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Abstract. Variational methods are very popular for optic flow compu-
tation: They yield dense flow fields and perform well if they are adapted
such that they respect discontinuities in the image sequence or the flow
field. Unfortunately, this adaptation results in high computational com-
plexity. In our paper we show that it is possible to achieve real-time
performance for these methods if bidirectional multigrid strategies are
used. To this end, we study two prototypes: i) For the anisotropic image-
driven technique of Nagel and Enkelmann that results in a linear system
of equations we derive a regular full multigrid scheme. ii) For an isotropic
flow-driven approach with total variation (TV) regularisation that re-
quires to solve a nonlinear system of equations we develop a full multi-
grid strategy based on a full approximation scheme (FAS). Experiments
for sequences of size 160 x 120 demonstrate the excellent performance of
the proposed numerical schemes. With frame rates of 6 and 12 dense flow
fields per second, respectively, both implementations outperform corre-
sponding modified explicit schemes by two to three orders of magnitude.
As a consequence, real-time performance of these high quality methods
becomes possible for the first time.

Keywords: computer vision, optical flow, differential techniques, varia-
tional methods, multigrid methods, partial differential equations.

1 Introduction

In computer vision, the estimation of motion information from image sequences
is one of the key problems. Typically, one is thereby interested in finding the
displacement field between two consecutive frames, the so-called optic flow. In
this context, variational methods play a very important role, since they allow
for both a precise and dense estimation of the results. Variational techniques



are based on the minimisation of a suitable energy functional that consists of
two terms: A data term that imposes constancy on certain image features, e.g.
on the grey value, and a smoothness term that regularises the often non-unique
solution of the data term by an additional smoothness assumption.

Let us consider some image sequence f(x,y,t), where (x,y) denotes the lo-
cation within a rectangular image domain {2, and ¢t € [0, T] denotes time. Then,
the assumption of a constant grey value over time can be expressed in terms of
the optic flow constraint

feu+ fyv+ fr =0, (1)

where (u,v) " (x,y,t) is the displacement field we search for and subscripts de-
note partial derivatives. As classified in [27], there are basically three different
types of strategies to regularise the non-unique solution of this data term: Ho-
mogeneous regularisation that assumes overall smoothness and does not adapt
to semantically important image or flow structures [16], image-driven regularisa-
tion that assumes piecewise smoothness and respects discontinuities in the image
data [1,21] and flow-driven regularisation that assumes piecewise smoothness
and respects discontinuities in the flow field; see e.g. [9, 24, 27]. Moreover, when
considering image and flow-driven regularisation, one can distinguish between
isotropic and anisotropic smoothness terms. While isotropic regularisers do not
impose any smoothness at discontinuities, anisotropic ones permit smoothing
along the discontinuity but not across it.

Although recent developments [7,20] have shown that variational methods
are among the best techniques for computing the optic flow in terms of error
measures [3], they are often considered to be too slow for real-time applications.
In particular the computational costs for solving the resulting linear and nonlin-
ear system of equations by standard iterative solvers are regarded as too high. In
[8] we have already demonstrated for variational methods with homogeneous reg-
ularisation that bidirectional multigrid strategies [5,6,29] do allow for real-time
performance. These techniques, that create a sophisticated hierarchy of equation
systems, belong to the fastest numerical schemes for solving linear or nonlinear
systems of equations. In this paper we show that real-time performance is also
possible for variational techniques with image- or flow-driven regularisation. One
should note that in this case the development of suitable multigrid strategies is
much more difficult due to the anisotropy or nonlinearity of the underlying reg-
ularisation strategies. To the best of our knowledge our paper is the first one to
report real-time performance for such variational optic flow methods on standard
hardware.

Our paper is organised as follows. In Section 2 we give a short review on
two variational techniques that serve as prototypes for image- and flow-driven
regularisation. Section 3 shows how these problems can be discretised, while
efficient bidirectional multigrid schemes for solving the resulting linear and non-
linear systems of equations are proposed in Section 4. In Section 5 we present
an experimental evaluation that includes experiments with different real-world
sequences as well as performance benchmarks for both prototypes. A summary
in Section 6 concludes this paper.



Related Work. In the literature on variational optic flow methods, coarse-
to-fine strategies are quite common to speed up the computation. (see e.g. Anan-
dan [2], Luettgen et al. [19]). They are based on a successive refinement of the
problem whereby coarse grid solutions serve as initial guesses on finer grids. How-
ever, from a numerical viewpoint such unidirectional schemes are not the end of
the road. They are clearly outperformed by bidirectional multigrid methods that
revisit coarser levels in order to obtain useful correction steps. While there is at
least some literature on these highly efficient schemes for variational optic flow
techniques with homogeneous and image-driven regularisation (Glazer [15], Ter-
zopoulos [25], Enkelmann [12], Ghosal and Vanék [14]), only the work of Borzi et
al. [4] is known to the authors where nonlinear bidirectional multigrid schemes
(FAS) were used as solver for an optic flow problem that was motivated from
control theory. In the related field of image processing, there are two works that
are worth mentioning in the context of nonlinear problems: Vogel [26] proposed
the use of a linear multigrid method within a nonlinear fixed-point iteration
for the purpose of TV denoising, while, very recently, Frohn-Schnauf [13] et al.
investigated a nonlinear multigrid scheme (FAS) for the same task.

2 Prototypes for Variational Methods

2.1 The Method of Nagel and Enkelmann

As prototype for the class of optic flow methods with image-driven regularisa-
tion we consider the anisotropic technique of Nagel and Enkelmann[21]. Their
method accounts for the problem of discontinuities by smoothing only along a
projection of the flow gradient, namely its component orthogonal to the local
image gradient. As a consequence, flow fields are obtained that avoid smoothing
across discontinuities in the image data. The energy functional associated to this
anisotropic form of regularisation is given by

E(u,v)= /! 2 (( fou+ fyu+ f)2+ a(Vu D(V f)Vu + Vo D(V f)Vv)) dzdy, (2)

where V := (9z,0y) denotes the spatial gradient and D(V f) is a projection
matrix perpendicular to Vf that is defined as
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In this context € serves as regularisation parameter that prevents the matrix
D(Vf) from getting singular. Following the calculus of variations [11], the min-
imisation of this convex functional comes down to solving its Euler—Lagrange
equations that are given by

0= f2u+ fufyv+ fuft — aLxru, (4)
0= fafyu+ fov+ fyfe — aLlngy (5)



with the linear differential operator (linear in z)
Lypz(e,y) = div (D(Vf(z,y))V2(z,y)) (6)

and Neumann boundary conditions.

2.2 The TV-Based Regularisation Method

In contrast to image-driven regularisation methods, flow-driven techniques re-
duce smoothing where edges in the flow field occur during computation. Our
prototype for this class of variational optic flow techniques is an isotropic method
that penalises deviations from the smoothness assumption with the L; norm of
the flow gradient magnitude. This corresponds to total variation regularisation
[23] and can be related to statistically robust error norms [17]. Thereby large de-
viations are penalised less severely than in the frequently used quadratic setting
(Ly norm). As a consequence, large gradient features such as edges are better
preserved. The energy functional for this approach is given by

E(u,v) = /Q ((fzu + fyv+ ft)2 + a/|Vul? + | Vo2 + 62) dxdy, (7)

where € serves as small regularisation parameter. Related functionals that ap-
proximate TV regularisation are proposed in [28], while variational approaches
for rotational invariant TV regularisation have been researched in [9, 10, 18]. At
first glance, the corresponding Euler-Lagrange equations that are given by

0= fu+ fufyv+ fufe = 5 Lrv(u.v), (8)
0= fofyu+fiv+fufe = 5 Lov(v,u) (9)

have a very similar structure than those in (4)-(5). However,

Lrv(z(2,9), 2(x,y)) = div (D(Vz(z,y), VE(z,9)) Va(z,y)) (10)

is evidently a nonlinear differential operator in z and z, since

1 a b
D(Vz,V3) = I=: , 11
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where b = 0 and ¢ = a. As we will see later, this nonlinearity of the differential
operator £ has serious impact on the resulting discrete system of equations and
on the derived multigrid

3 Discretisation

3.1 General Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations
(4)-(5) and (8)-(9). To this end we consider the unknown functions u(z,y,t)



Table 1. Discretisations of averaging and differential operators.

One-sided averaging | MF™ (z;;) = ZELatZis
My (zi) i= 2o
One-sided differences | DE® (z;;) = :I:%JI_—ZU-
+,h — il =%,
Dy (z1) = b=t
Central differences Db (zi,5) = %
h i, —Zi j_
Dy (2;) = ==t
Squared differences | D™ (z1;) = (DI ™(z:9))" + 5 (Dz " (21,9))
2 _ 2
DyP (zi) =5 (Dy™(ziy))” + 5 (Dy " (2is))
Gradient magnitude |D2’h (z”)| = \/Di’h(zi’j) + D2 (zi5)

and v(z,y,t) on a rectangular pixel grid with cell size h = (hy, h,) ", and we
denote by qu the approximation to u at some pixel 7,7 with ¢ = 1,...,N, and
j = 1,...,N,. Spatial derivatives of the image data are approximated using a
fourth-order approximation with the stencil (1,-8,0,8,—1)/(12h), while tem-
poral derivatives are computed with a simple two-point stencil. In order to dis-
cretise the divergence expressions in the differential operators Lyg and Lty we
propose the following finite difference approximations:

0x (a(w,y) Ouz(,y)) ~ D" (M h(az DM zi)) (12)

(b(w,y) Oyz(z,y)) ~ DE bij Dy (i), (13)

0y (b(x,y) Ou2(w,y)) = Dy ( bij D (1)), (14)

(c(w,y) Oyz(w,y)) = Dy ™ (M (ciy) Dy P (21y)) (15)

where the coefficients a,b and ¢ are entries of the matrices D(V f) and D(Vu, Vo)

as shown in (3) and (11). Details on the required averaging and differential
operators within the approximations are given in Table 1.

3.2 The Method of Nagel and Enkelmann

We are now in the position to write down the discrete Euler-Lagrange equations
for the method of Nagel and Enkelmann. They are given by

h h h h h

O—fm 7J+f93173 vii ',j+fm,jftz‘,j — o L5 uiy, (16)
h h h

0= zz] yz,] 7,]+fyz] +f zjfti,j 7O[LNE13 0,5 (17)

for i = 1,..,N, and j = 1,.., Ny, where Liq, ; denotes the discrete version of
the hnear operator LNE at some plxel 1,j. These 2N, N, equations constitute a



linear system for the unknowns u ; and ’U . One should note that there are two
different types of coupling between the equatlons. The pointwise coupling be-
tween uz‘] and ’U{lj in the data term and the anisotropic neighbourhood coupling

h

via the operator LR, ;j in the smoothness term (for u;

h
+; and v;!; separately).

3.3 The TV-Based Regularisation Method

Analogously, we discretise the Euler Lagrange equations for the TV-based reg-
ularisation method. The obtained nonlinear system of equations then reads

2,h h h h ¢h QO p h . h h
O:fzi] ’Lj+fCEZ] RN i,j+fzi,jfti,j - §LTVi,j(ui,j’Ui,j)ui,j’ (18)
h h ¢h Q@ on h _h, h
0= [ if g uby+ fyag oiy + gty — 5 Liviguiy,viy) vy, (19)

fori =1,..,N; and j = 1,..,N,. Here, the finite difference approximation of
Loy (u, ) and Lrv(v,u) results 1n the product of a common nonlinear operator
LAy, (u 1‘], v;';) and the pixel uh» and ’U > respectively. Evidently, this consti-
tutes a third way of coupling.

4 Multigrid

4.1 Basic Concept

In general, the obtained linear and nonlinear systems of equations are solved by
using non-hierarchical iterative schemes; e.g. variants of the Jacobi or the Gauf3-
Seidel method [22,30]. However, such techniques are not suitable for equation
systems that are only coupled via a small local neighbourhood: It may take thou-
sands of iterations to transport local information between unknowns that are not
coupled directly. A Fourier analysis of the error confirms this observation: While
high frequency components (small wavelength, local impact) are attenuated ef-
ficiently, lower frequency components (large wavelength, global impact) remain
almost un-dampened. In order to overcome this problem multigrid methods are
based on a sophisticated strategy. They make use of correction steps that com-
pute the error (not a coarser version of the fine grid solution) on a coarser grid.
Thus, lower frequency components of the error reappear as higher ones and allow
for an efficient attenuation with standard iterative methods. In the following we
explain this strategy in detail for both the linear and the nonlinear case by the
example of a basic bidirectional two-grid cycle.

4.2 The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear equation system of the
method of Nagel and Enkelmann (16)-(17) as

Ah h fh (20)

Here 2" denotes for the concatenated vector ((u®) T, (v®)T) T, AM is a symmetric
positive definite matrix and fP stands for the right hand side.



I) Multigrid methods starts by performing several iterations with a basic iter-
ative solver. This is the so-called presmoothing relaxation step, where high
frequency components of the error are removed. If we denote the result after
these iterations by Z®, the error is given by

e =oh — gk, (21)

1) Evidently, one is interested in finding e® in order to correct the approximated
solution #®. Although e® cannot be computed directly, the linearity of A®
allows its computation via

Abelh — Ah(gh _ ghy = pgbgh _ pbgh — fh_ ghgh _ b (22)
where 7P is called residual. Since high frequencies of the error have already

been removed, we can speed up the computation by solving this equation
system at a coarser resolution with grid cell size H = (H,, H,) " :

Abeh — b AHH _  H (23)

One should note that at this point, a transfer of the original equation system
to a coarser grid makes no sense: Unlike the error, the solution very prob-
ably contains (desired) high frequency components. A restriction of these
components would severely deteriorate the approximative solution.

III) After we have solved the residual equation system on the coarse grid with
a method of our choice, we transfer the solution back to the fine grid and
correct our approximation by the computed error

b o=ah4eh (24)

IV) In general, the transfer of the computed correction from a coarse grid by
means of interpolation introduces some new high frequency components. To
this end, a so-called postsmoothing relaxation step is performed, where once
again some iteration of the basic iterative solvers are applied.

4.3 The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the nonlinear equation
system resulting from the TV-based regularisation method (18)-(19) as

AP (gh) = s (25)
where AP(z") is a nonlinear operator. The FAS strategy [5] works as follows:

I) We perform a presmoothing relaxation step with a nonlinear basic solver.

II) However, since A®(z®) is a nonlinear operator, the way of deriving a suit-
able coarse grid correction is significantly different from the linear case. The
(implicit) relation between the error and the residual is given by

AP(FP ) — AR(ER) = P - AREP) = b (26)



In order to compute the desired correction we transfer the following nonlinear
equation system to the coarse grid

AP(E® ) = P ARE) — AT 4 ) = B AR | (20)

Here, frames visualise the additional terms compared to the linear case.
IIT) After we have solved the nonlinear residual equation system on the coarse
grid, we subtract 2 from the solution in order to obtain ef!. Its transfer to
the fine grid then allows to perform the correction step.
IV) We perform a postsmoothing relaxation step with a nonlinear basic solver.

4.4 Advanced Multigrid Strategies

In order to increase the computational efficiency, the presented two-grid cycles
are generally applied in a hierarchical way. While V-cycles make one recursive
call of a two-grid cycle per level, faster converging W-cycles perform two. Nev-
ertheless, multiple of such advanced cycles are required to reach the desired
accuracy. Refining the original problem step by step (unidirectional coarse-to-
fine approach) and solving the resulting linear or nonlinear equation system at
each level by using some bidirectional V— or W—cycles, the multigrid strategy
with the best performance is obtained: full multigrid [6]. For both the linear and
nonlinear case we have developed such a full multigrid scheme. Let us now sketch
some implementation details.

4.5 Implementation Details

For the method of Nagel and Enkelmann we implemented a full multigrid scheme
with four W—cycles per level each one based on one pre- and one postsmoothing
iteration. In order to overcome the problematic anisotropic coupling we made
us of a GauB-Seidel method with alternating line relaxation (ALR) [29] as basic
solver. For our second prototype, the TV-based regularisation method, we de-
signed a FAS full multigrid scheme with two W—cycles per level each one based
on two pre- and two postsmoothing iterations. In this case we embedded a point
coupled GauB-Seidel method (CPR) [8] with frozen coefficients [13]. In order
to allow for a complete multigrid hierarchy we thereby considered the use of
non-dyadic intergrid transfer operators. As proposed in [8] they were realised by
constant interpolation and simple averaging. Coarser versions of the linear and
nonlinear operators were created by a discretisation coarse grid approximation
(DCA) approach [29].

5 Experiments

In our first experiment we compare the efficiency of different numerical schemes
for the discussed prototypes (Nagel and Enkelmann with o = 1000 and € = 1072,
TV-based regularisation method with o = 10 and € = 1072). Apart from our



Table 2. Performance benchmark on a standard desktop computer with 3.06 GHz
Pentium 4 CPU. Run times refer to the computation of a single flow field from the

160 x 120 dancing sequence.

(a) Linear : Image-driven anisotropic regularisation (Nagel-Enkelmann)

Solver Iterations | Time [s] | FPS [s~!] | Speedup
Mod. Explicit Scheme (7 = 0.1666) 36558 47.053 0.021 1
GauB-Seidel (ALR) 607 3.608 | 0.277 13
Full Multigrid 1 0.171 5.882 275
(b) Nonlinear : Flow-driven isotropic regularisation (TV)
Solver Iterations | Time [s] | FPS [s~] | Speedup
Mod. Explicit Scheme (7 = 0.0025) 10631 30.492 0.033 1
GauB-Seidel (CPR) 2679 6.911 0.145 4
FAS - Full Multigrid 1 0.082 12.172 372

full multigrid schemes we also implemented stand-alone versions of their basic
solver, namely the GauB-Seidel solvers with alternating line relaxation (ALR)
and the the Gauf-Seidel solver with coupled point relaxation (CPR). Moreover,
we considered a modified explicit scheme [28] that allows for larger time step
sizes 7 than ordinary explicit schemes (e.g. than gradient descent methods). For
our evaluation we used a 160 x 120 real-world image sequence, in which a person
dances in front of the camera. The iterations were stopped when the relative
erTor €y = ||Z — Ty ll2/]|7||2 dropped below 1072, where z denotes the correct
solution and Z,, stands for the computed result after n iterations/cycles.

Table 2 shows the excellent performance of the proposed numerical schemes.
In the linear case the presented full multigrid method outperforms the modi-
fied explicit scheme by two to three orders of magnitude. By allowing for the
computation of six dense flow fields per second, it is also one order of magni-
tude more efficient than its underlying basic solver. In the nonlinear case, the
obtained speedups are even better. The proposed FAS full multigrid mehtod
outperforms both the modified explicit scheme and the underlying basic solver
by two to three orders of magnitude. Thereby, frame rates of twelve dense flow
fields per second clearly show that also in this case real-time is well within our
computational reach.

In our second experiment we compare the quality of both methods to that of
a variational approach with homogeneous regularisation. To this end, we com-
puted flow fields for three different real-world sequences: for the previously used
Dancing Sequence (complex motion), the Waving Sequence (translations and
discontinuities) and the Rotating Thumb Sequence (rotation). Evidently, the de-
picted flow fields in Figure 1 are very realistic. However, one can see that image-
and flow-driven results are of much higher quality, since the underlying methods
allow for a preservation of motion boundaries and discontinuities. One can also
observe that the nonlinear flow-driven method is able to overcome the prob-
lem of oversegmentation that lies in the nature of image-driven techniques. This



Fig. 1. Left to right : dancing sequence, waving sequence, rotating thumb sequence. Top
to bottom : first frame, second frame, our CLG multigrid implementation from [8], our
Nagel-Enkelmann multigrid implementation, our T'V-based regularisation FAS multi-
grid implementation. Colour code: Colour encodes direction as shown on boundaries of
flow fields. Brightness encodes magnitude.



shows that a fast and accurate estimation of optic flow fields is not necessarily
contradictive. If state-of-the-art numerical schemes are used both is possible at
the same time.

6 Summary and Conclusions

In this paper we have demonstrated that real-time optic flow computation on
standard hardware is possible for variational optic flow techniques with both
image- and flow-driven regularisation. This was accomplished by using highly
efficient bidirectional full multigrid methods that solved the resulting linear and
nonlinear systems of equations at different scales. In a performance benchmark,
the proposed approaches outperformed frequently used non-hierarchical solvers
by two to three orders of magnitude. Moreover, a second benchmark explic-
itly showed the qualitative progress made in the field of real-time optic flow
computation. In our future work we plan to investigate different parallelisation
strategies for the proposed implementations. This would allow to process even
larger sequences in real-time.

Acknowledgements Our optic flow research is partly funded by the Deutsche
Forschungsgemeinschaft (DFG) under the project WE 2602/3-1. This is grate-
fully acknowledged.

References

1. L. Alvarez, J. Esclarin, M. Lefébure, and J. Sdnchez. A PDE model for computing
the optical flow. In Proc. XVI Congreso de Ecuaciones Diferenciales y Aplica-
ciones, pages 1349-1356, Las Palmas de Gran Canaria, Spain, Sept. 1999.

2. P. Anandan. A computational framework and an algorithm for the measurement
of visual motion. International Journal of Computer Vision, 2:283-310, 1989.

3. J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow
techniques. International Journal of Computer Vision, 12(1):43-77, Feb. 1994.

4. A. Borzi, K. Ito, and K. Kunisch. Optimal control formulation for determining
optical flow. SIAM Journal on Scientific Computing, 24(3):818-847, 2002.

5. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathemat-
ics of Computation, 31(138):333-390, Apr. 1977.

6. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM,
Philadelphia, second edition, 2000.

7. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optic flow esti-
mation based on a theory for warping. In T. Pajdla and J. Matas, editors, Computer
Vision — ECCV 2004, volume 3024 of Lecture Notes in Computer Science, pages
25-36. Springer, Berlin, 2004.

8. A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnérr. Variational
optical flow computation in real-time. IFEFE Transactions on Image Processing,
2005. to appear.

9. I. Cohen. Nonlinear variational method for optical flow computation. In
Proc. Eighth Scandinavian Conference on Image Analysis, volume 1, pages 523—
530, Tromsg, Norway, May 1993.



10

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

R. Deriche, P. Kornprobst, and G. Aubert. Optical-flow estimation while preserving
its discontinuities: a variational approach. In Proc. Second Asian Conference on
Computer Vision, volume 2, pages 290-295, Singapore, Dec. 1995.

L. E. Elsgolc. Calculus of Variations. Pergamon, Oxford, 1961.

W. Enkelmann. Investigation of multigrid algorithms for the estimation of optical
flow fields in image sequences. Computer Vision, Graphics and Image Processing,
43:150-177, 1987.

C. Frohn-Schnauf, S. Henn, and K. Witsch. Nonlinear multigrid methods for total
variation denosing. Computating and Visualization in Sciene, 2004. to appear.

S. Ghosal and P. C. Vanék. Scalable algorithm for discontinuous optical flow
estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(2):181-194, Feb. 1996.

F. Glazer. Multilevel relaxation in low-level computer vision. In A. Rosenfeld,
editor, Multiresolution Image Processing and Analysis, pages 312-330. Springer,
Berlin, 1984.

B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185—
203, 1981.

P. J. Huber. Robust Statistics. Wiley, New York, 1981.

A. Kumar, A. R. Tannenbaum, and G. J. Balas. Optic flow: a curve evolution
approach. IEEE Transactions on Image Processing, 5(4):598-610, Apr. 1996.

M. R. Luettgen, W. C. Karl, and A. S. Willsky. Efficient multiscale regularization
with applications to the computation of optical flow. IEEE Transactions on Image
Processing, 3(1):41-64, 1994.

E. Mémin and P. Pérez. A multigrid approach for hierarchical motion estimation. In
Proc. 6th International Conference on Computer Vision, pages 933-938, Bombay,
India, Jan. 1998.

H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8:565-593, 1986.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables, volume 30 of Classics in Applied Mathematics. SIAM, Philadel-
phia, 2000.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259-268, 1992.

C. Schnorr. Segmentation of visual motion by minimizing convex non-quadratic
functionals. In Proc. Twelfth International Conference on Pattern Recognition,
volume A, pages 661-663, Jerusalem, Israel, Oct. 1994. IEEE Computer Society
Press.

D. Terzopoulos. Image analysis using multigrid relaxation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(2):129-139, Mar. 1986.

C. R. Vogel. A multigrid method for total variation-based image denosing. Com-
putation and Control IV, 20:323-331, 1995.

J. Weickert and C. Schnérr. A theoretical framework for convex regularizers in
PDE-based computation of image motion. International Journal of Computer
Vision, 45(3):245-264, Dec. 2001.

J. Weickert and C. Schnérr. Variational optic flow computation with a spatio-
temporal smoothness constraint. Journal of Mathematical Imaging and Vision,
14(3):245-255, May 2001.

P. Wesseling. An Introduction to Multigrid Methods. Wiley, Chichester, 1992.

D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New
York, 1971.



