second Order Optimization on SE (3)

In the usual Euclidean space Rn, second-order optimization of some objective function
F : Rn → R using the Newton method is based on the local quadratic model

F (xk + x) ≈ F (xk) + x>∂F +
1
2
x>Hx, (15)

where ∂F,H denote the (ordinary) gradient and Hessian of F evaluated at xk, respec-
tively. The gradient of (15) vanishes if x solves the linear system

Hx = −∂F , (16)

leading to the update xk+1 = xk + x.
In this section, we discuss two ways to generalize this iteration to the case of objec-

tive functions F (Y ) : SE (3)→ R.

4.1 Truncating the Exponential Map

It is well known that a geodesic path Y (t) ∈ SE (3) with Y (0) = I and tangent
Ẏ (0) = Φ is locally given by the exponential mapping exp: T → SE (3),

exp(tΦ) =
∞∑
k=0

(tΦ)k

k!
. (17)

Accordingly, it makes sense to consider local approximations

Ylin(t) ≈ I + tΦ (18a)

Yquad(t) ≈ I + tΦ+
t2

2
Φ2 , (18b)

respectively, as suggested by Pottmann et al. [6], and to determine the optimal tangent
vector tΦ. By inserting the approximations (18a) and (18b) into F (Y ), and by expand-
ing Φ with respect to the basis {Lk}k=1,...,6 introduced above, the objective function



9

F (Y ) is restricted to the 6-dimensional vector space T in terms of the coefficients
tφ = t(φ1, . . . , φ6)

> as variables.
As a result, the linear system (16) defining the Newton iteration is replaced by (we

keep the symbolsH and ∂F for simplicity)

H(tφ) = −∂F , (19)

where (∂F )i = ∂
∂φi

F and Hij = ∂2

∂φi∂φj
F evaluated at φ = 0.

However, because (18a) and (18b) are only local approximations of the Euclidean
group, inserting the solution tΦ =

∑
k(t φk)Lk of the linear system (19) does not give

an element of SE (3) in general. Rather, the Newton update Y ∈ SE (3) is determined
by inserting tΦ into the exponential map (17).

4.2 Intrinsic Newton Updates

Instead of restricting the objective function F to the tangent space T through the local
manifold approximations (18) first, and then computing Newton updates by solving
(19), we may base the Newton iteration directly on the intrinsic gradient and Hessian of
the manifold SE (3).

This means that the linear system (16) in the Euclidean case is replaced by the linear
system defined by the variational equation

〈∇Φ(∇F ),Ψ〉 = −〈∇F,Ψ〉 , ∀Ψ ∈ T , (20)

with the gradient∇F given by (12) and the Hessian defined in (13).
As in the previous section, the tangent vectorΦ solving (20) does not directly result

in a Euclidean transformation Y as Newton update. Rather, here we use the exponential
mapping

Y = exp(Φ) (21)

defined by (17).

4.3 Local vs. Intrinsic Approximation

While both schemes require to solve linear systems (19) and (20) in each iteration,
respectively, there are major differences in terms of convergence properties. We address
this issue in this section and take it up again in connection with discussing experimental
results in Sect. 5.

Recall that the objective function to be studied in this paper reads

F (Y ) = −
N∑
i=1

log
( 1
M

M∑
j=1

exp
(
− hij(Y )

))
, (22)

where hij(Y ) = 1
σ2 ‖ui −Rvj − t‖22 and Y ∈ SE (3).

Approximating the rigid body transformation by truncating (17) after the linear term
(18a) yields a redefinition of hij such that optimization of F is restricted to the tangent
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space T . Because this approach provides an accurate approximation only within a small
neighborhood around the current iterate, however, convergence to the correct local op-
timum is unlikely if it lies outside this neighborhood [6].

In contrast, second order truncation (18b) provides a more accurate approximation
of the manifold SE (3) locally. On the other hand, inserting the quadratic approximation
into hij mapsRvj + t to(

vj +Φt +ΦRvj +
1
2
ΦR
(
Φt +ΦRvj

))
. (23)

Using the fact that ΦR is skew symmetric, the latter part rewrites as

1
2
(
ΦRΦt + (φ>vj)φ− (φ>φ)vj

)
, (24)

where φ are the coefficients of the expansion ΦR =
∑
k φkLk.

As a consequence, when the rotation components of Newton updates happen to be-
come large in magnitude, the nonconvexity of the objective function due to the quadratic
terms in (24) may cause Newton updates to step into wrong directions. This will be con-
firmed by numerical experiments in the following section.

Finally, the intrinsic second-order approximation (20) computes update directions
within the tangent space, as do the approaches discussed above based on (18). A notable
difference, however, is that in this case the Hessian and the gradient utilize information
of the embedding of SE (3) into the ambient space in terms of the connection and co-
variant derivatives, respectively, moving nearby tangents along the manifold.

We will show in the next section that this difference is relevant in practice, too.

5 Numerical Evaluation and Comparison

In 3D vision computer vision applications both robustness against poor initializations
and sufficiently short processing times are of utmost importance. In this section, we
apply the proposed Newton algorithm to rigid point set registration and experimen-
tally demonstrate the major benefits and drawbacks of our scheme: fast convergence
in a large region of quadratic attraction at the cost of slightly more expensive function
evaluations.

Moreover, we compare the proposed scheme to a range of state-of-the-art algorithms
including Iterative Closest Point [8], the fix-point iteration (6) as a special case of Sof-
tassign [9], and the Newton procedure based on local approximation of the Euclidean
group [6].

In our experiments we only considered the case of perfect 3D point measurements
in this paper, i.e. no noise or occlusion, in order to clearly separate for each scheme
the effect of poor initializations from noise sensitivity. We point out, however, that by
adjusting the kernel parameters of (5) or introducing background kernels to handle oc-
clusion, extensions to noisy scenarios are straightforward.



11

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

−3

 

 
Manifold Newton
Linear Approximation
Quadratic Approximation
Soft Assign
ICP

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

−3

 

 
Manifold Newton
Linear Approximation
Quadratic Approximation
Soft Assign
ICP

Fig. 2. Evaluation of the performance of Newton algorithms based on linear and quadratic motion
approximation [6], and based on manifold structure (this paper) as well as ICP [8] and Softassign
[9] for different values of σ (left: 0.3, right: 0.15). Each plot visualizes the value of the cost func-
tion (2) in the corresponding iterate. ICP and Softassign converge linearly while the remaining
approaches converge quadratically.

5.1 Speed of Convergence

Algorithms like ICP [8] or Softassign [9] return less accurate registrations in cases
where the underlying point set has no salient regions. This often occurs in industrial
applications where smooth surfaces have to be registered accurately. To compare the
ability of the approaches to cope with such scenarios, we generated 2500 data points by
randomly sampling points from the smooth function 3(x− 1)2 + 3 sin(2y) on the unit
interval.

Next, we transformed a copy of the model slightly according to a rigid body trans-
formation (about 4 degree in each rotation and by a total of 0.12 in translation), such
that all approaches ICP [8], Softassign [9], the Newton schemes based on local approx-
imation [6] and the approach proposed in this paper always converge. Figure 2 reveals
that the convergence rates differ significantly.

While for varying σ, the Newton procedures based on approximation of the Eu-
clidean group converge slightly faster than the approach presented in this paper, all of
them exhibit quadratic convergence properties. In contrast, ICP and Softassign only
converge linearly to the optimal configuration. As a result, they return less accurate
registrations under tight runtime constraints (fixed number of iterations).

This superior performance of the Newton schemes require more expensive com-
putations of the Hessians in each iteration. While ICP requires O(M logN) computa-
tions in each iteration using K-D trees, the evaluation of the gradient and the Hessian
of (5) causes costs of O(MN). Putting this into numbers, one round of ICP requires
about 1 second. In contrast, the computation of the derivatives, using MatLab research
code, needs between 8 (linear and quadratic approximation [6]) and 12 seconds (our ap-
proach). This difference is primarily due to the higher dimension of the space in which
the gradient and the Hessian are computed. We expect that using a more careful C-tuned
implementation will return more accurate registrations if the maximum runtime is fixed
beforehand, as is required in industrial applications.
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Fig. 3. Evaluation of the region of quadratic convergence for Newton algorithms based on linear
(left) and quadratic (middle) local approximation [6], and based on the intrinsic local approxima-
tion (right) (this paper) for fixed σ = 0.1. Each circle center corresponds to the initial translation
offset in the x-y plane, where the middle circle center is the origin. The slices in each circle refer
to the initial rotation around the z-axis. These slices are colored black if the model converges to
the scene within the first few iterations and otherwise remains white. The results illustrate that
the approach proposed in this paper is significantly more robust against poor initializations.

5.2 Basin of Convergence

Additionally to fast convergence, robustness to poor initializations is important in many
applications. The region of attraction for ICP [8] has already been analyzed in [11].
Thus we only consider Newton procedures here.

For comparison, we used the same initial setup as [11], i.e. a model of the Stanford
Bunny, visualized in Fig. 1, rotated around the z-axis and shifted in the x-y plane by the
size of the model. As scene we used a copy of the model placed in the origin. Moreover,
since we are primarily interested in quadratic and fast convergence and the resulting
accuracy after a fixed runtime, we terminated the algorithms after 25 iterations.

We observe that especially for transformations with rotational initialization error,
the Newton approach proposed in this work has a significantly larger domain of attrac-
tion to the correct solution than the procedures based on local approximations of the
Euclidean group, as visualized in Fig. 3 and explained in more detail in the correspond-
ing caption.

In a related experiment we examined the update direction of a single iterate of each
scheme, cf. Fig. 4. By only translating the Stanford Bunny in R3 we found that quadratic
local motion approximation as well as our approach exhibit a lower angular error then
the scheme based on linear local approximation. We point out that the angular error
of all approaches near the origin is primarily due the nature of the objective function
(5), that is a slight detrimental effect of the smoothed objective function discussed in
Sect. 2.2. Decreasing the value of σ after few iteration steps would fix this minor issue.

6 Conclusion and Discussion

We presented a second-order optimization method that fully exploits the geometry of
the manifold SE (3) of Euclidean transformations in order to minimize a distance mea-
sure between two mixture distributions representing two unstructured point sets. We
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Fig. 4. Visualization of the angular error of the translational update computed with the linear (left)
and quadratic (middle) local approximation approach [6], and with the intrinsic local approxima-
tion (right) (this paper), as a function of the translational offset (ground truth) model↔ scene in
3D-space. No rotation was applied. Each graphics depicts slices through the three-dimensional
“error fields”. While the linear local approximation fails again in this simpler scenario, both
quadratic approximations are more robust against this type of initialization error. Figure 3 shows
however that only the intrinsic approximation (this paper) remains stable if rotational initializa-
tion errors additionally occur.

experimentally compared this approach to state-of-the-art algorithms including ICP and
Softassign [8, 9] and showed that it has a significantly larger basin of convergence to
the correct registration than recent work based on local approximations of SE (3) [6].

This better performance comes at the cost of slightly more expensive computa-
tions required in each iteration. Thus, in further work we want to address this issue by
considering approximating schemes of the objective that allow faster evaluation of the
objective function.

Additionally we want to analyze the region of quadratic attraction more carefully in
order to derive bounds that guarantee convergence to the desired local optimum.
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A Christoffel Symbols Defining the Connection ∇

The non-zero Christoffel symbols of (14) are

Γ 3
12 = Γ 1

23 = Γ 2
31 =

1
2
, (25a)

Γ 2
13 = Γ 3

21 = Γ 1
32 = −1

2
, (25b)

Γ 6
15 = Γ 4

26 = Γ 5
34 = 1, (25c)

Γ 5
16 = Γ 6

24 = Γ 4
35 = −1. (25d)
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