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Abstract. We apply a novel optimization technique, semidefinite pro-
gramming, to the unsupervised partitioning of images. Representing im-
ages by graphs which encode pairwise (dis)similarities of local image
features, a partition of the image into coherent groups is computed by
determining optimal balanced graph cuts. Unlike recent work in the liter-
ature, we do not make any assumption concerning the objective criterion
like metric pairwise interactions, for example. Moreover, no tuning pa-
rameter is necessary to compute the solution. We prove that, from the
optimization point of view, our approach cannot perform worse than
spectral relaxation approaches which, conversely, may completely fail for
the unsupervised choice of the eigenvector threshold.

1 Introduction

Partitioning images in an unsupervised way is a common goal of many low-
level computer vision applications. Based on some locally computed features like
color, texture, or motion, the image should be split into coherent groups whose
members look “similar”. As no prototypes for the different groups are given
in advance, the “correct” partitioning cannot be easily defined. To this end, a
hierarchical bi-partitioning approach is often pursued in practice: The image is
split into two main parts, which could be split further in subsequent applications
of the algorithm. Figure 1 shows two images taken from the VisTex-database [1]
that should give you an impression of the difficulty of the partitioning task.

To guide the search for a “good” segmentation, an appropriate representation
of the image is as well needed as optimization criteria which give measures of the
quality of a segmentation. To this end, the representation of images by graph
structures has recently attracted the interest of researchers [2-4]: An image is
represented by a graph with locally extracted image features as vertices and
pairwise (dis)similarity values as edge weights. The goal is to find a cut through
this graph that divides it in two coherent parts. Several methods from spectral
graph theory were proposed in the literature to solve this problem [5,6,2]. A
major problem of these approaches concerns the appropriate choice of a threshold
value to split the computed eigenvector in two reasonable parts.

In this paper, we investigate the application of a novel optimization tech-
nique, semidefinite programming (SDP), to the field of unsupervised partition-



Fig. 1. A color scene (left) and a gray-value scene comprising some natural textures
(right). How to partition such scenes into coherent groups in an unsupervised way based
on pairwise (dis)similarities between local measurements?

ing. Therefore, by using the graph representation, we derive a problem formu-
lation that yields a quadratic functional defined over binary decision variables
which has to be minimized subject to linear constraints. The combinatorial com-
plexity of this optimization task is then dealt with in two steps: Firstly, the de-
cision variables are lifted to a higher-dimensional space where the optimization
problem is relaxed to a convexr optimization problem [7]. Secondly, the decision
variables are recovered from the global optimum of the relaxed problem by using
a small set of randomly computed hyperplanes [8].

In contrast to related work [3,4], no specific assumptions are made with re-
spect to the functional form apart from a symmetry condition. As a consequence,
our approach can also be applied to other computer vision tasks like perceptual
grouping or image restoration [9]. Other favourable properties of the semidefinite
programming approach are:

— As the relaxed problem is convex, the global optimum can be computed.
— Interior-point algorithms [10] allow to find the optimum in polynomial time.
— No additional tuning parameters are necessary. This is a significant advan-

tage over alternative optimization approaches [11].

— In contrast to spectral relaxation, no choice of a threshold value is necessary.
In the following, we will apply the semidefinite relaxation approach to binary
partitioning problems, and compare the results to spectral relaxation methods.

2 Problem Statement: Binary Combinatorial
Optimization for Unsupervised Partitioning

Consider a graph G(V, E) with locally extracted image features as vertices V
and pairwise similarity values as edge-weights w : E C V xV — IR(J{ We
wish to compute a partition of the set V into two coherent groups V = SU S.
Representing such a partition by an indicator vector z € {—1,+1}", a measure
for the partition can be defined as the weight of the corresponding cut:

w$,%= 3 wi,j) =% S wi, ) (s — 25)° = ixTLx. (1)
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Here, L = D — W denotes the Laplacian matrix of the graph G, and D is the
diagonal matrix with the entries d(i,7) = >,y w(i, ). As the weight func-
tion w encodes a similarity measure between pairs of features, coherent groups
correspond to low values of w(S,S).

In order to avoid unbalanced partitions which are likely when just minimizing
w(S, S), a classical partitioning approach is to demand that both groups contain

the same number of vertices by adding the constraint ez = 0,e = (1,...,1)T,
hence arriving at the following combinatorial minimization problem:
inffr'Lr, e'z=0, z€&{-1,+1}". (2)
x

Since e is the eigenvector of the Laplacian matrix L with eigenvalue 0, a natural
relaxation of this problem is to drop the integer constraint and compute the
eigenvector corresponding to the second smallest eigenvalue of L (the so-called
“Fiedler vector”; see, e.g. [5]). An approximate solution for (2) is then derived
by thresholding this eigenvector. This raises the question for an appropriate
choice of the threshold value. Two natural approaches seem to be promising: To
threshold at 0 (because of the +1/—1-constraint on z) or at the median of the
eigenvector (to meet the balancing constraint e’z = 0). However, we will show
below that an unsupervised choice of the threshold value may fail completely.

In this paper, we focus on the semidefinite relaxation of (2), which directly
takes into account the integer constraint with respect to x;, ¢ = 1,...,n, instead
of just doing so by thresholding afterwards. We will show that this approach
compares favorably to the computation of the Fiedler vector both in theory
(Section 4) and in practice (Section 5).

Recently, Shi and Malik [2] suggested another successful approach, which is
similar to (2): They use a normalized objective function which finally results in
the following problem (normalized cut):

T
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where the number b is not known beforehand. Dropping the integer constraint
yields a relaxation of (3) which then can be solved by calculating the second
smallest eigenvalue of the normalized Laplacian matrix L = D~ 1/2LD~1/2, A
relation of this approach to the semidefinite relaxation approach can be derived
by replacing the vector e in (2) by the vector De. As the details of this relation
are not straightforward (due to the normalization of the objective function), they
are beyond the scope of this paper and will be reported elsewhere [12].

Note that the positivity of the edge-weights w is essential for both spectral
relaxation methods; however, the semidefinite relaxation described in the next
section only requires the matrix L in (2) to be symmetric, and thus can also be
applied in the case of non-positive edge-weigths!

3 Semidefinite Relaxation

To derive the semidefinite relaxation of (2), we first replace the linear and the
integer constraint, respectively, by quadratic ones: (e'2)? = 0 , 22 —1=0,i=



1,...,n. Denoting the Lagrangian multiplier variables with y;,7 = 0,...,n, the
corresponding Lagrangian of (2) yields the following relaxed problem formulation
of (2) after some standard transformations:
zg:=supe'y, L—yoee —D(y)€ St (4)
Y0,y

where D(y) denotes the diagonal matrix with the vector y on its diagonal, and
87 is the set of positive semidefinite matrices. As this set is a cone (i.e. a special
convex set), we arrive at a conver optimization problem. The relation to our
original problem can be seen by deriving the dual problem of (4):

z,,::Xig&L.X, ece' X =0,D(X)=1. (5)
Here L e X = Tr[L" X] denotes the standard matrix inner product, and D(X)
is the matrix X with the off-diagonal elements set to zero. Notice that problem
(5) again is convex!

If we rewrite the objective function of (2) as inf,z" Lz = inf, Le z2", we
immediately see the connection to the relaxed problem (5): The rank one matrix
zz | is replaced by an arbitrary matrix X € 87, whereas the constraints are just
lifted in the higher-dimensional space accordingly.

The elegant duality theory corresponding to the class of convex optimization
problems [10] guarantees under mild conditions that optimal primal and dual
solutions X*, (y§,y*) for (5) and (4) exist and that they yield no duality gap:
zp—zqa= Lo X*—ely* =0.

For the problems considered in this paper, the constraint ee” « X = ( requires
that the smallest eigenvalue of X is equal to 0, so that no strictly interior point
for the primal problem (5) exists. Due to this observation we decided to use
the dual-scaling algorithm from [13] for our experiments. This algorithm has the
advantage that it does not need to calculate an interior solution for the primal
problem during the iterations, but only for the dual problem.

To find a combinatorial solution zgs based on the solution matrix X* to the
convex optimization problem (5), we used the randomized-hyperplane technique
proposed in [8]. As this technique does not take into account the constraint
e’z = 0, the solution zs does not need to be feasible for (2), and the resulting
objective value zg = ngxS may be even smaller than the optimal value of
the semidefinite relaxion z;. Therefore, some modifications of the randomized-
hyperplane technique have been proposed in the literature [14, 15]. However, we
decided to stick to it as for the applications considered in this paper, it is not
mandatory to find a feasible solution: The constraint e 2 = 0 only serves as a
strong bias to guide the search to a solution that is balanced reasonably.

4 Comparison to Spectral Relaxation

Poljak and Rendl [16] proved the following relation of the semidefinite relaxation
(5) to an eigenvalue optimization problem:

24 = sup nAmin (V' (L+D@))V), e'v=0, (6)
vER™



Fig. 2. Point set clustering. The corresponding graph contains a vertex for each point,
and the edge weights are calculated from the Euclidian distances d(i, j) between all
points by w(i, j) = exp(—(4%2)?). Left: Input data with 160 points. Middle: Solution
computed with the Fiedler vector, thresholded at the median value: Spectral relaxation
fails! Right: Solution computed with SDP.

where V' € R ("1 contains an orthonormal basis of the complement el,
iie. Ve =0, V'V = I. An immediate consequence is the following lemma,
which shows the connection between the semidefinite relaxation and the compu-
tation of the Fiedler vector:

Lemma 1 The Fiedler vector yields a lower bound for (2) of nAmin(V'LV),
which is a weaker relazation than (6): nAmin(V ' LV) < 24.

It is easy to construct examples where spectral relaxation is too weak and
thus cannot compute a meaningful solution. In Figure 2, for example, the Fiedler
vector is not able to seperate the dense cluster from the background, despite the
fact that the balancing constraint is strictly enforced by the median threshold!
In contrast to that, our approach finds two groups of nearly the same size (78
and 82 points).

5 Experiments

The results of the semidefinite relaxation approach for various binary parti-
tioning problems are shown in Figures 3-5, and compared with segmentations
obtained with the Fiedler vector. For all experiments, the edge weights w(i, )
building the similarity matrix were computed from the distances d(i, j) between

the extracted image features ¢ and j as w(i,j) = exp(—@), where d(i, 5)
and o were chosen application dependent. We studied two different approaches:
(a) Compute w(i,j) for all feature pairs (Z, ;) directly.

(b) Compute w(i,j) only for neighboring features, and derive the other edge
weights by calculation of a path connecting them. This was done by chang-
ing the similarity weights to dissimilarities, computing shortest paths, and
transforming the weights back afterwards.

For a survey of numerous (dis)similarity measures, see [17].



Fig. 3. Grayscale image partitioning. Each pixel is taken as a graph vertex, and the
edge weigths are computed from the gray value differences d(7, j) of adjacent pixels
with method (b). Left: Input image (36 x 36 pixels) as part of a larger image. Middle:
Segmentation computed with SDP: The hand is clearly separated from the ball. Right:
Segmentation computed with the Fiedler vector: No clear separation is obtained by
median thresholding. Thresholding at 0 just separates one pixel from the rest of the
image.

The results approve the theoretical superiority of the semidefinite relaxation
approach: Whereas even a supervised choice of the threshold value for the Fiedler
vector does not necessarily yield satisfactory partitionings, the segmentations
obtained with SDP are always very reasonable.

6 Conclusion

The results presented in this paper show that the semidefinite relaxation ap-
proach is well suited to perform unsupervised binary partitioning for a wide
range of applications. It compares favorably both in theory and in practice to
the computation of the Fiedler vector. In our further work we will study which
other constraints are useful for unsupervised partitioning and could be incorpo-
rated into the semidefinite relaxation approach.
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Fig. 5. Grayscale-texture partitioning. The texture measure is derived by subdividing
the image into 24 x 24-pixel windows, and calculating local histograms for two texture
features within these windows. Each window corresponds to a graph vertex, and d(s, 5)
is computed as the x>-distance of the histograms using method (a). Top left: Input
image (720 x 456 pixels), yielding 570 vertices. Top right: Segmentation computed
with the Fiedler vector, using the threshold value 0. The median threshold does not
make sense here, as the image does not contain two parts of the same size. Bottom:
Segmentation computed with SDP: Considering the simplicity of this texture measure,
the segmentation result is excellent.
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