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Abstract. We introduce a smooth non-convex approach in a novel geo-
metric framework which complements established convex and non-convex
approaches to image labeling. The major underlying concept is a smooth
manifold of probabilistic assignments of a prespecified set of prior data
(the “labels”) to given image data. The Riemannian gradient flow with
respect to a corresponding objective function evolves on the manifold
and terminates, for any δ > 0, within a δ-neighborhood of an unique
assignment (labeling). As a consequence, unlike with convex outer re-
laxation approaches to (non-submodular) image labeling problems, no
post-processing step is needed for the rounding of fractional solutions.
Our approach is numerically implemented with sparse, highly-parallel
interior-point updates that efficiently converge, largely independent from
the number of labels. Experiments with noisy labeling and inpainting
problems demonstrate competitive performance.
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1 Introduction

Image labeling is the process of assigning a finite set of labels to given image
data and constitutes a key problem of low-level computer vision. This task is
typically formulated as Maximum A-Posterior (MAP) problem based on a dis-
crete Markov Random Field (MRF) model. We refer to [1] for a recent survey
and to [2] for a comprehensive evaluation of various inference methods. Because
the labeling problem is NP-hard (ignoring a subset of problems which can be
reformulated as a maximum-flow problem), problem relaxations are necessary
in order to compute efficiently approximate solutions. The prevailing convex ap-
proach is based on the linear programming relaxation [3] with the so-called local
polytope as feasible set [4]. A major obstacle to speeding up the convergence
rate is the inherent non-smoothness of the polyhedral relaxation, e.g. in terms
of a dual objective function after a problem decomposition into exactly solvable
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subproblems. Because the convex approach constitutes an outer relaxation, frac-
tional solutions are obtained in general, and a subsequent rounding step is needed
to obtain a unique label assignment. Non-convex relaxations are e.g. based on
the mean-field approach [4, Section 5]. They constitute inner relaxations of the
combinatorially complex feasible set (the so-called marginal polytope) and hence
do not require a post-processing step for rounding. However, as for non-convex
optimization problems in general, inference suffers from the local-minima prob-
lem, and auxiliary parameters introduced for alleviating this difficulty, e.g. by
deterministic annealing, can only be heuristically tuned. Variational methods in
connection with the labeling problem have been addressed before e.g [5, 6].

Contribution. We introduce a novel approach to the image labeling problem
based on a geometric formulation. Figure 1 illustrates the major components of
the approach and their interplay. Labeling denotes the tasks to assign prior fea-
tures, which elements of the prior set PF , to given features f in any metric space
(raw data just constitute a basic specific example). The mapping expW lifts the
distance matrix D to the assignment manifoldW. The assignment is determined
by solving a Riemannian gradient flow with respect to an appropriate objective
function J(W ), where W is called the assignment matrix, which evolves on the
assignment manifold. The latter key concept encompasses the set of all strictly
positive stochastic matrices equipped with a Fisher-Rao product metric. This
furnishes a proper geometry for computing local Riemannian, described by the
similarity matrix S(W ) of the likelihood matrix L(W ). This achieves spatially
coherent labelings and to suppress the influence of noise. The Riemannian met-
ric also determines the gradient flow and leads to efficient, sparse interior-point
updates that converge in few dozens of outer iterations. Even larger numbers
of labels do not significantly slow down the convergence rate. We show that
the local Riemannien means can be accurately approximated by closed-form
expressions which eliminates inner iterations and hence further speeds up the
numerical implementation. For any specified δ > 0, the iterates terminate within
a δ-neighborhood of unique assignments, which finally determines the labeling.

Our approach is non-convex and smooth. Regarding the non-convexity, no
parameter tuning is needed to escape from poor local minima: For any problem
instance, the flow is naturally initialized at the barycenter of the assignment
manifold, from which it smoothly evolves and terminates at a labeling.

Organization. We formally detail the components of our approach in Sec-
tions 2 and 3. The objective function and the optimization approach are de-
scribed in Sections 4 and 5. Few academical experiments are reported in Section
6 which illustrate properties of our approach and contrast it with the prevailing
convex relaxation approach.

Our main objective is to introduce and announce a novel approach to the im-
age labeling problem of computer vision. Elaboration of any specific application
is beyond the scope of this paper. Due to lack of space, we omitted all proofs
and refer the reader to the report [7] which also provides a more comprehensive
discussion of the literature.
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3.1.2. Distance Matrix. Given F , dF and PF , we compute the distance matrix

D 2 Rm⇥n, Di 2 Rn, Dij =
1

⇢
dF (fi, f

⇤
j ), ⇢ > 0, i 2 [m], j 2 [n], (3.6)

where ⇢ is the first (from two) user parameters to be set. This parameter serves two purposes. It
accounts for the unknown scale of the data f that depends on the application and hence cannot be
known beforehand. Furthermore, it’s value determines what subset of the prior features f⇤j , j 2 [n],
which effectively affects the process of determining the assignment matrix W . This will be explained
in detail in Section 3.1.3 in connection with the next processing stage that uses D as input. We call ⇢
selectivity parameter.

Furthermore, we set

W = W (0), Wi(0) :=
1

n
1n, i 2 [m]. (3.7)

That is, W is initialized with the uninformative uniform assignment that is not biased towards a solu-
tion in any way.

3.1.3. Likelihood Matrix. The next processing step is based on the following

Definition 3.1 (Lifting Map (Manifolds S, W)). The lifting mapping is defined by

exp: S ⇥ TpS ! S, (p, u) 7! expp(u) =
peu

hp, eui , (3.8a)

exp: W ⇥ TUS !W , (W, U) 7! expW (U) =

0
@

expW1
(U1)

. . .
expWm

(Um)

1
A , (3.8b)

where there argument decides which of these two mapping applies.

Remark 3.1. After replacing the arbitrary point p 2 S by the barycenter 1
n1n, readers will recog-

nize the softmax function in (3.8a), h 1n1n, eui�1
�

1
n1neu

�
= eu

h1,eui . This function is widely used in
various application fields of applied statistics (e.g. [SB99]), ranging from parametrizations of distri-
butions, e.g. for logistic classification [Bis06], to other problems of modelling [Luc59] not related to
our approach.

The lifting mapping generalizes the softmax function through the dependency on the base point p.
In addition, it approximates geodesics and accordingly the exponential mapping Exp, as stated next.
We therefore use the symbol exp as mnemomic. Unlike geodesics, the mapping expp is defined on
the entire tangent space, cf. Remark 2.1.

Proposition 3.1. Let
v =

�
Diag(p)� pp>

�
u, v 2 TpS. (3.9)

Then expp(ut) given by (2.7b) solves

ṗ(t) = p(t)u� hp(t), uip(t), p(0) = p (3.10)

and provides a first-order approximation of the geodesic �v(t) from (3.8a)

expp(ut) ⇡ p + vt, k�v(t)� expp(ut)k = O(t2). (3.11)

Proof. See Appendix B.2 ⇤

Figure 3.1 illustrates the approximation of geodesics �v and the exponential mapping Expp, respec-
tively, by the lifting mapping expp.
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Definition 2.3 (Assignment Manifold). The manifold of assignment matrices, called assignment man-
ifold, is the set

W = {W 2 Rm⇥n : Wi 2 S, i 2 [m]}. (2.11)

According to this product structure and based on (2.1), the Riemannian metric is given by

hU, V iW :=
X

i2[m]

hUi, ViiWi , U, V 2 TW W. (2.12)

Note that V 2 TW W means Vi 2 TWiS, i 2 [m].

Remark 2.2. We call stochastic matrices contained in W assignment matrices, due to their role in the
variational approach (Section 3).

3. VARIATIONAL APPROACH

We introduce in this section the basic components of the variational approach and the corresponding
optimization task. (XXX refer to a Figure (overview) in the introduction)

3.1. Basic Components.

3.1.1. Features, Distance Function, Assignment Task. Let

f : V ! F , i 7! fi, i 2 V = [m] (3.1)

denote any given data, either raw image data or features extracted from the data in a preprocessing
step. In any case, we call f feature. At this point, we do not make any assumption about the feature
space F except that a distance function

dF : F ⇥ F ! R (3.2)

is specified. We assume that a finite subset of F

PF := {f⇤j }j2[n] (3.3)

additionally is given, called prior set. We are interested in the assignment of the prior set to the data
in terms of an assignment matrix

W 2W ⇢ Rm⇥n, (3.4)

with the manifold W defined by (2.11). Thus, by definition, every row vector 0 < Wi 2 S is a discrete
distribution with full support supp(Wi) = [n]. The element

Wij = Pr(f⇤j |fi), i 2 [m], j 2 [n] (3.5)

quantifies the assignment of prior item f⇤j to the observed data point fi. We may think of this number
as the posterior probability that f⇤j generated the observation fi.

The assignment task asks for determining an optimal assignment W ⇤, considered as “explanation”
of the data based on the prior data PF . We discuss next the ingredients of the objective function that
will be used to solve assignment tasks.
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FIGURE 3.1. Illustration of Prop. 3.1. Various geodesics �vi(t), i 2 [k], t 2 [t, tmax]
(solid lines) emanating from p (red point) with the same speed kvik = kvjk, 8i, j,
are displayed together with the curves expp(u

it), i 2 [k], t 2 [t, tmax], where the
vectors ui, vi, i 2 [k] satisfy (3.9).

Remark 3.2. Note that adding any constant vector c1, c 2 R to a vector u does not change expp(u):
peu+c

hp,eu+c i = p(ec1)eu

hp,(ec1)eui = peu

hp,eui = expp(u). Accordingly, the same vector v is generated by (3.9).
While the definition (3.8a) removes this ambiguity, there is no need to remove the mean of the vector
u in numerical computations.

Given D and W as described in Section 3.1.2, we lift the vector field D to the manifold W by

L = L(W ) := expW (�U) 2W, Ui = Di � h1, Dii1, i 2 [m], (3.12)

with exp defined by (3.8b). We call L likelihood matrix because the row vectors are discrete proba-
bility distributions the separately represent the similarity of each observation fi to the prior data PF ,
as measured by the distance dF in (3.6).

Note that the operation (3.12) depends on the assignment matrix W 2W .

3.1.4. Similarity Matrix. Based on the likelihood matrix L, we define the similarity matrix

S = S(W ) 2W, Si = meanS{Lj}j2ÑE (i), i 2 [m], (3.13)

where each row is the Riemannian mean (2.10) (using uniform weights) of the likelihood vectors,
indexed by the neighborhoods as specified by the underying graph G = (V, E),

ÑE(i) = {i} [NE(i), NE(i) = {j 2 V : ij 2 E}. (3.14)

Note that S depends on W because L does so by (3.12). The size of the neighbourhoods |ÑE(i)|
is the second user parameter, besides the selectivity parameter ⇢ for scaling the distance matrix (3.6).
Typically, each ÑE(i) indexes the same local “window” around pixel location i. We then call the
window size |ÑE(i)| scale parameter.

Remark 3.3. In basic applications, the distance matrix D will not change anymore once the features
and the feature distance dF are determined. On the other hand, the likelihood matrix L(W ) and the
similarity matrix S(W ) have to be recomputed as the assignment W evolves, as part of any numerical
algorithm used to compute an optimal assignment W ⇤.

We point out, however, that more general scenarios are conceivable – without essentially changing
the overall approach – where D = D(W ) depends on the assignment as well and hence has to be
updated too, as part of the optimization process. Section 4.4 provides an example.
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by the convex combination of prior vectors assigned to it,

ui⇤ =
X

j2[n]

W ⇤
ijf
⇤j , i 2 [m]. (3.20)

And if W ⇤ approximates a global maximum W
⇤ as characterized by Lemma 3.2, then each fi is

(almost) uniquely replaced by some u⇤ki = f⇤ki .
A less trivial example is the case of prior information in terms of patches. We specify the mapping

u for this case and further concrete scenarios in Section 4.

3.2.3. Optimization Approach. The optimization task (3.16) does not admit a closed-form solution.
We therefore compute the assignment by the Riemannian gradient ascent flow on the manifold W ,

Ẇij =
�
rWJ(W )

�
ij

= Wij

⇣�
riJ(W )

�
j
�
⌦
Wi,riJ(W )

↵�
, Wi(0) =

1

n
1, j 2 [n], (3.21a)

with

riJ(W ) :=
@

@Wi
J(W ) =

⇣ @

@Wi1
J(W ), . . . ,

@

@Win
J(W )

⌘
, i 2 [m], (3.21b)

which results from applying Eq. (2.6) to the objective (3.16). The flows (3.21), for i 2 [m], are not
independent as the product structure of W (cf. Section 2.3) might suggest. Rather, they are coupled
through the gradient rJ(W ) which reflects the interaction of the distributions Wi, i 2 [m], due to
the geometric averaging which results in the similarity matrix (3.13).

Observe that, by (3.21a) and h1, Wii = 1,

h1, Ẇii = h1, WiriJ(W )i � hWi,rJi(W )ih1, Wii = 0, i 2 [m], (3.22)

that is rWJ(W ) 2 TW W , and thus the flow (3.21a) evolves on W . Let W (t) 2 W , t � 0 solve
(3.21a). Then, with the Riemannian metric (2.12),

d

dt
J
�
W (t)

�
=

⌦
rWJ

�
W (t)

�
, Ẇ (t)

↵
W (t)

(3.21a)
=

��rWJ
�
W (t)

���2

W (t)
� 0, (3.23)

that is, the objective function value increases until a stationary point is reached where the Riemannian
gradient vanishes. Clearly, we expect W (t) to approximate a global maximum due to Lemma 3.2,
which all satisfy the condition for stationary points W ,

0 = Ẇ i = W i

�
riJ(W )� hW i,riJ(W )i1

�
, i 2 [m], (3.24)

because replacing in (3.24) W i by W
⇤
i = eki for some ki 2 [n] makes the bracket vanish for the ki-th

equation, whereas all other equations indexed by j 6= ki, j 2 [n] are satisfied due to W
⇤
ij = 0.

Regarding interior stationary points W 2 W with W � 0 due to the definition of W , all brackets
on the r.h.s. of (3.24) must vanish, which can only happen if the Euclidean gradient satisfies

riJ(W ) = hW i,riJ(W )i1, i 2 [m] (3.25)

including the case rJ(W ) = 0. Inspecting the gradient of the objective function (3.16), we get

@

@Wij
J(W ) =

@

@Wij
hS(W ), W i =

X

k,l

@

@Wij

�
Skl(W )Wkl

�
(3.26a)

=
X

k,l

⇣ @

@Wij
Skl(W )

⌘
Wkl + Sij(W ) =: hT ij(W ), W i+ Sij(W ), (3.26b)
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ABSTRACT. What this paper is about ...

1. INTRODUCTION

Further points:

• Parametrization of the sphere by SO(n) ! better numerics?
• Affine-linear replicator equations and logarithmic ansatz (Ay2005): better numerics?

1.0.1. Formulas for Illustrations.

Ẇ = rWJ(W )

1
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peu+c

hp,eu+c i = p(ec1)eu

hp,(ec1)eui = peu

hp,eui = expp(u). Accordingly, the same vector v is generated by (3.9).
While the definition (3.8a) removes this ambiguity, there is no need to remove the mean of the vector
u in numerical computations.

Given D and W as described in Section 3.1.2, we lift the vector field D to the manifold W by

L = L(W ) := expW (�U) 2W, Ui = Di � h1, Dii1, i 2 [m], (3.12)

with exp defined by (3.8b). We call L likelihood matrix because the row vectors are discrete proba-
bility distributions the separately represent the similarity of each observation fi to the prior data PF ,
as measured by the distance dF in (3.6).

Note that the operation (3.12) depends on the assignment matrix W 2W .

3.1.4. Similarity Matrix. Based on the likelihood matrix L, we define the similarity matrix

S = S(W ) 2W, Si = meanS{Lj}j2ÑE (i), i 2 [m], (3.13)

where each row is the Riemannian mean (2.10) (using uniform weights) of the likelihood vectors,
indexed by the neighborhoods as specified by the underying graph G = (V, E),

ÑE(i) = {i} [NE(i), NE(i) = {j 2 V : ij 2 E}. (3.14)

Note that S depends on W because L does so by (3.12). The size of the neighbourhoods |ÑE(i)|
is the second user parameter, besides the selectivity parameter ⇢ for scaling the distance matrix (3.6).
Typically, each ÑE(i) indexes the same local “window” around pixel location i. We then call the
window size |ÑE(i)| scale parameter.

Remark 3.3. In basic applications, the distance matrix D will not change anymore once the features
and the feature distance dF are determined. On the other hand, the likelihood matrix L(W ) and the
similarity matrix S(W ) have to be recomputed as the assignment W evolves, as part of any numerical
algorithm used to compute an optimal assignment W ⇤.

We point out, however, that more general scenarios are conceivable – without essentially changing
the overall approach – where D = D(W ) depends on the assignment as well and hence has to be
updated too, as part of the optimization process. Section 4.4 provides an example.

feature space assignment manifold

gradient flow

distance matrix

data, features

prior data 
features

likelihood  
matrix

similarity  
matrix

geometric  
averaging

IMAGE LABELING BY ASSIGNMENT 9

FIGURE 3.1. Illustration of Prop. 3.1. Various geodesics �vi(t), i 2 [k], t 2 [t, tmax]
(solid lines) emanating from p (red point) with the same speed kvik = kvjk, 8i, j,
are displayed together with the curves expp(u

it), i 2 [k], t 2 [t, tmax], where the
vectors ui, vi, i 2 [k] satisfy (3.9).

Remark 3.2. Note that adding any constant vector c1, c 2 R to a vector u does not change expp(u):
peu+c

hp,eu+c i = p(ec1)eu

hp,(ec1)eui = peu

hp,eui = expp(u). Accordingly, the same vector v is generated by (3.9).
While the definition (3.8a) removes this ambiguity, there is no need to remove the mean of the vector
u in numerical computations.

Given D and W as described in Section 3.1.2, we lift the vector field D to the manifold W by

L = L(W ) := expW (�U) 2W, Ui = Di � h1, Dii1, i 2 [m], (3.12)

with exp defined by (3.8b). We call L likelihood matrix because the row vectors are discrete proba-
bility distributions the separately represent the similarity of each observation fi to the prior data PF ,
as measured by the distance dF in (3.6).

Note that the operation (3.12) depends on the assignment matrix W 2W .

3.1.4. Similarity Matrix. Based on the likelihood matrix L, we define the similarity matrix

S = S(W ) 2W, Si = meanS{Lj}j2ÑE (i), i 2 [m], (3.13)
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and the feature distance dF are determined. On the other hand, the likelihood matrix L(W ) and the
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We point out, however, that more general scenarios are conceivable – without essentially changing
the overall approach – where D = D(W ) depends on the assignment as well and hence has to be
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Fig. 1. Geometric labeling approach and its components. The feature space F with a
distance function dF , along with observed data and prior data to be assigned, constitute
the application specific part. A labeling of the data is determined by a Riemannian
gradient flow on the manifold of probabilistic assignments, which terminates at a unique
assignment, i.e. a labeling of the given data. Sections 2–5 detail all depicted components
of the approach and their interplay.

Basic Notation. We set [n] = {1, 2, . . . , n} and 1 = (1, 1, . . . , 1)>. 〈u, v〉 =∑
i∈[n] uivi denotes the Euclidean inner product and for matrices 〈A,B〉 :=

tr(A>B). For strictly positive vectors we often write pointwise operations more
efficiently in vector form. For example, for 0 < p ∈ Rn and u ∈ Rn, the expression
u√
p denotes the vector (u1/

√
p1, . . . , un/

√
pn)>.

2 The Assignment Manifold

In this section, we define the feasible set for representing and computating image
labelings in terms of assignment matrices W ∈ W, the assignment manifold W.
The basic building block is the open probability simplex S equipped with the
Fisher-Rao metric. We refer to [8] and [9] for background reading.

2.1 Geometry of the Probability Simplex

The relative interior S = ∆̊n−1 of the probability simplex∆n−1 = {p ∈ Rn
+ : 〈1, p〉 =

1} becomes a differentiable Riemannian manifold when endowed with the Fisher-
Rao metric, which in this particular case reads

〈u, v〉p :=
〈 u√

p
,
v√
p

〉
, ∀u, v ∈ TpS, TpS = {v ∈ Rn : 〈1, v〉 = 0}, p ∈ S, (1)

with tangent spaces denotes by TpS. The Riemannian gradient ∇Sf(p) ∈ TpS
of a smooth function f : S → R at p ∈ S is the tangent vector given by

∇Sf(p) = p
(
∇f(p)− 〈p,∇f(p)〉1

)
. (2)

We also regard the scaled sphere N = 2Sn−1 as manifold with Riemannian
metric induced by the Euclidean inner product of Rn. The following diffeomor-
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phism ψ between S and the open subset ψ(S) ⊂ N , henceforth called sphere-
map, was suggested e.g. by [10, Section 2.1] and [8, Section 2.5]

ψ : S → N , p 7→ s = ψ(p) := 2
√
p. (3)

The sphere-map enables to compute the geometry of S from the geometry of
the 2-sphere. The sphere-map ψ (3) is an isometry, i.e. the Riemannian metric is
preserved. Consequently, lenghts of tangent vectors and curves are preserved as
well. In particular, geodesics as critical points of length functionals are mapped
by ψ to geodesics. We denote by

dS(p, q) and γv(t), (4)

respectively, the Riemannian distance on S between two points p, q ∈ S, and
the geodesic on S emanating from p = γv(0) in the direction v = γ̇v(0) ∈ TpS.
The exponential mapping for S is denoted by

Expp : Vp → S, v 7→ Expp(v) = γv(1), Vp = {v ∈ TpS : γv(t) ∈ S, t ∈ [0, 1]}.
(5)

The Riemannian mean meanS(P) of a set of points P = {pi}i∈[N ] ⊂ S with
corresponding weights w ∈ ∆N−1 minimizes the objective function

meanS(P) = arg min
p∈S

1

2

∑

i∈[N ]

wid
2
S(p, pi). (6)

We use uniform weights w = 1
N 1N in this paper. The following fact is not

obvious due to the non-negative curvature of the manifold S. It follows from [11,
Thm. 1.2] and the radius of the geodesic ball containing ψ(S) ⊂ N .

Lemma 1. The Riemannian mean (6) is unique for any data P = {pi}i∈[n] ⊂ S
and weights w ∈ ∆n−1.

We call the computation of Riemannian means geometric averaging (cf. Fig. 1).

2.2 Assignment Matrices and Manifold

A natural question is how to extend the geometry of S to the stochastic assign-
ment matrices W ∈ Rm×n, with rows Wi ∈ S, i ∈ [m] consisting of discrete
probability distributions where m is the number of features and n is the number
of labels, so as to preserve the information-theoretic properties induced by this
metric (that we do not discuss here – cf. [12, 8]).

This problem was recently studied by [13]. The authors suggested three nat-
ural definitions of manifolds. It turned out that all of them are slight variations
of taking the product of S, differing only by the scaling of the resulting product
metric. As a consequence, we make the following

Definition 1 (Assignment Manifold). The manifold of assignment matrices,
called assignment manifold, is the set

W = {W ∈ Rm×n : Wi ∈ S, i ∈ [m]}. (7)
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According to this product structure and based on (1), the Riemannian metric is
given by

〈U, V 〉W :=
∑

i∈[m]

〈Ui, Vi〉Wi
, U, V ∈ TWW. (8)

Note that V ∈ TWW means Vi ∈ TWi
S, i ∈ [m].

Remark 1. We call stochastic matrices contained inW assignment matrices, due
to their role in the variational approach described next.

3 Features, Distance Function, Assignment

We refer the reader to Figure 1 for an overview of the following definitions. Let
f : V → F , i 7→ fi and i ∈ V = [m] denote any given data, either raw image data
or features extracted from the data in a preprocessing step. In any case, we call
f feature. At this point, we do not make any assumption about the feature space
F except that a distance function dF : F ×F → R, is specified. We assume that
a finite subset of F

PF := {f∗j }j∈[n], (9)

additionally is given, called prior set. We are interested in the assignment of the
prior set to the data in terms of an assignment matrix W ∈ W ⊂ Rm×n, with
the manifoldW defined by (7). Thus, by definition, every row vector 0 < Wi ∈ S
is a discrete distribution with full support supp(Wi) = [n]. The element

Wij = Pr(f∗j |fi), i ∈ [m], j ∈ [n], (10)

quantifies the assignment of prior item f∗j to the observed data point fi. We
may think of this number as the posterior probability that f∗j generated the
observation fi.

The assignment task asks for determining an optimal assignment W ∗, con-
sidered as “explanation” of the data based on the prior data PF . We discuss next
the ingredients of the objective function that will be used to solve assignment
tasks (see also Figure 1).

Distance Matrix. Given F , dF and PF , we compute the distance matrix

D ∈ Rm×n, Di ∈ Rn, Dij =
1

ρ
dF (fi, f

∗
j ), ρ > 0, i ∈ [m], j ∈ [n], (11)

where ρ is the first (from two) user parameters to be set. This parameter serves
two purposes. It accounts for the unknown scale of the data f that depends on
the application and hence cannot be known beforehand. Furthermore, its value
determines what subset of the prior features f∗j , j ∈ [n] effectively affects the
process of determining the assignment matrix W . We call ρ selectivity parameter.

Furthermore, we set

W = W (0), Wi(0) :=
1

n
1n, i ∈ [m]. (12)
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That is, W is initialized with the uninformative uniform assignment that is not
biased towards a solution in any way.

Likelihood Matrix. The next processing step is based on the following

Definition 2 (Lifting Map (Manifolds S,W)). The lifting mapping is de-
fined by

exp: TS → S, (p, u) 7→ expp(u) =
peu

〈p, eu〉 , (13a)

exp: TW →W, (W,U) 7→ expW (U) =




expW1
(U1)

. . .
expWm

(Um)


 , (13b)

where Ui,Wi, i ∈ [m] index the row vectors of the matrices U,W , and where the
argument decides which of the two mappings exp applies.

Remark 2. The lifting mapping generalizes the well-known softmax function
through the dependency on the base point p. In addition, it approximates geodesics
and accordingly the exponential mapping Exp, as stated next. We therefore use
the symbol exp as mnemomic. Unlike Expp in (5), the mapping expp is defined
on the entire tangent space, which is convenient for numerical computations.

Proposition 1. Let

v =
(

Diag(p)− pp>
)
u, v ∈ TpS. (14)

Then expp(ut) given by (13a) solves

ṗ(t) = p(t)u− 〈p(t), u〉p(t), p(0) = p, (15)

and provides a first-order approximation of the geodesic γv(t) from (4), (5).

expp(ut) ≈ p+ vt, ‖γv(t)− expp(ut)‖ = O(t2). (16)

Given D and W , we lift the vector field D to the manifold W by

L = L(W ) := expW (−U) ∈ W, Ui = Di −
1

n
〈1, Di〉1, i ∈ [m], (17)

with expW defined by (13b). We call L likelihood matrix because the row vectors
are discrete probability distributions which separately represent the similarity
of each observation fi to the prior data PF , as measured by the distance dF in
(11). Note that the operation (17) depends on the assignment matrix W ∈ W.

Similarity Matrix. Based on the likelihood matrix L, we define the simi-
larity matrix

S = S(W ) ∈ W, Si = meanS{Lj}j∈ÑE(i)
, i ∈ [m], (18)

where each row is the Riemannian mean (6) of the likelihood vectors, indexed
by the neighborhoods as specified by the underying graph G = (V, E), such that
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the local neighborhood ÑE(i) = {i} ∪ NE(i) with NE(i) = {j ∈ V : ij ∈ E} is
augmented by the center pixel. Note that S depends on W because L does so
by (17). The size of the neighbourhoods |ÑE(i)| is the second user parameter,
besides the selectivity parameter ρ for scaling the distance matrix (11). Typically,
each ÑE(i) indexes the same local “window” around pixel location i. We then
call the window size |ÑE(i)| scale parameter. In basic applications, the distance
matrix D will not change once the features and the feature distance dF are
determined. On the other hand, the likelihood matrix L(W ) and the similarity
matrix S(W ) have to be recomputed as the assignment W evolves, as part of
any numerical algorithm used to compute an optimal assignment W ∗. We point
out, however, that more general scenarios are conceivable – without essentially
changing the overall approach – where D = D(W ) depends on the assignment
as well and hence has to be updated too, as part of the optimization process.

4 Objective Function, Optimization

We specify next the objective function as criterion for assignments and the gra-
dient flow on the assignment manifold, to compute an optimal assignment W ∗.
Finally, based on W ∗, the so-called assignment mapping is defined.

Objective Function Getting back to the interpretation from Section 3 of the
assignment matrix W ∈ W as posterior probabilities,

Wij = Pr(f∗j |fi), (19)

of assigning prior feature f∗j to the observed feature fi, a natural objective func-
tion to be maximized is

max
W∈W

J(W ), J(W ) := 〈S(W ),W 〉. (20)

The functional J together with the feasible set W formalizes the following ob-
jectives:

1. Assignments W should maximally correlate with the feature-induced sim-
ilarities S = S(W ), as measured by the inner product which defines the
objective function J(W ).

2. Assignments of prior data to observations should be done in a spatially coher-
ent way. This is accomplished by geometric averaging of likelihood vectors
over local spatial neighborhoods, which turns the likelihood matrix L(W )
into the similarity matrix S(W ), depending on W .

3. Maximizers W ∗ should define image labelings in terms of rows W
∗
i = eki ∈

{0, 1}n, i, ki ∈ [m], that are indicator vectors. While the latter matrices are
not contained in the assignment manifoldW, which we notationally indicate
by the overbar, we compute in practice assignments W ∗ ≈ W

∗
arbitrarily

close to such points. It will turn out below that the geometry enforces this
approximation.
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As a consequence of 3. and in view of (19), such points W ∗ maximize posterior
probabilities akin to the interpretation of MAP-inference with discrete graphi-
cal models by minimizing corresponding energy functionals. The mathematical
structure of the optimization task of our approach, however, and the way of fus-
ing data and prior information, are quite different. The following Lemma states
point 3. above more precisely.

Lemma 2. Let W denote the closure of W. We have

sup
W∈W

J(W ) = m, (21)

and the supremum is attained at the extreme points

W∗ :=
{
W
∗ ∈ {0, 1}m×n : W

∗
i = eki , i ∈ [m], k1, . . . , km ∈ [n]

}
⊂ W, (22)

corresponding to matrices with unit vectors as row vectors.

Assignment Mapping. Regarding the feature space F , no assumptions
were made so far, except for specifying a distance function dF . We have to be
more specific about F only if we wish to synthesize the approximation to the
given data f , in terms of an assignment W ∗ that optimizes (20) and the prior
data PF . We denote the corresponding approximation by

u : W → F |V|, W 7→ u(W ), u∗ := u(W ∗), (23)

and call it assignment mapping.
A simple example of such a mapping concerns cases where prototypical fea-

ture vectors f∗j , j ∈ [n] are assigned to data vectors f i, i ∈ [m]: the mapping
u(W ∗) then simply replaces each data vector by the convex combination of prior
vectors assigned to it,

u∗i =
∑

j∈[n]
W ∗ijf

∗j , i ∈ [m]. (24)

And if W ∗ approximates a global maximum W
∗

as characterized by Lemma 2,
then each fi is uniquely replaced (“labelled”) by some u∗ki = f∗ki .

Optimization Approach. The optimization task (20) does not admit a
closed-form solution. We therefore compute the assignment by the Riemannian
gradient ascent flow on the manifold W,

Ẇij =
(
∇WJ(W )

)
ij

= Wij

((
∇iJ(W )

)
j
−
〈
Wi,∇iJ(W )

〉)
, j ∈ [n], (25a)

using the initialization (12) with

∇iJ(W ) :=
∂

∂Wi
J(W ) =

( ∂

∂Wi1
J(W ), . . . ,

∂

∂Win
J(W )

)
, i ∈ [m], (25b)

which results from applying (2) to the objective (20). The flows (25), for i ∈
[m], are not independent as the product structure of W (cf. Section 2.2) might
suggest. Rather, they are coupled through the gradient ∇J(W ) which reflects
the interaction of the distributions Wi, i ∈ [m], due to the geometric averaging
which results in the similarity matrix (18).
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5 Algorithm, Implementation

We discuss in this section specific aspects of the implementation of the variational
approach.

Assignment Normalization. Because each vector Wi approaches some
vertex W

∗ ∈ W∗ by construction, and because the numerical computations
are designed to evolve on W, we avoid numerical issues by checking for each
i ∈ [m] every entry Wij , j ∈ [n], after each iteration of the algorithm (30) below.
Whenever an entry drops below η = 10−10, we rectify Wi by

Wi ← 1

〈1, W̃i〉
W̃i, W̃i = Wi − min

j∈[n]
Wij + η, η = 10−10. (26)

In other words, the number η plays the role of 0 in our impementation. Our
numerical experiments show that this operation removes any numerical issues
without affecting convergence in terms of the termination criterion specified at
the end of this section.

Computing Riemannian Means. Computation of the similarity matrix
S(W ) due to Eq. (18) involves the computation of Riemannian means. Although
a corresponding fixed-point iteration (that we omit here) converges quickly, car-
rying out such iterations as a subroutine, at each pixel and iterative step of the
outer iteration (30) below, increases runtime (of non-parallel implementations)
noticeably. In view of the approximation of the exponential map Expp(v) = γv(1)
by (16), it is natural to approximate the Riemannian mean as well.

Lemma 3. Replacing in the optimality condition of the Riemannian mean (6)
(see, e.g. [9, Lemma 4.8.4]) the inverse exponential mapping Exp−1p by the in-
verse exp−1p of the lifting map (13a), yields the closed-form expression

meang(P)

〈1,meang(P)〉 , meang(P) :=
( ∏

i∈[N ]

pi
) 1

N

(27)

as approximation of the Riemannian mean meanS(P), with the geometric mean
meang(P) applied componentwise to the vectors in P.

Optimization Algorithm. A thorough analysis of various discrete schemes
for numerically integrating the gradient flow (25), including stability estimates,
is beyond the scope of this paper. Here, we merely adopt the following basic
strategy from [14], that has been widely applied in the literature (in different
contexts) and performed remarkably well in our experiments. Approximating the

flow (25) for each vector Wi, i ∈ [m], and W
(k)
i := Wi(t

(k)
i ), by the time-discrete

scheme

W
(k+1)
i −W (k)

i

t
(k+1)
i − t(k)i

= W
(k)
i

(
∇iJ(W (k))− 〈W (k)

i ,∇iJ(W (k))〉1
)
, (28)
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and choosing the adaptive step-sizes t
(k+1)
i − t(k)i = 1

〈W (k)
i ,∇iJ(W (k))〉

, yields the

multiplicative updates

W
(k+1)
i =

W
(k)
i

(
∇iJ(W (k))

)

〈W (k)
i ,∇iJ(W (k))〉

, i ∈ [m]. (29)

We further simplify this update in view of the explicit expression of the gradient
of the objective function with components ∂WijJ(W ) = 〈T ij(W ),W 〉+ Sij(W ),
that comprise two terms. The first one in terms of a matrix T ij (that we do
not further specify here) contributes the derivative of S(W ) with respect to
Wi, which is significantly smaller than the second term Sij(W ), because Si(W )
results from averaging (18) the likelihood vectors Lj(Wj) over spatial neighbor-
hoods and hence changes slowly, consequently, we simply drop this first term.

Thus, for computing the numerical results reported in this paper, we used
the fixed-point iteration

W
(k+1)
i =

W
(k)
i

(
Si(W

(k))
)

〈W (k)
i , Si(W (k))〉

, W
(0)
i =

1

n
1, i ∈ [m] (30)

together with the approximation due to Lemma 3 for computing Riemannian
means, which define by (18) the similarity matrices S(W (k)). Note that this
requires to recompute the likelihood matrices (17) as well, at each iteration k.

Termination Criterion. Algorithm (30) was terminated if the average en-
tropy

− 1

m

∑

i∈[m]

∑

j∈[n]
W

(k)
ij logW

(k)
ij (31)

dropped below a threshold. For example, a threshold value 10−4 means in prac-
tice that, up to a tiny fraction of indices i ⊂ [m] that should not matter for a
subsequent further analysis, all vectors Wi are very close to unit vectors, thus
indicating an almost unique assignment of prior items f∗j , j ∈ [n] to the data
fi, i ∈ [m]. This termination criterion was adopted for all experiments.

6 Experiments

In this section, we show results on empirical convergence rate and the influence
of the fix-point iteration (30). Additionally, we show results on a multi-class
labeling problem of inpainting by labeling.

6.1 Parameters, Empirical Convergence Rate

The color images in Figure 2 comprise of 31 color vectors forming the prior data
set PF = {f1∗, . . . , f31∗} and are used to illustrate the labeling problem. The la-
beling task is to assign these vectors in a spatially coherent way to the input data
so as to recover the ground truth image. Every color vector was encoded by the
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(a) Ground truth
image.

(b) Noisy input im-
age.

|NE | = 3× 3 |NE | = 5× 5 |NE | = 7× 7

ρ
=

0
.0

1
(c) (d) (e)

ρ
=

0
.1

(f) (g) (h)

ρ
=

1
.0

(i) (j) (k)

Fig. 2. Parameter influence on labeling. Panels (a) and (b) show a ground-truth
image and noisy input data. Panels (c)-(k) show the assignments u(W ∗) for various pa-
rameter values where W ∗ maximizes the objective function (20). The spatial scale |NE |
increases from left to right. The results illustrate the compromise between sensitivity
to noise and to the geometry of signal transitions.

vertices of the simplex ∆30, that is by the unit vectors {e1, . . . , e31} ⊂ {0, 1}31.
Choosing the distance dF (f i, f j) := ‖f i − f j‖1, this results in unit distances
between all pairs of data points and hence enables to assess most clearly the
impact of geometric spatial averaging and the influence of the two parameters ρ
and |Nε|, introduced in Section 3. All results were computed using the assign-
ment mapping (24) without rounding. This shows that the termination criterion
of Section 5, illustrated by Figure 3 leads to (almost) unique assignments.

In Figure 2, the selectivity parameter ρ increases from top to bottom. If ρ
is chosen too small, then there is a tendency to noise-induced oversegmenta-
tion, in particular at small spatial scales |NE |. The reader familiar with total
variation based denoising [15], where a single parameter is only used to control
the influence of regularization, may ask why two parameters are used in the
present approach and if they are necessary. Note, however, that depending on
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Fig. 3. Parameter values and convergence rate. Average entropy of the assign-
ment vectors W

(k)
i as a function of the iteration counter k and the two parameters

ρ and |Nε|, for the labeling task illustrated by Figure 2. The left panel shows that
despite high selectivity in terms of a small value of ρ, small spatial scales necessitate
to resolve more conflicting assignments through propagating information by geometric
spatial averaging. As a consequence, more iterations are needed to achieve convergence
and a labeling. The right panel, shows that at a fixed spatial scale |Nε| higher selectiv-
ity leads to faster convergence, because outliers are simply removed from the averaging
process, low selectivity leads to an assignment (labeling) taking all data into account.

the application, the ability to separate the physical and the spatial scale in order
to recognize outliers with small spatial support, while performing diffusion at a
larger spatial scale as in panels (c),(d),(f),(i), may be beneficial. We point out
that this separation of the physical and spatial scales (image range vs. image
domain) is not possible with total variation based regularization where these
scales are coupled through the co-area formula. As a consequence, a single pa-
rameter is only needed in total variation. On the other hand, larger values of the
total variation regularization parameter lead to the well-known loss-of-contrast
effect, which in the present approach can be avoided by properly choosing the
parameters ρ, |Nε| corresponding to these two scales.

6.2 Inpainting by Labeling

Inpainting represents the problem of filling in a known region with the missing
data. We set the feature metric as in the previous example, but with the differ-
ence of defining the distance between the unknown feature vectors to priors to
be large, i.e, we do not bias the final assignment to any of the prior features.

Note that our geometrical approach is significantly different from traditional
graphical models where unitary and pair-wise terms are used for labeling. There-
fore, the evaluation of an objective function’s “energy”, as done in [2], is not an
applicable criteria. We instead report the more objective ratio of correctly as-
signed labels. Terminology and abbreviations are adopted from [2] and all com-
peting methods were evaluated using OpenGM 2 [16]. The methods we include
in this study are TRWS, a polyhedral method stemming from linear program-
ming and block-coordinate-ascent [17]. The popular message passing algorithms
BPS (sequential) and LBP (parallel) of loopy belief propagation [18]. We also
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Original Input TRWS 0.78 LBP 0.95 Geometric 0.99

Fig. 4. Synthetic inpainting example. Here TRWS (truncated linear) shows the worst
performance with only 78% correctly assigned labels. The values show ratio of correctly
assigned labels and higher is better. LBP performs better than TRWS, but does not
produce an interception of 120◦ in the circle’s center. The update scheme of our geo-
metric filter was terminated at entropy 10−4, with a neighborhood 3×3 and selectivity
parameter ρ = 0.1 and produces the most accurate labeling.

include iterative refinement by partitioning the label space via the α-β-SWAP
algorithm and the α expansion algorithm α-Exp algorithms, see [19, 20]. For
reference, we include the fast primal-dual algorithm FastPD [21]. We refer to
the respective works for additional details.

Synthetic example. In the synthetic example in Figure 4, we show the
region to be inpainted in black color. This is a labeling problem consisting of
3 uniformly distributed color vectors and 1 label representing the background
(white). From the result images in the same figure, it is clear that LBP per-
forms better than TRWS. However, in LBP there are discretization artifacts
and the intersection point is not center symmetric as for our Geometric ap-
proach. A center symmetric intersection of the geometric filter is natural due to
the filters isotropic interaction with the neighborhood and lack of prior assump-
tions. Although, our approach still shows few artifacts on the diagonal borders,
computing the ratio of correctly assigned labels, we achieve near perfect recon-
struction, 99%, of the missing data with 120◦ intersection at the circle center.

Inpainting. In this second inpainting problem, where each variable can at-
tain 256 labels, is more challenging for established graphical models with respect
to numerical implementation. Measured in energy of objective function TRWS
obtained the lowest energy value in the evaluation of [2]. However, as inpainting
results, TRWS, SWAP and BPS all show poor performance as much of the
image details are not represented by the labeling. In our geometric approach, the
labeling retains more image details. In Figure 6 we show the ratio of correctly
assigned labels for the penguin (size 122 × 179 pixels) in Figure 5. We again
refer to [2] for details on the methods implementations. All methods shows sim-
ilar accuracy in labeling, and our geometric filter is only challenged by TRWS
for label distances smaller than 6 from the original image. Considering label
distances larger than 6, our approach shows the best ratio. We further remark
that our framework is computationally efficient as it only require few dozens of
massively parallel outer iterations. Our non-optimized Matlab implementation
reaches the termination criteria (δ = 10−4) after 194 iterations in 2 min and 59
seconds on an Intel i5 CPU at 3.5 GHz.
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Original Input TRWS SWAP BPS Geometric

Fig. 5. Recovery of missing and noisy data. This example is from the mrf-inpainting
dataset in [2]. The selectivity parameter was set to ρ = 1 and the neighborhood size
was 3× 3. The ratio of correctly assigned labels are shown in figure 6. It is evident our
geometric filter adopts better to the underlying image data, while producing a plausible
labeling of the inpainting area.
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Fig. 6. Ratio of correctly assigned labels for the penguin in figure 5 is displayed on
the y-axis and the number of labels from the original image are iterated on the x-axis.
For label distances 1-6 inference with TRWS shows better agreement with the original
image labeling. However, considering larger label distances, our geometric filter shows
the most accurate ratio. (TL stands for truncated linear functions and we refer to [2]
and respective works for additional details.)

7 Conclusion

We presented a novel approach to image labeling, formulated in a smooth geo-
metric setting. The approach contrasts with etablished convex and non-convex
relaxations of the image labeling problem through smoothness and geometric
averaging. The numerics boil down to parallel sparse updates, that maximize
the objective along an interior path in the feasible set of assignments and finally
return a labeling. Although an elementary first-order approximation of the gra-
dient flow was only used, the convergence rate seems competitive. In particular,
a large number of labels does not slow down convergence as is the case of convex
relaxations. All aspects specific to an application domain are represented by a
distance matrix D and a user parameter ρ. This flexibility and the absence of ad-
hoc tuning parameters should promote applications of the approach to various
image labeling problems.
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(March, 16, 2016) preprint: http://arxiv.org/abs/1603.05285.

8. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Amer. Math. Soc.
and Oxford Univ. Press (2000)

9. Jost, J.: Riemannian Geometry and Geometric Analysis. 4th edn. Springer (2005)
10. Kass, R.: The Geometry of Asymptotic Inference. Statist. Sci. 4(3) (1989) 188–234
11. Karcher, H.: Riemannian Center of Mass and Mollifier Smoothing. Comm. Pure

Appl. Math. 30 (1977) 509–541
12. C̆encov, N.: Statistical Decision Rules and Optimal Inference. Amer. Math.Soc.

(1982)
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