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Abstract. Differential methods are frequently used techniques for op-
tic flow computations. They can be classified into local methods such as
the Lucas–Kanade technique or Bigün’s structure tensor method, and
into global methods such as the Horn–Schunck approach and its modifi-
cations. Local methods are known to be more robust under noise, while
global techniques yield 100% dense flow fields. No clear attempts to com-
bine the advantages of these two classes of methods have been made in
the literature so far.
This problem is addressed in our paper. First we juxtapose the role of
smoothing processes that are required in local and global differential
methods for optic flow computation. This discussion motivates us to in-
troduce and evaluate a novel method that combines the advantages of
local and global approaches: It yields dense flow fields that are robust
against noise. Finally experiments with different sequences are performed
demonstrating its excellent results.

Keywords: visual motion, differential techniques, variational methods,
structure tensor, partial differential equations.

1 Introduction

Differential methods belong to the most widely used techniques for optic flow es-
timation in image sequences. They are based on the computation of spatial and
temporal image derivatives. Differential techniques can be classified into local
methods that may optimize some local energy-like expression, and global strate-
gies which attempt to minimize a global energy functional. Examples of the first
category include the Lucas–Kanade method [9], the structure tensor approach of
Bigün et al. [3] and its space–variant version by Nagel and Gehrke [12], but also
techniques using second order derivatives such as [16]. Global approaches com-
prise the classic method of Horn and Schunck [6] and discontinuity-preserving
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variants such as [10]. Together with phase-based methods [4], differential meth-
ods belong to the techniques with the best performance [2,5]. Local methods may
offer relatively high robustness under noise, but do not give dense flow fields.
Global methods, on the other hand, yield flow fields with 100 % density, but are
experimentally known to be more sensitive to noise [2,5].

Almost all differential optic flow methods make use of smoothing techniques
and smoothness assumptions: The actual role and the difference between these
smoothing strategies, however, has hardly been addressed in the literature so far.
In a first step of this paper we juxtapose the role of the different smoothing steps
of these methods. We shall see that each smoothing process offers certain advan-
tages that cannot be found in other cases. Consequently, it would be desirable to
combine the different smoothing effects of local and global methods in order to
design novel approaches that combine the high robustness of local methods with
the high density of global techniques. One of the goals of the present paper is to
propose and analyse such an embedding of local methods into global approaches.
This results in a technique that is robust under noise and gives flow fields with
100 % density. Hence, there is no need for a postprocessing step where sparse
data have to be interpolated.

Our paper is organized as follows. In Section 2 we discuss the role of the
different smoothing processes that are involved in local and global optic flow
approaches. Based on these results we propose two combined local-global (CLG)
methods in Section 3, one with spatial, the other one with spatiotemporal smooth-
ing. Section 4 is devoted to performance evaluations of the CLG method. Our
paper is concluded with a summary in Section 5.

Related Work. Schnörr et al. [14] sketched a framework for supplementing
global energy functionals with multiple equations that provide local data con-
straints. The local method in their experiments used the output of Gaussian
filters shifted in frequency space [4]. Methods of Lucas–Kanade or Bigün type
have not been considered in this context.

Our proposed technique differs from the majority of global regularization
methods by the fact that we also use spatiotemporal regularizers instead of
spatial ones. This relates our method to earlier work with spatiotemporal regu-
larizers such as [11,17].

While the noise sensitivity of local differential methods has been studied
intensively in recent years [1,7,8,13,15], the noise sensitivity of global differential
methods has been analysed to a significantly smaller extent. In this context,
Galvin et al. [5] have compared a number of classical methods where small
amounts of Gaussian noise had been added. Their conclusion was similar to the
findings of Barron et al. [2]: the global approach of Horn and Schunck is more
sensitive to noise than the local Lucas–Kanade method.

2 Role of the Smoothing Processes

In this section we discuss the role of smoothing techniques in differential optic
flow methods. For simplicity we focus on spatial smoothing. All spatial smooth-
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ing strategies can easily be extended into the temporal domain. This will usually
lead to improved results.

Let us consider some image sequence g(x, y, t), where (x, y) denotes the lo-
cation within a rectangular image domain Ω, and t ∈ [0, T ] denotes time. It
is common to smooth the image sequence prior to differentiation [2,8], e.g. by
convolving each frame with some Gaussian Kσ(x, y) of standard deviation σ:

f(x, y, t) := (Kσ ∗ g)(x, y, t), (1)

The low-pass effect of Gaussian convolution removes noise and other destabilizing
high frequencies. In a subsequent optic flow method, we may thus call σ the noise
scale. While some moderate presmoothing improves the results, great care should
be taken not to apply too much presmoothing, since this would severely destroy
important image structure.

Many differential methods for optic flow are based on the assumption that
the grey values of image objects in subsequent frames do not change over time.
For small displacements this yields the optic flow constraint

fxu + fyv + ft = 0, (2)

where the displacement field (u, v)�(x, y, t) is called optic flow and subscripts
denote partial derivatives. Evidently, this single equation is not sufficient to
uniquely compute the two unknowns u and v (aperture problem): For nonvanish-
ing image gradients, it is only possible to determine the flow component parallel
to ∇f := (fx, fy)�, i.e. normal to image edges, the so-called normal flow. In
order to cope with the aperture problem, Lucas and Kanade [9] proposed to
assume that the unknown optic flow vector is constant within some neighbour-
hood of size ρ. In this case it is possible to determine the two constants u and
v at some location (x, y, t) from a weighted least square fit by minimizing the
function

ELK(u, v) := Kρ ∗ (
(fxu + fyv + ft)2

)
. (3)

Here the standard deviation ρ of the Gaussian serves as an integration scale over
which the main contribution of the least square fit is computed. Therefore the
effect to the neighborhood is limited by the value of ρ. As a result structures
of the same order do occur. In particular, a sufficiently large value for ρ is very
successful in rendering the Lucas–Kanade method robust under noise.

A minimum (u, v) of ELK satisfies ∂uELK = 0 and ∂vELK = 0. This gives
the linear system

(
Kρ ∗ (f2

x) Kρ ∗ (fxfy)
Kρ ∗ (fxfy) Kρ ∗ (f2

y )

) (
u
v

)
=

(−Kρ ∗ (fxft)
−Kρ ∗ (fyft)

)
(4)

which can be solved provided that its system matrix is invertible. This is not the
case in flat regions where the image gradient vanishes. In some other regions, the
smaller eigenvalue of the system matrix may be close to 0, such that the aper-
ture problem remains present and the data do not allow a reliable determination
of the full optic flow. All this results in nondense flow fields. They constitute
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the most severe drawback of local gradient methods: Since many computer vi-
sion applications require dense flow estimates, subsequent interpolation steps are
required.

In order to end up with dense flow estimates one may embed the optic flow
constraint into a regularization framework. Horn and Schunck [6] have pioneered
this class of global differential methods. They determine the unknown functions
u(x, y, t) and v(x, y, t) as the minimizers of the global energy functional

EHS(u, v) =
∫

Ω

(
(fxu + fyv + ft)2 + α

(|∇u|2 + |∇v|2)) dx dy (5)

where the smoothness weight α > 0 serves as regularization parameter: Larger
values for α result in a stronger penalization of large flow gradients and lead
to smoother flow fields. The unique minimizer of this convex functional benefits
from the filling-in effect: At locations with |∇f | ≈ 0, no reliable local flow esti-
mate is possible, but the regularizer |∇u|2 + |∇v|2 fills in information from the
neighbourhood. This results in dense flow fields and makes subsequent interpo-
lation steps obsolete. This is a clear advantage over local methods.

It has been observed that global methods may be more sensitive to noise than
local differential methods [2,5]. An explanation for this behaviour can be given
as follows. Noise results in high image gradients. They serve as weights in the
data term of the regularization functional (5). Since the smoothness term has a
constant weight α, smoothness is relatively less important at locations with high
image gradients than elsewhere. As a consequence, flow fields are less regular-
ized at noisy image structures. This sensitivity under noise is therefore nothing
else but a side-effect of the desired filling-in effect. Increasing the regularization
parameter α will finally also smooth the flow field at noisy structures, but at
this stage, it might already be too blurred in flatter image regions.

3 A Combined Local–Global Method

We have seen that both local and global differential methods have complemen-
tary advantages and shortcomings. Hence it would be interesting to construct a
hybrid technique that constitutes the best of two worlds: It should combine the
robustness of local methods with the density of global approaches. This shall be
done next. We start with spatial formulations before we extend the approach to
the spatiotemporal domain. In order to design a combined local–global (CLG)
method, let us first reformulate the previous approaches. Using the notations

w := (u, v, 1)�, |∇w|2 := |∇u|2 + |∇v|2,
∇3f := (fx, fy, ft)�, Jρ(∇3f) := Kρ ∗ (∇3f ∇3f

�)

it becomes evident that the Lucas–Kanade method minimizes the quadratic form

ELK(w) = w�Jρ(∇3f)w, (6)
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while the Horn–Schunck technique minimizes the functional

EHS(w) =
∫

Ω

(
w�J0(∇3f)w + α|∇w|2) dx dy. (7)

This terminology suggests a natural way to extend the Horn–Schunck functional
to the desired CLG functional. We simply replace the matrix J0(∇3f) by the
structure tensor Jρ(∇3f) with some integration scale ρ > 0. Thus, we propose
to minimize the functional

ECLG(w) =
∫

Ω

(
w�Jρ(∇3f)w + α|∇w|2) dx dy. (8)

Its minimizing flow field (u, v) satisfies the Euler–Lagrange equations

∆u − 1
α

(
Kρ ∗ (f2

x)u + Kρ ∗ (fxfy) v + Kρ ∗ (fxft)
)
= 0, (9)

∆v − 1
α

(
Kρ ∗ (fxfy)u + Kρ ∗ (f2

y ) v + Kρ ∗ (fyft)
)
= 0, (10)

where ∆ denotes the Laplacean.
A spatiotemporal variant of the Lucas–Kanade approach is due to Bigün et

al. [3]. It replaces convolution with 2-D Gaussians by spatiotemporal convolution
with 3-D Gaussians. This still leads to a 2× 2 linear system of equations for the
two unknowns u and v.

A spatiotemporal version of our CLG functional is given by

ECLG3(w) =
∫

Ω×[0,T ]

(
w�Jρ(∇3f)w + α|∇3w|2) dx dy dt (11)

The Euler–Lagrange equations in the spatiotemporal setting have the same
structure as (9)–(10), apart from the fact that spatiotemporal Gaussian convo-
lution is used, and that the spatial Laplacean is replaced by the spatiotemporal
one due to |∇3w|2. In general, the spatiotemporal Gaussians may have different
standard deviations in space and time.

4 Experiments

For our experiments a standard finite difference discretization of the Euler–
Lagrange equations (9)–(10) is used. The resulting sparse linear system of equa-
tions is solved iteratively by an SOR scheme. Apart from the first iteration,
where additional convolutions with Kρ are computed, the CLG method is as
fast as the Horn and Schunck algorithm.

Figure 1 shows our first experiment. It depicts a flight through to the Yosemite
National Park where divergent motion is dominating. The original synthetic se-
quence was created by Lynn Quam. A modified variant without clouds is avail-
able from http://www.cs.brown.edu/people/black/images.html.

We have added Gaussian noise with zero mean and different standard de-
viation to this sequence, and we used the 3-D CLG method for computing the
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Fig. 1. (a) Top left: Frame 8 of the Yosemite sequence severely degraded by Gaussian
noise with σn = 40. (b) Top middle: Ground truth flow field. (c) Top right: Computed
flow field for σn = 0. (d) Bottom left: Ditto for σn = 10. (e) Bottom middle: σn = 20.
(f) Bottom right: σn = 40.

flow field. Figure 1(c) shows that the recovered flow field is not very sensitive
to Gaussian noise and that it coincides well with the ground truth flow field in
Figure 1(b). These qualitative results are confirmed by the quantitative evalua-
tions in Table 1, where we have studied the effect of replacing spatial smoothing
steps by spatiotemporal ones. As one may expect, both the quality of the optic
flow estimates and their robustness under Gaussian noise improve when tem-
poral coherence is taken into account. The angular error has been computed as
proposed in [2].

Another example demonstrating the excellent results of our CLG technique
with spatiotemporal regularization is the Marble sequence. This non-synthetical
sequence created by Nagel and Otte is available at the following internet adress:
http://i21www.ira.uka.de/image sequences

In Figure 2 (b) the ground truth flow field is shown, whereby the grey value
at a pixel is related to the length of its displacement vector. As one can see
the flow field estimated by our 3-D CLG technique in Figure 2 (c) matches the
ground truth very well. This impression is confirmed by an average angular error

Table 1. Results for the 2-D and 3-D CLG method using the Yosemite sequence
without clouds. Gaussian noise with varying standard deviations σn was added, and
the average angular errors and their standard deviations were computed.

σn=0 σn=10 σn=20 σn=40
2-D CLG 2.64◦ ± 2.27◦ 4.45◦ ± 2.94◦ 6.93◦ ± 4.31◦ 11.30◦ ± 7.41◦

3-D CLG 1.79◦ ± 2.34◦ 2.53◦ ± 2.75◦ 3.47◦ ± 3.37◦ 5.34◦ ± 3.81◦
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Fig. 2. From left to right: (a) Frame 16 of the Marble sequence. (b) Ground truth flow
field (length). (c) Computed flow field (length).

Table 2. Stability of the 2-D CLG method under parameter variations. The data refer
to the marble sequence without noise. AAE = average angular error.

σ ρ α AAE σ ρ α AAE σ ρ α AAE
1.30 1.8 1000 5.70◦ 2.60 0.9 1700 5.31◦ 2.60 1.8 500 5.40◦

1.73 ” ” 5.45◦ ” 1.2 ” 5.30◦ ” ” 666 5.34◦

2.60 ” ” 5.30◦ ” 1.8 ” 5.30◦ ” ” 1000 5.30◦

3.90 ” ” 5.52◦ ” 2.7 ” 5.30◦ ” ” 1500 5.33◦

5.20 ” ” 6.05◦ ” 3.6 ” 5.31◦ ” ” 2000 5.39◦

of 2.06◦. A comparison to our result for the 2-D variant of 5.30◦ demonstrates a
strong improvement by spatiotemporal regularization one more time.

Let us now investigate the sensitivity of the CLG method with respect to
parameter variations. This is done in Table 2 for themarble sequence. We observe
that the average angular error does hardly deteriorate when two parameters are
fixed, while the other one varies by a factor 4. This stability under parameter
variations may be regarded as another experimental confirmation of the well-
posedness of the CLG approach. Moreover, this also indicates that the method
performs sufficiently robust in practice even if non-optimized default parameter
settings are used.

5 Summary and Conclusions

In this paper we have analysed the smoothing effects in local and global differ-
ential methods for optic flow computation. As prototypes of local methods we
used the spatial least-square fit of Lucas and Kanade [9] and the spatiotemporal
structure tensor method of Bigün et al. [3], while the Horn and Schunck approach
[6] was our representative for a global method. We saw that the smoothing steps
in each of these methods serve different purposes and have different advantages
and shortcomings. As a consequence, we proposed a combined local-global (CLG)
approach that incorporates the advantages of both paradigms: It is highly ro-
bust under Gaussian noise while giving dense flow fields. Experiments have also
shown that the CLG method is not very sensitive under parameter variations.
Nonlinear CLG techniques will be described in forthcoming papers.
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