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Abstract Camera motion estimation from observed scene
features is an important task in image processing to increase
the accuracy of many methods, e.g., optical flow and
structure-from-motion. Due to the curved geometry of the
state space SE3 and the nonlinear relation to the observed
optical flow,many recent filtering approaches use afirst-order
approximation and assume a Gaussian a posteriori distribu-
tion or restrict the state to Euclidean geometry. The physical
model is usually also limited to uniformmotions.We propose
a second-order optimal minimum energy filter that copes
with the full geometry of SE3 as well as with the nonlin-
ear dependencies between the state space and observations.,
which results in a recursive description of the optimal state
and the corresponding second-order operator. The derived
filter enables reconstructing motions correctly for synthetic
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and real scenes, e.g., from the KITTI benchmark. Our exper-
iments confirm that the derived minimum energy filter with
higher-order state differential equation copes with higher-
order kinematics and is also able to minimize model noise.
We also show that the proposed filter is superior to state-of-
the-art extended Kalman filters on Lie groups in the case of
linear observations and that our method reaches the accuracy
of modern visual odometry methods.

Keywords Minimum energy filter · Lie group · Recursive
filtering · Constant acceleration model · Optimal control ·
Visual odometry

1 Introduction

1.1 Overview and Motivation

Camera motion estimation is a fundamental task in many
important applications (e.g., autonomous driving, robotics)
in computer vision. It is an essential component of structure-
from-motion, simultaneous localization and mapping
(SLAM) and of odometry tasks. Furthermore, it aids as addi-
tional prior knowledge for, e.g., optical flow methods. In
the proposed approach, the ego-motionof the camera is fully
determined solely by the apparent motion of visual features
(optical flow), as recorded by the camera, without needing
additional sensors such as acceleration sensors or GPS.

Although the camera motions can be reconstructed cor-
rectly from only two consecutive frames [25,41], the best
performing methods take into account multiple frames. They
are more robust against the influence of erroneous corre-
spondence estimates. Two approaches to making use of the
temporal context can be distinguished: batch approaches—
such as bundle adjustment methods [52]—first record all the
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frames and fit in a smooth camera path afterward. They
sometimes also incorporate loop closure constraints [56]
to further improve camera motion accuracy. Factorization
methods [40,50] create the problem of jointly estimating
camera poses as well as scene points as a matrix decom-
position problem. These batch approaches have the potential
to work exactly as theymake use of all available information.
On the other hand, they hardlywork in real-time applications,
as the volume of incorporated information increases linearly
with time.

In contrast, online approaches apply sliding window tech-
niques [6,9,12] that track features on multiple frames to
increase robustness and compute the best fitting motion.

A mathematical description of (online) temporal smooth-
ing is defined by the notion of (stochastic) filtering [7]: given
an ODE describing the behavior of a latent variable, and
observations that depend on the latent variable, the overall
objective is to estimate themost likely value of the unknowns.
Stochastic filtering theory provides a comprehensive foun-
dation to the development of stochastic filters. For most
concrete real scenarios, however, realizing the optimal fil-
ter is computationally intractable. For example, if the state
space does not evolve in an Euclidean space but on a Lie
group, then modeling and keeping track of a suitable a pos-
teriori distribution is a difficult task. While particle filters
were shown to provide good approximations in many appli-
cations, they become infeasible for high-dimensional state
spaces [18].

That is the reason why we chose deterministic Minimum
Energy Filters that do not need information about distri-
butions but do cope with the nonlinearities of the observer
equation and the geometry of the state space SE3 in [10]. As
we are interested in the optimal state only, rather than the full
a posteriori distribution, this deterministic approach seems
more suitable in our scenario than approximations of stochas-
tic filters. Since the state equation of the ego-motionin [10]
is simple and requires small weights on the penalty term for
the model noise, however, this approach is sensitive against
noise and requires good observation data.

Therefore, in this paper, we extend our previous work [10]
to a higher-order state equation with constant acceleration
assumption which is more stable and shows better conver-
gence. This finally results in a second-order optimal filter
which describes the evolution of the optimal state and the
corresponding second-order operator (which corresponds to
the covariance matrix in stochastic filtering theory). To avoid
confusion, we stress that the term “second-order” is used
in this paper for the filter itself, in the sense of [46,59],
rather than to characterize the higher-order kinematic state
equation. In our experiments, we demonstrate significantly
improved performance both on synthetic data with higher-
order kinematic scenarios and on the challenging KITTI
benchmark [21]. Comparison with novel continuous/discrete

extended Kalman filters on Lie Groups [13] shows that our
approach—although being less general than [13]—leads to
better results and is robust against imperfect initializations.

1.2 Related Work

Incorporation of temporal context—in terms of (partial) dif-
ferential equations—into the estimation of latent variables
has a long tradition in many common applications, e.g.,
robotics, aviation and astronautics. Starting from the sem-
inal work of Kalman [31] considering Gaussian noise and
linear filtering equations, stochastic filters had have great
success in many important areas of mathematics, computer
sciences and engineering during the last fifty years. The fil-
teringmethods have been improved during the last decades to
cope with nonlinearities of state and observation equations,
such as extended Kalman filters [28], unscented Kalman fil-
ters [29] and particle filters [4]. For a detailed overview of
these methods, we refer to [7,17].

However, one strong limitation of stochastic filters rep-
resents the fact that the a posteriori distribution is usually
unknown and, in general, is infinite dimensional due to the
nonlinear dependencies. To cover a large bandwidth of a
posteriori distributions, Brigo et al. approximated them by
distributions of the exponential family [14]. In contrast,
particle filters try to sample from them [4]. Extended and
unscented Kalman filters, on the other hand, only allow dis-
tributions that are Gaussian.

Although these methods work successfully for many real-
valued problems, they cannot be easily transferred to filtering
problems which are constrained to manifolds, appearing in
many modern engineering and robotic applications. There-
fore, in the last decade, several strategies havebeendeveloped
to adapt classical unconstrained filters to filtering problems
on specific Lie groups and Riemannian manifolds: Kalman
filters were transferred to the manifold of symmetric positive
definite matrices [53]. Extended Kalman filters on SO3 [36]
with symmetry preserving observers [11] were elaborated.
Particle filters on SO3 and SE3 were proposed in [33] as
well as on Stiefel [51] and on Grassman manifolds [43]. An
application of particle filters to monocular SLAM is reported
in [34].

Recently, unscented Kalman filters were generalized to
Riemannian manifolds [26]. Since then, extended Kalman
filters for constrained model and observation equations were
developed [13] for general Lie groups based on the idea of
the Bayesian fusion [57].

However, although stochastic filters have been adapted to
curved spaces and nonlinear measurement equations, they
still require assumptions about the a posteriori distribu-
tions, e.g., to be Gaussian. Furthermore, while transferring
related concepts of probability theory and stochastic anal-
ysis to Riemannian manifolds is mathematically feasible
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[15,16,27], exploiting them computationally for stochastic
filtering seems involved. The widely applied particle filters
also have limitations in connection with manifolds since the
sampling requirements of particles become expensive [34].

Adifferentway to approach a solution to the filtering prob-
lem was proposed by Mortensen [38]. Rather than trying to
cope with the probabilistic setting of the filtering problem,
he investigated the filtering problem from the point of view
of optimal control. By using the control parameter to model
noise and by integrating a quadratic penalty function over
the time, he found a first-order optimalMinimum Energy Fil-
ter. The advantage of this method is that it does not rely on
assumptions about, or approximations of, the a posteriori dis-
tribution, and that the Hamilton–Jacobi–Bellman equation
provides a well-defined optimality criterion. It was shown
theoretically in [32] that the minimum energy estimator con-
verges with exponential speed for control systems onRn that
are uniformly observable.

The first article applying the minimum energy filters to
geometrically constrained problems used perspective projec-
tions in the case of vectorialmeasurements [3]. Theminimum
energy filters were generalized to second-order filters on spe-
cific Lie groups with the help of geometric control theory
in [2,30,44]. The Minimum Energy Filter, as introduced by
Mortensen [38], was generalized to the Lie group SO3 for
the case of linear observation equations [59] and for attitude
estimation [58]. Further follow-up work [45] generalized the
filter to non-compact Lie groups [46].

In this article, we greatly elaborate our initial work on
camera estimation using nonlinear measurement equations,
especially by moving from a constant velocity assump-
tion [10] to a second-order state equation with constant
acceleration model. In addition, we investigate generalized
kinematic models of arbitrary order.

Before considering the actual filtering problem for camera
motion reconstruction on SE3, we provide a small academic
example on an Euclidean state space. This comprises two
nonlinear filtering problems to compare the proposed min-
imum energy filter with the extended Kalman filter [20],
the unscented Kalman filter [29] as well as with the stan-
dard particle filter [23] directly. For the extended Kalman
filter, we used our own implementation, whereas the code for
the unscented Kalman filter and the particle filter was taken
from [47] and [48], respectively. The state and observation
equations are given by

ẋ(t) = 1 + σε(t), x(t0) = 2, (1)

y(t) = h(x(t)) + δ(t), (2)

where the processes δ(t) and ε(t) correspond to white noise
processes with fixed covariance matrices R and Q, respec-
tively. In the experiments, we used moderate model noise
(σ = 0.5), and considered two nonlinear scenarios:

h(x) = 10−3x3, (cubic sensor) (3)

h(x) = 10 sin(x). (sinusoidal sensor) (4)

Here, we added the coefficients to enable the representation
of the observations on the same scale as the state. The recon-
structions of the trajectory of the optimal state x gained
by extended Kalman filter (EKF), unscented Kalman filter
(UKF) andminimum energy filter (MEF) are depicted in Fig.
1, where we used the true covariance matrices for all stochas-
tic filters; all filters were initialized equally with x0 = 5. We
also evaluated the cumulative asymptotic error after conver-
gence of the filters (t = 1) in Fig. 2. In the simpler case of
the cubic sensor, the MEF is as good as UKF and PF; in the
more difficult case of the sinusoidal sensor, the MEF clearly
exceeds the stochastic filters.

1.3 Distinction from Related Work

Based on theBaker–Campbell–Hausdorff formula (BCH for-
mula), Lie-algebraic second-order theory has been developed
within the last decades beginning from the work ofWang and
Chirikjian [55]. The key idea of this approach is to decom-
pose the BCH formula into different orders, such that the
logarithmic map of the product of two exponential maps of
X and Y fulfills the following equation:

LogG(Exp(X)ExpG(Y )) = Z(X,Y ) (5)

with

Z(X, Y ) = X + Y (zeroth order)

+ 1
2 [X, Y ] (first order)

+ 1
12 ([X, [X, Y ]] + [Y, [Y, X ]]) (second order)

+ · · ·

for X,Y ∈ g. This equation was also used in [8,13,61] for
error propagation onmotion groups or—more generally—for
the evaluation of higher-order moments of random variables
on Lie groups.

In this work, however, we consider a deterministic
approach based on an energy function of the residuals of the
filtering equations to beminimized. Rather than investigating
the error propagation in terms of a probability, we derive a
recursive formula for the minimizing argument of the energy
function and its second-order operator. To this end, we use
geometric control theory and the Hamilton–Jacobi–Bellman
equation. The term “second-order” in this works needs to
be understood in the context of (geometric) second-order
optimization on a Lie group or—more specifically—on an
Euclidian space. This will result in a Newton-like optimiza-
tion scheme with additional propagation terms, including a
second-order term.
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Fig. 1 Comparison of the reconstructed trajectories of extended
Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF)
(with 100 particles) and the minimum energy filter (MEF) given the
observations of the cubic sensor (left) and a sinusoidal sensor (right).
In the case of the cubic sensor, one can observe that the EKF is slightly
worse, whereas UKF, PF and MEF perform almost similarly after con-

vergence. In the more difficult setting of the sinusoidal sensor, EKF and
UKF diverge relatively fast and result in piecewise constant reconstruc-
tions. The PF converges faster than the MEF but the MEF stays longer
at the true solution (dashed line). In this experiment, we used the true
covariance matrices for all stochastic filters, and all filters evolved from
the same initialization

1.4 Contribution and Organization

Our contributions reported in this paper amount

– to generalize the constant camera velocity model from
[10] (nonlinearmeasurementmodel) to polynomialmod-
els, in particular the constant acceleration model;

– to provide a complete derivation of the second-ordermin-
imum energy filter [46] as applied to camera motion
estimation together with robust numerics that are consis-
tent with the geometry and the structure of matrix Riccati
equations;

– to report experiments demonstrating that higher-order
kinematic models are more accurate than the constant
velocity model [10] on synthetic (with kinematic cam-
era tracks) and real-world data and that they enable to
reconstruct higher-order information;

– to report experiments comparing our approach to state-
of-the-art extended Kalman Filters on Lie groups [13],
indicating that ourmethod is superior in copingwith non-
linearities of the observation function as well as in being
more robust against imperfect initializations.

In the next section, we introduce the filtering equations
related to our problem of camera motion reconstruction.
Afterward, we describe the basics of minimum energy fil-
ters and explain how to apply the (operator-valued)minimum

0 5 10 15 20
100

101

102

time t

Evaluation of Mean Cumulative Asymptotic Error

EKF sin UKF sin

PF sin MEF sin

EKF cubic UKF cubic

PF cubic MEF cubic

Fig. 2 Evaluation of the mean cumulative asymptotic error after con-
vergence of the filters (t = 1) on a logarithmic scale. The mean error
was averaged over 100 sample tracks for the filtering problem in (1) and
(2). In the scenario with a cubic sensor (cubic), the UKF, PF and MEF
are similar, only the EKF performed slightly worse. In themore difficult
case of the sinusoidal sensor (sin), the MEF clearly outperformed the
PF, UKF and EKF. However, in this setting, the error of all filters is
quite large

energy filter derived from [46] to our scenario. The numeri-
cal integration schemes of the ODEs for the optimal state is
given in Sect. 5. We confirm the theoretical results in Sect. 6
by experiments on synthetic and real-world data and thus
underline the applicability of our approach.
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Id ∈ GId ∈ G

x = Expg(η)

χ = TIdLxη =: xη

y

ξ = TIdLyη = TIdLyT ∗
IdLxχ

TxG

g = TIdG = se3 × R6
[·]∨g

[·]∧g R12

ExpgLogg

G = SE3 ×R6

η0 ∈ g

Fig. 3 Illustration of the Lie group G (represented as sphere) with its
Lie algebra g and tangent spaces at different points. A tangent vector
χ at a point x can be expressed as tangent map at identity of the left
translation at x of a vector η ∈ g, i.e., χ = xη. Since the Lie algebra

g can be identified by the [·]∨g mapping with R
12, we can express each

tangent vector at a point x as a pair (x, [η]∨g ). Each tangent vector on
any tangent space may bemapped to the manifold using the exponential
map

1.5 Notation

GL4 General Linear group
SO3 Special Orthogonal group
SE3 Special Euclidean group
se3 Lie algebra of SE3

[η]∨se : se3 → R
6 Lie-algebraic isomorphism

[v]∧se : R6 → se3 Inverse of [·]∨se
G (product) Lie group SE3 ×R

6

g Lie algebra of G
TxG Tangent space of G at x
[η]∨g : g → R

n Lie-algebraic isomorphisms
[v]∧g : Rn → g Inverse of [·]∨g
ExpG : g → G Exponential map on G
LogG : G → g Logarithmic map on G
Pr : R4×4 → se3 Projection onto Lie algebra

se3
Lx y := xy Left translation
TyLx Tangentmapof left translation

at y
xη := TIdLxη Shorthand for tangent map
x−1η := TIdL∗

xη Shorthand for dual of tangent
map

Id Identity element of Lie group
〈ξ, η〉x Riemannian metric at x ∈ G
〈ξ, η〉 = 〈ξ, η〉Id Riemannian metric on Lie

algebra g
〈x, y〉 Scalar product on R

n

∇·· Levi-Civita connection on TG
ωχη := ω(χ, η) := ∇χη Connection function forχ, η ∈

g

ω�
χ η := ωηχ Swap operator

〈ω∗
χη, ξ 〉 := 〈η, ωχξ 〉 Dual of connection function

〈ω�∗
χ η, ξ 〉 := 〈η, ωξχ〉 Dual of swap operator

[·, ·] Lie bracket on considered
Lie group,matrix commutator

d f (x) Differential/Riemannian
gradient of f at x

d f (x)[η] Directional derivative of f in
direction η

Hess f (x) Hessian of a twice differen-
tiable function f : G → R

di f Differential resp. i-th compo-
nent of f

dx Differential of an expression
resp. x

[n] := {1, . . . , n} Set of integer numbers from 1
to n

η, χ, ξ Tangent vectors
xi : j i-th to j-th component of x
Ai : j,k:l Block matrix with rows from

i to j and columns from k to l
from A

1n n × n identity matrix
‖x‖2Q := 〈x, Qx〉 Quadratic form regarding Q
eni i-th unit vector in Rn

e := ( 0 0 1 0 ) Auxiliary vector
Î := (

1 0 0 0
0 1 0 0

)
Auxiliary matrix

Moreover, we will employ the following concepts from
differential geometry:

Riemannian metric on SE3 On SE3 as submanifold of GL4,
the Riemannian metric at E ∈ SE3 for ξ, η ∈ TE SE3 is
given by 〈ξ, η〉E := 〈E−1ξ, E−1η〉14 where 〈A, B〉14 :=
tr(A�B) is the usual inner matrix product.
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Riemannian Gradient For a real-valued function f : G →
R, the Riemannian gradient d f (x) is defined through the
relation 〈d f (x), η〉x := d f (x)[η] for all η ∈ TxG. For the
product Lie group G = SE3 ×R

6 and x = (E, v) ∈ G, η =
(Eη1, η2) ∈ TxG we calculate the Riemannian gradient as
follows:

d f (x)[η] = 〈d f (x), η〉x
= 〈E−1dE f ((E, v)), η1〉14 + 〈dv f ((E, v)), η2〉,

where dE f ((E, v)) is the partial Riemannian gradient on
SE3, and dv f ((E, v)) is the Euclidean partial gradient on
R
6.

Levi-Civita connection and connection function For x ∈ G
we denote by ∇ the Levi-Civita connection of the Lie group
G given through ∇ : TxG × TxG → TxG, with the properties
symmetry, i.e., [η, χ ] = ∇ηχ −∇χη, where [·, ·] denotes the
Lie bracket, and compatibility with the Riemannian metric.
TheLevi-Civita connection is characterized by its connection
function ω : g × g → g, ω(ξ, η) := ωξη := ∇ξ η with the
property ∇xξ xη = xωξη for ξ, η ∈ g.

Riemannian Hessian The Riemannian Hessian is defined
through 〈Hess f (x)[ξ ], η〉 :=d(d f (x)[ξ ])[η]−d f (x)[∇ηξ ].
On the product Lie group G = SE3 ×R

6 which we consider
in this paper, we set x = (E, v) ∈ G and ξ = (Eξ1, ξ2) ∈
TxG, η = (Eη1, η2) ∈ TxG.

2 Minimum Energy Filtering Approach

2.1 State Model with Constant Acceleration Assumption

In the following, we will denote by E(t) ∈ SE3 the time-
dependent (external) camera parameter that can be expressed
in terms of a rotation matrix R(t) ∈ SO3 and a translation
vector w(t) ∈ R

3 as a 4 × 4 matrix

E(t) =
(
R(t) w(t)
01×3 1

)
, (6)

for which we also use the shorthand E(t) = (R(t), w(t)).
Since the ego-motionof a camera is generally not constant,
the model Ė = 0 assumed in previous work [10] does not
hold in real-world problems, where a camera fixed to a car
rotates and accelerates in different directions. The constant
acceleration assumption, however, is more suitable in this
cases. It can be described by the second-order differential
equation Ë(t) = 0 for all t with initial pose E(t0) = E0 and
velocity Ė(t0) = V0. In general, one can consider a polyno-
mial model of even higher-order for E(t). In the following,

we will focus on the assumption that E(t) is quadratic in t .
We will comment on generalizations at the end of Sect. 3.

Remark 1 Although the considered constant acceleration
assumption is more suitable than just a constant velocity
assumption (as presented in [10]), there are also more realis-
tic models for expressing kinematics on the Lie group SE3 .

These adhere to physical constraints such as Newton’s force
laws [37]. However, such a model will lead to even more
involved expressions than those derived below. Therefore,
we leave the study of more accurate physical models for
future work.

The equation Ë(t) = 0 can be described as a system of
first-order differential equations

Ė(t) = V (t),

V̇ (t) = 0,
(7)

where V (t) ∈ TE(t) SE3 and V̇ (t) ∈ TV (t)TE(t) SE3 =
TE(t) SE3. However, since the tangent bundle of a Lie Group
can be expressed in terms of the product T SE3 ∼ SE3 ×se3,
we obtain a more compact expression, i.e.,

Ė(t) = E(t)[v(t)]∧se3 ∈ TE(t) SE3,

v̇(t) = 06 ∈ R
6,

(8)

where the operator [·]∧se3 : R6 → se3 is defined by

(η1, η2, η3, η4, η5, η6)
� →

⎛

⎜⎜
⎝

0 − η3√
2

η2√
2

η4

η3√
2

0 − η1√
2

η5

− η2√
2

η1√
2

0 η6

0 0 0 0

⎞

⎟⎟
⎠ .

(9)

The inverse operation is denoted by [·]∨se3 : se3 → R
6. Note

that this operation is consistent with the usual scalar product,
i.e., for χ, η ∈ se3 it holds

〈χ, η〉Id := tr(χ�η) = 〈[χ ]∨se3 , [η]∨se3
〉
. (10)

Since SE3 is a Lie group regarding the matrix multipli-
cation and R

6 is a Lie group regarding addition, we can
understand the system (8) as a first-order differential equa-
tion on a product Lie group

G := SE3 ×R
6. (11)

For two elements x1 = (E1, v1), x2 = (E2, v2) ∈ G, we
define the left translation Lx1 by Lx1x2 := (E1E2, v1+v2) ∈
G. Since the tangent bundle TR6 can be identified with R

6,
we obtain the Lie algebra

g = se3 × R
6. (12)
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In turn, we can write (8) compactly as

ẋ(t) = (E(t)[v(t)]∧se3 , 06), (13)

where E and v will denote the first and second element
of x = (E, v) ∈ G, respectively. On matrix Lie groups,
one can express kinematics directly as matrix multiplication
(cf. [59]), i.e., Ė = η for η ∈ se3, E ∈ SE3, which is not
valid for general Lie groups. The rigorous way to describe
kinematics is to use the tangent map (cf. [46]) of the left
translation which is given by the following proposition:

Proposition 1 The tangentmapof the left translation regard-
ing x = (E, v) ∈ G at identity, i.e., TIdLx : g → TxG, can
be computed for η = (η1, η2) ∈ g as

TIdLxη = (Eη1, η2) = L(E,0)η =: xη. (14)

With Proposition 1, we can write down (13) as

ẋ(t) = TIdLx(t) f (x(t)) = x(t) f (x(t)), (15)

where f : G → g is given by

f (x) = f ((E, v)) = ([v]∧se3 , 06). (16)

A representation of the Lie algebra G, its Lie algebra g

as well as the corresponding tangent maps is given in
Fig. 3.

Remark 2 During the further development, the notation xη
for a Lie group element x ∈ G and η ∈ g must always
be understood as the tangent map of the left translation at
identity. Similarly, we denote the dual of the tangent map of
Lx at identity by x−1η := TIdL∗

xη.

2.2 Optical Flow Induced by Ego-Motion

By denoting the image domain Ω, the optical flow u :
Ω × T → R

2 on an image sequence {I (t), t ∈ T } can
be computed in terms of the underlying scene structure as
given by a depth map d : Ω × T and the camera motion
E : T → SE3, i.e., E(t) = (R(t), w(t)). R(t) and w(t)
denote the camera rotation and translation, respectively, by
the following relation:

u(z, t; d(z, t), (R(t), w(t)))

= π(R(t)�(
( z
1

)
d(z, t) − w(t))) − z,

(17)

This relation is also depicted in Fig. 4. The mapping
π : R

3 → R
2 denotes the projection (z1, z2, z3)� →

z−1
3 (z1, z2)�. Note that z ∈ R

3 indicates inhomogenous

Z = d(z, t)z(t)

E(t − 1) = ( 3,0)

w(t)

E(t) = (R(t), w(t))

z(t)

z̃(t + 1)

z(t)

z(t + 1)

u(z(t), t)

Fig. 4 Camera model for the monocular approach: a static scene point
Z is projected onto the plane of the first camera E(t − 1) ∈ SE3
at position z(t). E(t − 1) is mounted at the origin with rotation 13
such that Z = d(z, t)z(t). By moving the camera into position E(t) =
(R(t), w(t)), the scene point is projected ontoπ(R�(t)(z(t)−w(t))) =
z(t +1)which is at the same (relative) image position as z̃(t +1) on the
second image plane. The induced optical flow is given by the difference
u(z(t), t) = z(t + 1) − z(t)

coordinates rather than homogenous coordinates on the pro-
jective space. We can also express (17) directly in terms of
E(t):

u(z, t; d(z, t), E(t)) + z = π((E−1(t)gtz)1:3), (18)

where gz := gtz := (d(z, t)(z)�, d(z, t), 1)� denotes the
data vector containing depth information of pixel z below.

Remark 3 In equation (18), we assumed a static scene, since
we set the scene point Z constant in time.

3 Minimum Energy Filter Derivation

In this section, we will determine the problem of camera
motion estimation with filtering equations, and we will sum-
marize the most important steps for the derivation of the
minimum energy filter.

By denoting the left-hand side of (18) by yz ∈ R
2 which

is the observation, i.e.,

yz(t) := u(z, t; d(z, t), E(t)) + z, (19)

and defining for x = (E, v) ∈ G
hz(x(t)) := π((E−1(t)gtz)1:3) (20)

as the right-hand side of (18), together with (8) and (15), we
obtain the following state and observation system:
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ẋ(t) = x(t)( f (x(t)) + δ(t)), x(t0) = x0, (state) (21)

yz(t) = hz(x(t)) + εz(t), z ∈ Ω, (observation) (22)

where f (x) is defined as in (16) and n denotes a (fixed)
number of specific image pixels. The functions δ : T → g

and εz : T → R
2, z ∈ Ω are noise processes that model

deviations from state and observations, respectively. Here, T
denotes a continuous time interval, e.g., T = R≥0. We will
also write y := {yz, z ∈ Ω} to keep the expressions compact.
Since the state variable x(t) and y(t) and other expressions
depend on the time variable t,wewill also omit the parameter
t for the reader’s convenience.

3.1 Energy Function

Given a depth map, which is contained in the function gtz in
(20), and given the optical flow uz in terms of the observations
yz in (19), we want to find the camera motion and its velocity
in terms of x(t) ∈ G such that the observation error εz in
(22) is minimal and such that (21) is fulfilled with minimal
deviations δ(t) for all t ∈ T .

To this end, we consider the penalization of δ = (δ1, δ2) ∈
g and ε = {εz}z∈Ω by a quadratic function c : g × R

2|Ω| ×
T × T → R given as

c(δ, ε, τ, t) := 1
2

(
‖[δ1(τ )]∨se‖2S1

+ ‖δ2(τ )‖2S2 +
∑

z∈Ω

‖εz(τ )‖2Q
)

,

(23)

where S1, S2 ∈ R
6×6 and Q ∈ R

2×2 are symmetric, positive
definite weighting matrices. From [46], we adopt the idea of
a decay rate α > 0, and thus we introduce the weighting
factor e−α(t−t0) on the right-hand side of (23):

c(δ, ε, τ, t) := 1
2e

−α(t−t0)
(

‖[δ1(τ )]∨se‖2S1

+ ‖δ2(τ )‖2S2 +
∑

z∈Ω

‖εz(τ )‖2Q
)

.

(24)

Based on the penalty function (24), we define the energy:

J (δ, ε, t0, t) := m0(x(t), t, t0) +
∫ t

t0
c(δ, ε, τ, t) dτ, (25)

where m0 is a quadratic penalty function for the initial state.
For our model we set

m0(x, t, t0) := 1
2e

−α(t−t0)〈x − Id, x − Id〉Id, (26)

where the difference is canonical, i.e., x − Id = (E −14, v)

for x = (E, v).

Remark 4 Instead of using two quadratic forms with matri-
ces S1, S2, we can use more generally a symmetric and
positive weighting matrix S ∈ R

12×12 if we want to cou-

ple δ1 and δ2. In the upper case, we find that S =
(
S1 0
0 S2

)
.

3.2 Optimal Control Problem

The optimal control theory allows us to determine the opti-
mal control input δ : T → g that minimizes the energy
J (δ, ε(x(t), t), t0, t) for each t ∈ T subject to the state con-
straints (21). To be precise, we want to find the control input
δ|[t0,t] for all t ∈ T and fixed x(t), defining

V(x(t), t) := min
δ|[t0,t]

J (δ, ε(x(t), t), t0, t), s.t. (21). (27)

The optimal trajectory is

x∗(t) := arg min
x(t)∈G

V(x(t), t), (28)

for all t ∈ T and V(x, t0) = m0(x0, t0, t0). This problem is
a classical optimal control problem, for which the standard
Hamilton–Jacobi theory [5,30] under appropriate conditions
results in the well-known Hamilton–Jacobi–Bellman equa-
tion. Pontryagin [5] proved that the minimization of the
Hamiltonian provides a solution to the corresponding opti-
mal control problem (Pontryagin’s Minimum Principle).

However, since G is a non-compact Riemannian mani-
fold, we cannot apply the classical Hamilton–Jacobi theory
for real-valued problems (cf. [5]). Instead, we follow the
approach of Saccon et al. [46], who derived a left-trivialized
optimal Hamiltonian based on control theory on Lie groups
[30]. This left-trivialized optimal Hamiltonian is defined by
H̃ : G × g × g × T → R,

H̃(x, μ, δ, t) := c(δ, ε(x, t), t0, t) − 〈μ, f (x(t)) + δ〉Id.
(29)

Theminimization of (29)w.r.t. the variable δ = (δ1, δ2) leads
[46, Proposition 4.2] to the optimal Hamiltonian

H(x, μ, t) := H̃(x, μ, δ∗, t), (30)

where the optimal control δ∗ = (δ∗
1 , δ

∗
2) is given by

[
δ∗
1

]∨
se

= eα(t−t0)S−1
1 [μ1]

∨
se, and

δ∗
2 = eα(t−t0)S−1

2 μ2.
(31)
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Examining the right-hand side of (30) in detail, we obtain

H((E, v), μ, t) = 1
2e

−α(t−t0)
(∑

z∈Ω

‖yz − hz(E)‖2Q
)

− 1
2e

α(t−t0)
( 〈

μ1,
[
S−1
1 [μ1]

∨
se

]∧
se

〉

Id

+ 〈
μ2, S

−1
2 μ2

〉) − 〈
μ1, [v]

∧
se

〉
Id, (32)

where we used ε(x(t), t) = {yz(t) − hz(E(t))}z∈Ω . Here,
we introduced the variable x on the left-hand side, since the
right-hand side depends on x = (E, v).

In the next section, we will compute explicit ordinary
differential equations regarding the optimal state x∗(t) for
each t ∈ T that consists of different derivatives of the left-
trivialized Hamilton function (32).

3.3 Recursive Filtering Principle by Mortensen

In order to find a recursive filter, we compute the total time
derivative of the optimality condition on the value function,
which is

d1V(x∗, t) = 0, (33)

for each t ∈ T . This equation must be fulfilled by an opti-
mal solution x∗ ∈ G to the filtering problem. Unfortunately,
because the filtering problem is in general infinite dimen-
sional, this leads to an expression containing derivatives of
every order. In practice (cf. [46,59]), derivatives of third order
and higher are neglected, since they require tensor calculus.
Omitting these leads to a second-order approximation of the
optimal filter. For the reader’s convenience, we will omit the
asterisk symbol that indicates an optimal state, below, i.e.,
x := x∗, and E := E∗. The following theorem is an adap-
tion of [46, Theorem 4.1]:

Theorem 1 The differential equations of the second-order
MinimumEnergy Filter for state (21) and nonlinear observer
model (22) are given by

ẋ = x
(
f (x) − [

P[G(x)]∨g
]∧
g

)
, (34)

Ṗ = −α · P + S−1 + C(x)P + PC�(x) − PH(x)P,

(35)

with initializations x(t0) = Id, and P(t0) = 112. For x =
(E, v) the expressions G,C and H are defined as follows:

G(x) := Gt (x) :=
(
∑

z∈Ω

Pr(Ĝt
z(E; y)), 06

)

(36)

Ĝt
z(E; y) := (

κ−1
z Î − κ−2

z Î E−1gtze
)�

Q(yz − hz(E))gtz
�E−�, (37)

C(x) := Ct (x) :=
(
Ct
11(x) 16
06×6 06×6

)
, (38)

Ct
11(x) := −(

ad∨
se3

([v]∧se) + Γ ∗([(PG(x))1:6]∨se
))

, (39)

H(x) := Ht (x; y) :=
(

Ht
11(E;y) 06×6
06×6 06×6

)
, (40)

Ht
11(E; y) :=

∑

z∈Ω

Γ

([
Pr(Ĝt

z(E; y))
]∨
se

)
+ Dt

z(x; y).

(41)

Within these expressions, we used the shorthands κz :=
κ t
z(E) := eE(t)−1gtz, Î := (

1 0 0 0
0 1 0 0

)
, and e := ( 0 0 1 0 ).

The second-order operator Dt
z(x; y) : G → R

6×6 is given
by (109), see “Appendix 2”. The matrix valued functions
Γ (z), Γ ∗(z) : R6 → R

6×6 are obtained from the vectoriza-
tion of the connection functions. Their components are given
by (Γ (z))i j := ∑6

k=1 Γ i
jk zk and (Γ ∗(z))ik := ∑6

j=1 Γ i
jk z j

with z ∈ R
6 and the Christoffel Symbols Γ i

jk are given in
“Appendix 3”.

This theorem will be proven at the end of this section.

Remark 5 A generalization of this theorem is published in
Saccon et al. [46] for a larger class of filteringproblems.How-
ever, the application of the theorem is not straightforward
since the appearing expressions, e.g., exponential functor,
cannot be evaluated directly. Furthermore, the adaption to
nonlinear filtering problems has not been considered in the
literature yet. Besides, we show how to find explicit expres-
sions in terms of matrices for the general operators in [46].

Remark 6 The objective of the minimum energy filter is to
reconstruct the optimal state of a system. For linear-quadratic
control problems, i.e., with linear functions f and h and
a quadratic energy function, the filter results in an optimal
reconstruction (cf. linearKalmanfilter).However, for nonlin-
ear problems, the minimum energy filter will in general only
find a local minimum of the energy function and optimality
of the reconstruction depends on the initialization.

In our previous work [10], we presented a theory regard-
ing the case of constant velocity. This theory can be derived
directly from Theorem 1 by neglecting the velocity v, i.e.,
the second component of x = (E, v) ∈ G (thus changing
from Lie group SE3 ×R

6 to SE3) and by setting f (x) ≡ 0.
In this case, the state and observation equations are reduced
to

Ė(t) = E(t)δ(t), E(t0) = E0, (state), (42)

yz(t) = hz(E(t)) + εz(t), z ∈ Ω. (observation). (43)

For the reader’s convenience, we state the theory under the
assumption of constant velocity as a corollary:
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Corollary 1 The differential equations of the second-order
Minimum Energy Filter for our state (42) and nonlinear
observer model (43) are given by

E−1 Ė = −
[
P
[∑

z∈Ω

Pr(Ĝz(E))
]∨
se

]∧
se

, (44)

Ṗ = −α · P + S−1
1 +C(E)P + P(C(E)�)

−P

(
∑

z∈Ω

(
Γ
([Pr(Ĝz(E; y))]∨se

) + Dz(E; y))
)

P, (45)

with initializations E(t0) = Id and P(t0) = 16. C is given
through C(E) = −Γ ∗([E−1 Ė]∨se).
Remark 7 Wecompare the computational complexity for the
cases of constant velocity and constant acceleration. By con-
sidering the difference between Theorem 1 and Corollary 1,
we see that the only differences are a larger state space and the
occurrence of the additional operator f (x) in (34). However,
this does not change the computational effort significantly.
Thus, we suggest using the second-order state equation since
it ismore robust but only slightlymore complex than the first-
order state equation, as we will see in the experiments.

Before wewill turn to proving Theorem 1, we first provide
some lemmas that are based on the general approach of [46].
However, we cannot use themain result of [46] directly, since
the appearing general operators are complicated to evaluate.
Instead, we provide the corresponding expressions in such
a way that they can be easily implemented. Thus, following
[46, Eq. (37)] the estimate of the optimal state x is given by

x−1 ẋ = −d2H(x, 0, t) − Z(x)−1[x−1d1H(x, 0, t)].
(46)

This expression contains the second-order informationmatrix
Z(x) = Z(x, t) : g → g of the value function V as given in
(27), defined through

Z(x, t)[η] = x−1(t)Hess1 V(x(t), t)[xη]. (47)

An explicit expression for the gradient of the Hamiltonian
in (46) is provided in the following lemma:

Lemma 1 The Riemannian gradient d1H(x, μ, t) on TxG
for x = (E, v) can be calculated as

d1H(x, μ, t) = x

(

e−α(t−t0)
∑

z∈Ω

Pr(Ĝz(E; y)),−[μ1]
∨
se

)

,

(48)

where the function Ĝz(E) = Ĝz(E; y) : SE3 ×R
4 → GL4

is defined in (37) and μ = (μ1, μ2).

By insertion of (48) in (46) and use of the definition of G(x)
from Theorem 1, we obtain

x−1 ẋ = −d2H(x, 0, t) − e−α(t−t0)Z(x)−1[G(x)]. (49)

Following the calculus in [46], the evolution equation for
the trivialized Hessian Z(x) : g → g is given by

d

dt
Z(x(t), t)

≈Z(x) ◦ ωx−1 ẋ + Z(x) ◦ ω�
d2H(x,0,t)

+ ω∗
x−1 ẋ ◦ Z(x) + ω�∗

d2H(x,0,t) ◦ Z(x)

+ x−1 Hess1H(x, 0, t)x

+ x−1d2(d1H(x, 0, t)) ◦ Z(x)

+ Z(x) ◦ d1(d2H(x, 0, t)) ◦ TIdLx

+ Z(x) ◦ Hess2H(x, 0, t) ◦ Z(x) .

(50)

The “swap”-operators ω�· ·, ω�∗· · in this expression are
defined in Sect. 1.5, i.e., ω�

η ξ := ωξη and 〈ω�∗
η ξ, χ〉Id :=

〈ξ, ω�
η χ〉Id = 〈ξ, ωχη〉Id. By considering the standard basis

of g, there exists a matrix representation K ∈ R
12×12 such

that for all η = (η1, η2) ∈ g we receive

[Z(x)[η]]∨g = K (t)[η]∨g . (51)

Similarly to [10], we need to evaluate the right-hand side of
the evolution equation at η ∈ g and to vectorize it. The single
expressions are shown in the following lemma:

Lemma 2 (Matrix representations of Z) Let Z(x, t) :
g → g be the operator (47). Then there exists a matrix
K = K (t) ∈ R

12×12 yielding

[Z(x, t)[η]]∨g = K (t)[η]∨g , (52)

and thus

[ d
dt Z(x, t)[η]]∨

g
= K̇ (t)[η]∨g , (53)

[
Z−1(x, t)[η]

]∨
g

= K−1(t)[η]∨g , (54)

as well as

1.
[
Z(x)[ωx−1 ẋη] + Z(x)[ω�

d2H(x,0,t)η]
]∨
g

= K (t)B[η]∨g

2.
[
ω∗
x−1 ẋ Z(x)[η] + ω�∗

d2H(x,0,t)Z(x)[η]
]∨
g

= B�K (t)[η]∨g
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3.
[
x−1 Hess1 H(x, 0, t)[xη]

]∨
g

= e−α(t−t0)

·
⎛

⎝
∑

z∈Ω

(
Γ

([
Pr(Ĝz(E))

]∨
se

)
+ Dz(x; y)

)
06×6

06×6 06×6

⎞

⎠ [η]∨g

4. [Z(x)[d1(d2H(x, 0, t))[xη]]]∨g
= −K (t)

(
06×6 16

06×6 06×6

)
[η]∨g

5.
[
x−1d2(d1H(x, 0, t))[Z(x)[η]]

]∨
g

= −
(
06×6 06×6

16 06×6

)
K (t)[η]∨g

6. [Z(x, t)[Hess2H(x, 0, t)[Z(x, t)(η)]]]∨g
= −eα(t−t0)K (t)S−1K (t)[η]∨g ,

with Γ (·), Γ ∗(·), and functions Ĝz, Dz from Theorem 1 and

B := Bt (x) := −
(
Ct
11(x) 06×6
06×6 06×6

)
, (55)

with C11(x) from Theorem 1.

With these lemmas, we are able to prove our main result
in Theorem 1:

Proof (of Theorem 1) Wecan easily compute the differential
of Hamiltonian in (32), which is

−d2H(x, 0, t) = (
[v]∧se , 0

) = f (x). (56)

By inserting expression (56) into the optimal state equa-
tion (49) together with the definition of the operator[
Z(x)−1[xη]]∨

g
= K−1(t)[η]∨g , we find that

x−1 ẋ = f (x) − e−α(t−t0)
[[

Z(x)−1[G(x)]
]∨
g

]∧

g

= f (x) − e−α(t−t0)
[
K−1(t)[G(x)]∨g

]∧
g
. (57)

The application of the [·]∨g−operation onto equation (50)
evaluated for a direction η, together with Lemma 2 results in

K̇ [η]∨g =
(
K B(x) + B(x)�K

+ e−α(t−t0)
(∑

z∈Ω

(
Γ
([
Pr(Ĝz(E);y)

]∨
se

))
+Dz(E;y)

)
06×6

06×6 06×6

)

− K
(
06×6 16
06×6 06×6

)
−

(
06×6 06×6
16 06×6

)
K

− eα(t−t0)K S−1K
)
[η]∨g ,

(58)

where on the right-hand side we assume that K (t) is an
approximation of the vectorized operator Z(x(t), t). This is
the reason why we replace the approximation by an equality
sign in (58). With a change of variables (cf. [46])

P(t) := e−α(t−t0)K (t)−1, (59)

and the formula for the derivative of the inverse of a matrix
[42], we obtain

Ṗ(t) = − αe−α(t−t0)K (t)−1 (60)

− e−α(t−t0)K (t)−1 K̇ (t)K (t)−1

= − αP(t) − eα(t−t0)P(t)K̇ (t)P(t). (61)

Insertion of (58) (after omitting the direction [η]∨g that was
chosen arbitrarily) into (60) leads to the differential equation
(35) in Theorem 1. Therefore, we also find that

C(x, t) =
(
06×6 16
06×6 06×6

)
− B(t). (62)

The differential equation of the optimal state (34) follows
from inserting (59) into (57), which completes the proof. ��

We provide a pseudocode in Algorithm 1 which consists
of a combined correction and update step, where the obser-
vations are assumed to be time-continuous. For discrete-time
observations, we propose using a piecewise constant approx-
imation instead. This means that we set the value of y(t) to
y(tk) for the integration over t ∈ [tk, tk+1).

Algorithm 1Minimum Energy Filter for Lie Groups
Require: initializations x0, P0 and observations y(tl ), l = 0, 1, 2, . . . ,
set x(t0) ← x0
set P(t0) ← P0
for l = 1, 2, 3, . . . do

Between tl−1 and tl integrate the differential equations:

ẋ(t) =x(t)Exp
(
f (x(t)) −

[
P(t)

[
Gt (x(t), y(tl−1))

]∨
g

]∧
g

)

Ṗ(t) = − α · P(t) + S−1 + Ct (x)P(t)

+ P(t)Ct (x)� − P(t)Ht (x(t), y(tl−1))P(t)

3.4 Generalization to Higher-Order Models

In the previous section, we discussed minimum energy fil-
ters to estimate ego-motionunder the assumption of constant
acceleration. We saw that changing the assumption of con-
stant velocity to constant acceleration requires extending the
Lie group and adopting the functions f (x) and C(x).
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The generalization to higher polynomial models regard-
ing camera motion, where we assume that the m-th order
derivative of the ego-motionshould be zero, i.e.,

dm

dtm
E = 0, (63)

is straightforward.
Again, the approach can be described by a system of first-

order ODEs as follows. Note that in the constant acceleration
model (second-order), only the first-order model needs to
respect manifold structures, whereas all the other derivatives
are trivial, since they evolve on Euclidean spaces:

Ė = E
(
[v1]

∧
se + δ1

)
,

v̇1 = v2(t) + δ2,

...

v̇m−2 = vm−1 + δm−1,

v̇m−1 = δm

(64)

To achieve a unique solution, we require initial values, i.e.,
v1(0) = v01, . . . , vm−1(0) = v0m−1 ∈ R

6. Again, the obser-
vation equations (22) stay unchanged. The minimum energy
filter for this model is provided by the following theorem:

By using once again

x = (E, v1, . . . , vm−1) ∈ Gm := SE3 ×R
6 ×· · ·×R

6, (65)

the corresponding minimum energy filter can be obtained
easily from Theorem 1.

Theorem 2 (Minimum energy filter for m-th order state
equation)The differential equations of the second-orderMin-
imum Energy Filter for the state equation (64) and the
observation equations (22) are given by equations (34) and

Ṗ = −α · P + S−1 + C(x)P + PC(x)� − PH(x)P,

P(t0) = 16m, (66)

where we assume that the expressions x and P lie in the
spaces Gm andR6m×6m, respectively. The appearing expres-
sions in Theorem 1 are replaced by

H(x) := H(x; y) :=
(

H11(E;y) 06×(m−1)6
0(m−1)6×6 0(m−1)6×(m−1)6

)
,

f (x) := ([v1]
∧
se , v2, . . . , vm−1, 06×1),

G(x) :=
(
∑

z∈Ω

Pr(Ĝz(E)), 0(m−1)6×1

)

,

C(x) :=
((

C11(x)
06(m−2)×6

)
16(m−1)

06×6 06×6(m−1)

)

.

All the other expressions from Theorem 1 stay unchanged.

Proof Since product Lie groups are simply Lie groups with
the product topology, we can still apply the general mini-
mum energy filter of Saccon et al. [46]. The Lie group Gm
has dimension 6m such that the vectorized bilinear opera-
tor Z from (47), i.e., P results in a 6m × 6m matrix. The
definition of the function f follows from the differential
equations in (64). Similarly to Theorem 1, the observations
do not depend on the whole state x = (E, v1, . . . , vm−1),
but only on E . This leads to the fact that G, which is
essentially the left-trivialized differential of the Hamilto-
nian (i.e., x−1d1H(x, 0, t)), vanishes after calculating the
differentials regarding v1, . . . , vm−1. Similarly, the Hessian
x−1 Hess1H(x, 0, t)[xη] in Lemma 2 can be extended by
zeros. Furthermore, components v1, . . . , vm−1 ∈ R

6 have a
trivial geometry and do not contribute to curvature and thus
the corresponding connection functions in Lemma 2 also do
not influence curvature. Finally, we can compute the expres-
sion

d1(d2H(x, 0, t))[xη] = −d f (x)[η]
= −([v2]

∧
se , v3, . . . , vm−1, 0)

and thus

[d1(d2H(x, 0, t))[xη]]∨g =
(
06(m−1)×6 16(m−1)

06×6 06×6(m−1)

)
,

as we did in Lemma 2 for the special case. Together with the
adjoint operator in Ψ (x, t), we obtain the expression C . ��

4 Comparison with Extended Kalman Filters

As an alternative to the proposed approach, we also suggest
considering extended Kalman filters. For this purpose, we
will compare our approach to a state-of-the-art discrete / con-
tinuous extended Kalman filter on Lie groups [13] in Sect. 6.
The Kalman filter approach is valid in a more generalized
scenario compared to ours because the state space as well
as the observation space are matrix Lie groups, whereas we
only consider real-valued observations in R

n . On the other
hand, one needs to know that the covariance matrices of the
model and observation noise and the a posteriori distribution
are assumed to be Gaussian, which is in general not true for
nonlinear observation dynamics.

The extended Kalman Filter from [13] is summarized in
Algorithm 2 and has already been adapted to our problem for
real-valued observations. In line 7, the residual is expressed
as direct difference, which is a special case of [13]. The func-
tion Φ in line 9 on G is shown in “Appendix 4”.

In the next section, wewill adapt theAlgorithm 2 to differ-
ent scenarios: to a filtering problem with linear observations
as well as to our nonlinear filtering problemwith a projective
camera [(cf. (21), (22)].
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Algorithm 2 Extended Kalman Filter for Lie Groups
Require: State x(tl−1), Covariance P(tl−1), Observations yz(tl ), z ∈

Ω

1: procedure Propagation on [tl−1, tl ] : Integrate the following
differential equations

2: ẋ(t) = x(t) f (x(t))
3: Ṗ(t) = J (t)P(t) + P(t)(J (t))� + S

+ 1
4E(adg(ε(t))S adg(ε(t))�)

+ 1
12E

(
adg(ε(t))2

)
S + 1

12 SE
(
adg(ε(t))2

)�
4: x(tl ) = x(tl ), P(tl) = P(tl)
5: procedure Update:
6: Kl = P(tl )H�

l

(
Hl P(tl )H�

l + Ql
)−1

7: ml|l = Kl
∑

z∈Ω

(
yz(tl) − hz(x(tl ))

)

8: x(tl ) = x(tl )Exp(
[
ml|l

]∧
g
)

9: P(tl ) = Φ(ml|l)
(
112 − Kl Hl

)
P(tl)Φ(ml|l)�

Remark 8 Note that the extended Kalman filter from [13]
requires a differential equation (that is not only driven
by noise) in order to propagate the state, i.e., Ė(t) =
E(t)

(
f (E(t))+ δ(t)

)
, where f is non-trivial. Otherwise the

update step of the extended Kalman filter is not significant
because update and correction steps in the extended Kalman
filter are separated. This is the reason why we only compare
it to the second-order state equation where f �≡ 0.

4.1 Derivations for Linear Observations

In the scenario of linear observations, the state equation stays
unchanged, i.e., it is identical to (21). Similar to [59], we use
the following linear observation equations:

yk(t) = E(t)ak + εk(t), k ∈ [n], (67)

where E(t) ∈ SE3 is the first component of x(t) ∈ G and
ak ∈ R

4 are vectors that model the linear transformation
of the state x . Again, εk(t) ∈ R

4 are the observation noise
vectors.

In this case, the Minimum Energy Filter can be derived
much more easily than in the nonlinear case. Thus, for the
compactness of presentation, we will skip the proof of the
following propositions.

Proposition 2 The Minimum Energy filter for the constant
acceleration model (21) and linear observation equations
(67) is given by equations (34) and (35) where the function
Gk for x = (E, v) is replaced by

Gk(x) =E�Q(Eak − yk)a
�
k , (68)

and the components (i, j), i, j = 1, . . . , 6 of the matrix
Dk(x) ∈ R

6×6 are given by

(Dk(x))i, j = ζ k
i (E, E j ), E j :=

[
e6j

]∧
se

, (69)

with ζ k(E, ·) : se3 → R
6 given by

[
ζ k(E, η1)

]∧
se

:= Pr
(
η�
1 Q(Eak − yk)a

�
k + E�Qη1aka

�
k

)
.

(70)

Here, Q ∈ R
4×4 is a symmetric and positive definite

matrix [cf. (24)]. All other expressions from Theorem 1 stay
unchanged.

Since the linear observation model is a special case of the
approach in [13], we only need to modify the correspond-
ing expressions in Algorithm 2 which we summarize in the
following proposition.

Proposition 3 The extended Kalman Filter for the con-
stant acceleration model (21) and linear observation equa-
tions (67) is given by Algorithm 2 where the matrix Hl :=∑

z∈Ω Hk
l is given by

Hk
l =

⎛

⎜⎜⎜
⎝

([
Pr(E(tl)�e41a�

k )
]∨
se

)� 01×6([
Pr(E(tl)�e42a�

k )
]∨
se

)� 01×6([
Pr(E(tl)�e43a�

k )
]∨
se

)� 01×6([
Pr(E(tl)�e44a�

k )
]∨
se

)� 01×6

⎞

⎟⎟⎟
⎠

∈ R
4×12 (71)

and the function J (t) ([13, Eq. (52)]) is provided by (124) in
“Appendix 4”.

Remark 9 Note that (71) is different from [13, Eq. (111)]
because of the additive instead of multiplicative noise term,
and consequently, it is not consistent with the group structure
of SE3.

4.2 Derivations for Nonlinear Observations

The adaption of the extended Kalman Filter [13] to our
state (21) and observation (22) equation is provided by the
following proposition:

Proposition 4 The extended Kalman filter from [13] for
our state (21) and observation (22) equation is given by
Algorithm 2, whereas the expressions J (t) and Hl are pro-
vided in the equations (124) and (123), respectively; see
“Appendix 4”.

5 Numerical Geometric Integration

The numerical integration of the optimal state differential
equation (34) requires respecting the geometry of the Lie
group. We use the implicit Lie midpoint rule for the integra-
tion of the differential equation of the optimal state x (34),
as proposed in [24]. We need to modify the method since we
defined the state spaceG as a left invariant Lie group. Instead,
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in [24], only right-invariant Lie groups are investigated.
The adaption to left-invariant Lie groups is straightforward
and leads to the following integration schemes: for a dis-
cretization t0 < t1 < · · · < tn with equidistant step size
δ = tk − tk−1 for all k, we integrate the differential equation
of the optimal state (34) using the scheme

x(tk+1) = x(tk)Exp(Ξ), (72)

with Ξ = δ
(
f
(
x(tk)Exp(Ξ/2)

)

−
[
P(tk)

[
G
(
x(tk)Exp(Ξ/2)

)]∨
g

]∧
g

)
. (73)

For each k, the matrix Ξ is received by a fixed point itera-
tion of (73). For the integration of equation (35), we need
to consider that this is a special kind of the matrix Riccati
differential equation for which methods exist that ensure that
the solution is positive definite. As shown in [19], a numer-
ical integration method will preserve positive definiteness if
and only if the order of the method is one. By writing down
(35) as general Riccati differential equation

Ṗ(t) = C(t)P(t) + P(t)C(t)� − P(t)H(t)P(t) + S,

(74)

with symmetric matrices H(t) and C(t), the implicit Euler
integration method is given by

P(tk+1) = P(tk) + δ
(
C(tk+1)P(tk+1) + P(tk+1)C(tk+1)

�

− P(tk+1)H(tk+1)P(tk+1) + S
)
, (75)

which can be expressed by the algebraic Riccati equation
for which an unique solution exists [35] that can be found by
standard solvers, e.g., CARE.

6 Experiments

In this experimental section, wewill evaluate the accuracy
of the proposed minimum energy filter for ego-motion esti-
mation. Firstly,wewill provide experiments on synthetic data
to exclude external influences and to show robustness against
measurement noise. Then,wewill consider real-world exper-
iments on the challenging KITTI benchmark and compare
our method with a state-of-the-art method [22]. Finally, to
evaluate the theoretical performance of the filter, we will
also compare our approach to the state-of-the-art extended
Kalman filter [13] in a controlled environment.

6.1 Synthetic Data

Before considering real-life sequences, we will first evalu-
ate synthetic scenes to acquire full control on the regularity

Fig. 5 Synthetic sequence (top) generated by a simple ray tracer.
To provide realistic camera tracks we used ground truth trajectories
from the KITTI odometry benchmark and computed the corresponding
induced optical flow (mid) and the depthmap (bottom). The correspond-
ing color encodings for direction of optical flow and depth map are on
the right-hand side

on the camera track. We will generate 3D scenes by ray-
tracing simple geometric objects (cf. Fig. 5), which also
enables us acquiring correctly induced optical flow and depth
maps. In order to gain a realistic camera behavior, we use the
tracks from the KITTI visual odometry training benchmark
which were determined by an inertial navigation system in a
real moving car. We start by considering the case of perfect
measurements (Sect. 6.1.1) and by demonstrating robustness
against different kinds of noise in Sect. 6.1.2.

6.1.1 Evaluation on Noiseless Measurements

First, we evaluate the proposed filter on the true optical flow.
To avoid overfitting, we set a relatively small weight onto the
weighting matrix for the data term, i.e., Q = 0.1/n, where n
is the number of observations. We set the weighting matrix S
as the block diagonal matrix containing the matrices Si , i.e.,

S = blockdiag(S1, . . . , Sm), (76)

where m denotes the order of the kinematic model and the
S1 = diag(s1, s1, s1, s2, s2, s2) with s1 = 10−2 and s2 =
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Fig. 6 Comparison of the rotational error in degree (top) and the trans-
lational error inmeters (bottom) of the proposedminimum energy filters
with kinematic state equations of orders one (see [10]) and two, three
and four (this work). The dotted lines show the error averaged over all
frames.Weused a real camera track from sequence 0 of theKITTI visual
odometry benchmark and generated synthetic sequences with induced
depth maps and optical flow. The rotational errors are similar through

all frames although the higher-order methods converge faster in the first
iterations. In frames 20–90, the motion of the camera is almost constant
and the filters perform similarly. However, the translational error of the
first-order method significantly changes in frames 90–150 and 175–200
because the constant velocity assumption is violated by curves in the
trajectory

10−5. The decay rate is set to α = 2 and the integration step
size to δ = 1/50.

As demonstrated in Fig. 6, the proposed filters of differ-
ent order show a similar rotational error, since the ground
truth rotation is often constant and influenced by (physical)
noise. That is possibly caused by the low temporal resolu-
tion of 10 Hz, which is not able to give sufficient information
on the kinematics. On the contrary, in the translational part,
we can see that the higher-order models work significantly
better than our first-order model [10], but that third- and
fourth-order methods perform fairly the same. From this we
can conclude that kinematics of fifth- or even higher-order
will not improve performance regarding this kind of camera
tracks.

6.1.2 Evaluation on Noisy Measurements

To evaluate the robustness against noise, we alter the true
optical flow measurements by multiplicative and additive
noise, each being distributed uniformly or Gaussian, see
Fig. 7. The proposed method determines camera motion
using the same parameters as in Sect. 6.1.1. Comparison
to the ground truth is achieved using the geodesic distance

Fig. 7 Different noise models for the observed data (optical flow,
cf. Fig. 5): top left additive Gaussian noise (μ = 0, σ 2 = 0.001),
top right additive uniform noise (μ = 0, σ 2 = 0.001), bottom left mul-
tiplicative Gaussian noise (μ = 1, σ 2 = 1), bottom right multiplicative
uniform noise (μ = 1, σ 2 = 1)

on SE3 in order to avoid two separate error measures for
translation and rotation, i.e.,

dSE3(E1, E2) :=
∥∥∥∥
[
Log(E−1

1 E2)
]∨
se

∥∥∥∥
2
. (77)
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Table 1 Quantitative evaluation of proposedmethods (order 1–4) mea-
suring the geodesic error [cf. (77)] w.r.t. ground truth camera motion

Noise σ 2 1st order 2nd order 3rd order 4th order

MG 100 0.2162 0.2759 0.2821 0.2866

MU 0.2856 0.3840 0.3705 0.3705

MG 10−1 0.1597 0.1644 0.1485 0.1423

MU 0.2072 0.2596 0.2367 0.2287

MG 10−2 0.1417 0.1184 0.1041 0.1011

MU 0.1517 0.1353 0.1143 0.1082

MG 10−3 0.1283 0.0987 0.0844 0.0808

MU 0.1300 0.0952 0.0808 0.0777

AG 10−3 0.2859 0.4355 0.4318 0.4385

AU 0.4835 0.7431 0.7175 0.7071

AG 10−4 0.1598 0.1695 0.1688 0.1701

AU 0.2176 0.2341 0.2216 0.2193

AG 10−5 0.1384 0.1157 0.1010 0.0974

AU 0.1263 0.1130 0.1009 0.0968

w/o 0 0.1264 0.0893 0.0783 0.0757

As input data, we use noisy flow observations with the following noise
models: additive Gaussian (AG,μ = 0), additive uniform (AU,μ = 0),
multiplicative Gaussian (MG, μ = 1) and multiplicative uniform (MU,
μ = 1) for different variances σ 2. For intense noise (multiplicative:
σ 2 > 10−1, additive: σ 2 > 10−4), the first-order method performs
better than higher-order models since it is more robust against noise. In
contrast, for moderate noise levels, higher-order kinematics are more
appropriate. Thenumbers printed in bold represent the smallest geodesic
error

The results in Table 1 show that higher-order models out-
perform the first-order model with the exception of very high
noise levels, where the data does not contain sufficient infor-
mation to correctly estimate a higher-order kinematic.

Remark 10 Please note that our model currently does not
model noise on depth maps explicitly since it only allows
additive noise on the flow measurements, as introduced
in (22). However, we think that the noise term ε should also
compensate small deviations of the depth.

6.1.3 Evaluation of Kinematics

In the last section, we showed that the proposed method
is robust against different kinds of measurement noise.
Now we evaluate the proposed minimum energy filters with
higher-order kinematic model for camera tracks of different
complexity. For this purpose, we generate camera tracks for
the kinematic models (first to fourth order) by (geometric)
numerical integration of corresponding differential equa-
tion (64) for m ∈ {1, 2, 3, 4}, where we set v0 ≡ 0. In order
to obtain reasonable paths, we use non-trivial initializations
for (E0, v

0
1, v

0
2, v

0
3). Then, we generate synthetic sequences

for the different kinematic tracks and use the ground truth
optical flow and depth maps as input for the proposed filters.

The proposed method uses the parameters Q = 0.1n−112

with n = 1000; and S was chosen as in (76), whereas s1 = 1,
s2 = 0.001 and α = 0.

In Fig. 8, we visualize the geodetical error (77) as well as
the camera track reconstructions. It becomes apparent that for
a camera track with constant velocity (Fig. 8b), the minimum
energy filter with first-order kinematics [10] performs best
and reaches the highest accuracy. For the other tracks with
higher-order kinematics (cf. Fig. 8d, f, h), the proposed filters
with higher-order kinematic model work superiorly to [10].

6.2 Evaluation with Realistic Observations

In order to demonstrate that the minimum energy filter with
higher-order state equations alsoworks under real-world con-
ditions, we evaluate our approach on the challenging KITTI
odometry benchmark [21]. This benchmark does not contain
ground truth data for optical flow, and depth maps can only
be obtained from external laser scanners. Thus, we compute
optical flow and depth maps in a preprocessing step using
the freely available method by Vogel et al. [54], which only
requires image data. Although this method is the top ranked
method on the KITTI optical flow benchmark, its results still
contain relevant deviations from the true solution and thus
provide realistic observation noise to evaluate the perfor-
mance of our proposed filter. As the preprocessed data of [54]
is dense, it causes a high computational effort. Therefore, we
only use a sparse subset of data points which are selected
randomly. In Sect. 6.2.2, we will show that a small number
of observations is sufficient for good reconstructions.

6.2.1 Quantitative Evaluation of First and Higher-Order
Models

For our quantitative evaluations on the KITTI benchmark
in Table 2, we initialize our first [10] and higher-order
approaches with the corresponding identity element on the
Lie group, i.e., x0 = Id, and set the corresponding matri-
ces P0 to the identity matrices. The quadratic forms of the
penalty term of the model noise δ are set as shown in (76)
with s1 = 10−2 and s2 = 10−5. To increase the influence of
the data term, we set the weighting matrix to

Q := 1
n12, n = 1000. (78)

On the one hand, this high-weighting leads to less smoothed
camera trajectories, but on the other hand, it minimizes the
observation error, which is desirable for visual odometry
applications. For comparison, we also present the perfor-
mance measures of the odometry method [22] in Table 2.

We emphasize that the first-order approach [10] and
second-order method from Theorem 1 perform better in
the case of camera motion reconstruction than the proposed
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Fig. 8 Reconstruction of the camera tracks (left column) and eval-
uation of the geodetical error w.r.t. ground truth (right column) as
computed by the proposed filter with kinematics of order 1, 2, 3 and 4.
We evaluated the performance on simulated camera tracks with kine-
matic models of different orders: constant velocity (a, b), constant
acceleration (c, d) as well as third (e, f) and fourth (g, h) order kinemat-
ics. In the constant velocity scenario (b), the first-order filter performs
best. On the other scenarios (d, f, h), the higher-order methods are supe-

rior and lead to the best path reconstructions. a reconstruced track: first
order kinematics, b geodetical error on a first order kinematic track, c
reconstruced track: second order kinematics,d geodetical error on a sec-
ond order kinematic track, e reconstruced track: third order kinematics,
f geodetical error on a third order kinematic track, g reconstruced track:
fourth order kinematics, h geodetical error on a fourth order kinematic
track
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Table 2 Quantitative evaluation of rotational (in degrees) and translational (in meters) error on the first 200 frames of the training set of the KITTI
odometry benchmark

Sequence 00 01 02 03 04 05 06 07 08 09 10

Trans. error

(Geiger [22]) 0.0272 0.0572 0.0255 0.0175 0.0161 0.0185 0.0118 0.0160 0.1166 0.0175 0.0147

1st order [10] 0.0284 0.0759 0.0188 0.0804 0.0165 0.0188 0.0122 0.0174 0.1142 0.0193 0.0205

2nd order 0.0356 0.0786 0.0289 0.0938 0.0210 0.0288 0.0153 0.0284 0.1153 0.0293 0.0417

3rd order 0.0358 0.0784 0.0290 0.0924 0.0216 0.0286 0.0175 0.0268 0.1153 0.0258 0.0342

4th order 0.0347 0.0782 0.0275 0.0918 0.0211 0.0277 0.0140 0.0257 0.1155 0.0240 0.0317

Rot. error

(Geiger [22]) 0.1773 0.1001 0.1552 0.1829 0.0970 0.1539 0.0829 0.1770 0.1589 0.1166 0.2001

1st order [10] 0.1773 0.1139 0.1504 0.2246 0.0836 0.1454 0.0765 0.1654 0.1444 0.0911 0.1829

2nd order 0.1996 0.1183 0.1430 0.2448 0.0805 0.1566 0.0703 0.2113 0.1676 0.1167 0.2388

3rd order 0.2402 0.1348 0.1872 0.2719 0.1090 0.1971 0.0875 0.2362 0.2053 0.1335 0.2628

4th order 0.2795 0.1466 0.2223 0.3120 0.1479 0.2335 0.1045 0.2709 0.2318 0.1630 0.2956

We compared the proposed higher-order method (i.e., 2nd to 4th) with our first-order method from [10]. As a reference method, we also evaluated
the approach by Geiger et al. [22]. The first- and second-order methods outperform the higher-order methods since they can fit more easily to the
non-smooth ego-motion data. The numbers printed in bold represent the methods with the best reconstructions

higher-order (>2) models with generalized kinematics from
Theorem 2. The reason for this is that the real camera motion
is influencedbymodel noise, inducedby jumpsof the camera,
towhich the first-ordermethod can adapt faster. Higher-order
models smooth the camera trajectories, which in this case is
unfortunate. However, they will be beneficial if the actual
camera motion behaves according to the models, as shown
in the experiments in Sect. 6.1.3.

Please note that our method currently is not designed to
be robust against outliers in the observation. In contrast, the
approach of Geiger et al. [22] uses additional precautions to
eliminate violation of the assumption of a single rigid body
motion, see sequence 3 in Table 2, for example.

6.2.2 Determination of Optimal Number of Observations

Since the evaluation of the functions Ĝz and Dz in Theorem 1
as well as the accurate numerical integration in Sect. 5 are
expensive, we are looking for a good trade-off between the
number of required measurements and accuracy. In Table 3,
we evaluate the geodetical error for a different number of
observations n. For n = 1, our proposed filters do not con-
verge since they are numerically instable. For n = 5, . . . , 20,
the geodetical error is fairly small, but reaches a minimum
for n = 50. For n < 5, the error increases because the
ego-motion cannot be reconstructed uniquely (cf. Five-point-
algorithm [41]). Likewise, for n > 50, the error rises due to
noisy measurements averaged by the filter.

6.2.3 Influence of the Decay Rate α

In real sequences, the motion is usually not uniform and
changes due to acceleration and curves. As demonstrated

Table 3 Determination of the optimal number of measurements n

n 1st order 2nd order 3rd order 4th order

1000 0.1205 0.1361 0.1311 0.1290

500 0.1070 0.1174 0.1116 0.1096

200 0.0915 0.0945 0.0902 0.0890

100 0.0764 0.0764 0.0739 0.0733

50 0.0667 0.0651 0.0638 0.0637

20 0.0715 0.0703 0.0687 0.0684

15 0.0709 0.0691 0.0674 0.0672

12 0.0718 0.0720 0.0702 0.0699

10 0.0749 0.0735 0.0716 0.0712

9 0.0751 0.0747 0.0726 0.0722

8 0.0772 0.0762 0.0742 0.0738

7 0.0735 0.0733 0.0717 0.0714

6 0.0786 0.0776 0.0757 0.0753

5 0.0789 0.0797 0.0778 0.0774

4 0.0856 0.0859 0.0837 0.0831

3 0.0917 0.0951 0.0928 0.0921

2 0.1005 0.1085 0.1058 0.1051

We evaluated themean geodetical error of our filter reconstructionswith
different kinematic models (first to fourth order) on a short sequence
(10 frames) for different numbers n of observations. Since the n obser-
vations are selected randomly, we repeated the experiment 50 times and
averaged the results to find a representative value. We found an opti-
mal number of measurements for n = 50. The numbers printed in bold
represent the smallest geodesic error

earlier, higher-order state equations that model accelerations,
jerks, etc. usually converge faster and yield in a better accu-
racy. However, higher-ordermodels are delayed since it takes
some time until the information from the observation is trans-
ported to the lowest layer. Furthermore, if themotion changes
quickly, the higher-order models will still propagate wrong
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Fig. 9 Evaluation of the translational error (in meters) of theminimum
energy filter regarding the first, second, third and fourth-order state
equation on the first 50 frames of sequence 0 of the KITTI odometry
sequence. For small values of α, the filter memorizes past informa-
tion and converges fast, see (a). Although higher-order filters converge
faster, they cause oscillation due to the time delay that is required to
propagate information into higher-order derivatives of the kinematics.

Since for large values of α past information is neglected, the filters
converge slower and the difference between second-, third- and fourth-
order models become smaller, while the oscillations disappear. Please
note that for this experiments the weighting matrices S and Q are kept
fixed. To further reduce the error for large α, we propose to adapt the
weights. a α = 1, b α = 2, c α = 4, d α = 8

kinematics. For this reason, in [46] a decay α > 0 rate is
introduced and also adopted to our model. For α = 0, all
past information is preserved in the propagation within the
filter. For larger values of α, old information about the tra-
jectory has lower influence on the filter and is less respected
in the future.

For our experiments, we use the weighting matrix Q =
n−112, where n is the number of measurements. Further-
more, we use S as in (76) with the values s1 = 5 · 10−2,
s2 = 5 · 10−4. The integration step size is set to δ = 1/50.

In Fig. 9, we visualize the influence of different values ofα
on theminimumenergy filters of order 1 to 4. For small decay
rates α, the filters will converge faster over time, but will also
cause errors if the kinematics change. On the other hand,
large decay rates adapt more easily to spontaneous changes
of kinematics. The filters take longer to converge, however.

6.3 Comparison with the Extended Kalman Filters

6.3.1 Experiments with Linear Observation Equation

For the experiments in Fig. 10, we use four observation equa-
tions (n = 4), and the vectors ak in (67) are chosen as

ak = e4k , k ∈ [4], (79)

to extract information from all directions. We generate the
ground truth from an arbitrary initialization by integration
of the equation (21) using multivariate Gaussian noise with
mean 012 and diagonal covariance matrix S = 112. As
shown in [13], we integrate the ground truth with ten times
smaller step sizes than the filtering equations of extended
Kalman and minimum energy filter. Afterward, we generate
the observations with (71) and Gaussian noise with covari-
ance Q = 10−814 and set the covariance matrices S and
Q in Algorithm 2 to the same values. However, the matrix
Q for the minimum energy filter in Proposition 2 is set to
Q = 10014 to give more weight to the observations for
faster convergence. Note that for the extended Kalman Filter
the choice Q = 10014 leads to a worse performance, which
is why we use the true covariance instead.

As a reference, we apply our own implementation of the
method by Bourmaud et al. [13] which we adapted to our
model. The results are demonstrated in Fig. 10. We suppose
that the main reason for the different performances is that
we compare a second-order (minimum energy filter) with a
first-order (extended Kalman) filter.
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Fig. 10 Comparison between minimum energy filter with second-
order kinematics (MEF) (red, cross) and extended Kalman filter
(CD-LG-EKF) [13] (green, square) with state equation (21) and obser-
vation equation (67) as derived in Properties 2 and 3, respectively. We
plotted the six components of the rigid motion of the ground truth (GT)
(blue, circle), the extended Kalman filter, and the minimum energy
filter, i.e., (ω1, ω2, ω3, t1, t2, t3)� := (

[
LogG(G))

]∨
g
)1:6. Here, G rep-

resents the corresponding element of the Lie group G. Furthermore, we

set the discretization step size to δ = 0.1. Although we initialized the
extended Kalman filter with the ground truth solution and added only
little observation noise, it diverged after a few steps, whereas the mini-
mum energy filter converged from a wrong initialization to the correct
solution within a few steps. The reason for that is that the approach
[13] only uses first-order approximation, whereas the minimum energy
filter also includes second-order derivatives of the observation function
(Color figure online)

6.3.2 Discussion on Extended Kalman Filter for Nonlinear
Observations

We were not able to obtain convergence of this filter from a
trivial (chosen as identity element of the Lie group) or ground
truth initialization. Since the extended Kalman did not con-
verge for linear observations (4.1) fromwrong initializations,
we presume that the nonlinearities of our observation equa-
tions are intractable for the approach from [13].

7 Limitations

Our proposed method requires good measurements in terms
of optical flow and depth maps in order to reconstruct the
camera motion correctly. Although we show on synthetic
data that the proposed method is robust against different
kinds of noise, it is not robust against outliers, caused by

independently moving objects that violate the static scene
assumption, or simply wrong computations of optical flow
and depth maps. Making our approach robust as component
of a superordinate processing stage, however, is beyond the
scope of this paper and left for future work.

In addition to optical flow, the proposed method requires
depth information which is expensive to obtain if not avail-
able anyway, e.g., in stereo camera setups.

8 Conclusion and Future Work

We generalized the camera motion estimation approach [10]
from a model with constant velocity assumption to a more
realisticmodel with constant acceleration assumption aswell
as to a kinematic model which respects derivatives of any
(fixed) order. To the authors’ knowledge, this has not been
achieved so far in the fields of image processing and com-
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puter vision. For the resulting second-order minimum energy
filterwith higher-order kinematics,we provided all necessary
derivations and demonstrated that our approach is superior
to our previous method [10] for both synthetic and real-life
data. We also compared our approach to the state-of-the-
art continuous-discrete extended Kalman filter on connected
unimodular matrix Lie groups [13] and showed that in both
cases the minimum energy filters is superior since it con-
verges from imperfect initializations to the correct solutions.

In the future, wewant to investigate how to reconstruct the
camera motion (with constant acceleration) jointly with the
camera’s depth map from monocular optical flow observa-
tions. We also want to incorporate a more realistic kinematic
model based on physical constraints into the filtering frame-
work.

Acknowledgements This work was supported by the DFG (German
Research Foundation), Grant GRK 1653.

Appendix 1: Properties of SE3 and G

Projection onto se3

The projection Pr : R4×4 → se3 is given by

Pr(A) := 1
2 diag((1, 1, 1, 0)

�)
(
A diag((1, 1, 1, 2)�)

− A� diag((1, 1, 1, 0)�)
)
.

(80)

Adjoints, Exponential and Logarithmic Map

The adjoint operator adse([v]∧se) canbe computed for a vector
v ∈ R

6 as follows

[
adse([v]

∧
se)η

]∨
se

= advecse ([v]∧se)[η]∨se

:=
(
[v1:3]∧so 03×3

[v4:6]∧so [v1:3]∧so

)
[η]∨se, (81)

where [v1:3]∧so := ([v]∧se)1:3,1:3.
Since R

6 is trivial, the adjoint representation on g

parametrized by a vector v ∈ R
12 is

advecg ([v]∧g ) =
(
advecse (v1:6) 06×6

06×6 06×6

)
. (82)

The exponential map ExpSE3
: se3 → SE3 and the logarith-

mic map on SE3 can be computed by the matrix exponential
and matrix logarithm or more efficiently by the Rodrigues’
formula as in [39, p. 413f ].

Then, the exponential map ExpG : se3 → SE3 for a
tangent vector η = (η1, η2) ∈ g and the logarithmic map
LogG : SE3 → se3 for x = (E, v) ∈ G are simply

ExpG(η) = (ExpSE3
(η1), η2) ∈ G, (83)

LogG(x) = (LogSE3
(E), v) ∈ g, (84)

and similar for higher-order state spaces.

Vectorization of Connection Function

Following [1, Section 5.2], we can vectorize the connection
function ω of the Levi-Civita connection ∇ for constant η,

ξ ∈ g in the following way:

[
ωηξ

]∨
g

= [ω(η, ξ)]∨g = [∇ηξ
]∨
g

= Γ ([ξ ]∨g )[η]∨g , (85)

where Γ (γ ) is the matrix whose (i, j) element is the real-
valued function

(
Γ (γ )

)
i, j :=

∑

k

(γkΓ
i
jk), (86)

andΓ i
jk are theChristoffel symbolsof the connection function

ω for a vector γ ∈ R
12. Similarly, permuting indices, we can

define the adjoint matrix Γ ∗(γ ), whose (i, j)-th element is
given by

(
Γ ∗(γ )

)
i, j :=

∑

k

(γkΓ
i
k j ). (87)

This leads to the following equality:

[
ωηξ

]∨
g

= Γ ∗([η]∨g )[ξ ]∨g . (88)

If the expression ξ in (85) is non-constant, we will obtain the
following vectorization from [1, Eq. (5.7)] for the case of the
Lie algebra se3, i.e.,

[∇ηx ξ(x)
]∨
se

= Γ ([ξ(x)]∨g )[ηx ]
∨
se + d[ξ(x)]∨se[[ηx ]∨se]

= Γ ([ξ(x)]∨g )[ηx ]
∨
se +

∑

i

(ηx )i

[
dξ(x)[Ei ]

]∨
se

= Γ ([ξ(x)]∨g )[ηx ]
∨
se + D[ηx ]

∨
se, (89)

where the entries of the matrix D ∈ R
6×6 can be computed

as

(D)i, j =
([

dξ(x)[E j ]
]∨
se

)

i
, E j =

[
e6j

]∧
se

, (90)

where e6j denotes the j-th unit vector in R6.
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Appendix 2: Proofs

Proof (of Proposition 1) The tangent map is simply the dif-
ferential or directional derivative. For x1 = (E1, v1), x2 =
(E2, v2) ∈ G it holds Tx2Lx1 : Tx2G → TLx1 (x2)G. Thus, we

can compute it for a η = (E2η1, η2) ∈ Tx2G = TE2 SE3 ×R
6

as follows

Tx2Lx1η = dLx1(x2)[η]
= lim

τ→0+ τ−1(Lx1(x2 + τη) − Lx1(x2)
)

= lim
τ→0+ τ−1(L(E1,v1)((E2 + τ E2η1, v2 + τη2))

− (E1E2, v1 + v2)
)

= lim
τ→0+ τ−1((E1E2 + τ E1E2η1, v1 + v2 + τη2)

− (E1E2, v1 + v2)
)

= (E1E2η1, η2) ∈ Tx1x2G = TLx1 (x2)G.

For x2 = Id = (14, 06) and η = (η1, η2) ∈ g, we gain

TIdLx1η = (E1η1, η2) = L(E1,06)(η1, η2) =: x1η ∈ Tx1G.

Note that the adjoint of the tangent map of Lx at identity can
be expressed as inverse of x = (E, v), i.e., for η = (η1, η2) ∈
TxG and ξ = (ξ1, ξ2) ∈ g

〈TIdL∗
xη, ξ 〉Id = 〈η, TIdLxξ 〉x

= 〈η1, Eξ1〉E + 〈η2, ξ2〉
= 〈E−1η1, ξ1〉Idse3 + 〈η2, ξ2〉
= 〈L(E−1,06)η, ξ 〉Id.

Thus, TIdL∗
xη = L(E−1,06)η. We will use the shorthand

x−1η := TIdL∗
xη for the dual of the tangent map of Lx at

identity. ��

Proof (of Lemma 1) Since μ = (μ1, μ2) and v are inde-
pendent of E , the gradient d1H(x = (E, v), μ, t) can be
computed separately in terms of E and v, i.e., for η =
(Eη1, η2) ∈ TxG

d1H(x, μ, t)[η] =
(
dE

(
1
2e

−α(t−t0)
∑

z∈Ω

‖yz − hz(E)‖2Q
)
[η1],

− dv〈μ1, [v]
∧
se〉[η2]

)
.

The directional derivative regarding v can be computed by
the usual gradient on R6, which is given by

−dv〈μ1, [v]
∧
se〉[η2] = − 〈[μ1]

∨
se,dvv[η2]〉

=〈−[μ1]
∨
se, η2〉,

(91)

such that dv〈μ1, [v]∧se〉 = −[μ1]∨se. For the directional
derivative of H, we first consider the directional derivative
of hz(E). Since hz(E) can also be written as

hz(E) := (eE−1gz)
−1 Î E−1gz, (92)

with Î := (
1 0 0 0
0 1 0 0

)
and e := ( 0 0 1 0 ), the directional

derivative (into direction ξ ) can be derived by the follow-
ing matrix calculus:

dhz(E)[ξ ] (93)

= d
(
(eE−1gz)

−1)[ξ ] Î E−1gz + (eE−1gz)
−1d

(
Î E−1gz

)[ξ ]
= −κ−1

z d(eE−1gz)[ξ ]κ−1
z Î E−1gz + κ−1

z Îd(E−1)[ξ ]gz
= −κ−1

z ed(E−1)[ξ ]gzκ−1
z Î E−1gz + κ−1

z Îd(E−1)[ξ ]gz
= −κ−1

z e(−1)E−1d(E)[ξ ]E−1gzκ
−1
z Î E−1gz

+ κ−1
z Î (−1)E−1d(E)[ξ ]E−1gz

= κ−2
z eE−1ξE−1gz Î E

−1gz − κ−1
z Î E−1ξE−1gz, (94)

where κz = κz(E) := eE−1gz . Then for the choice ξ = Eη1
we find that

eα(t−t0)d1H(x, μ, t)[Eη1] (95)

= −
∑

z∈Ω

tr
(
dhz(E)[Eη1](yz − hz(E))�Q

)

= −
∑

z∈Ω

tr
((

κ−2
z (eη1E−1gz) Î E

−1gz − κ−1
z Îη1E

−1gz
)

· (yz − hz(E))�Q
)

=
∑

z∈Ω

tr
((

κ−1
z Îη1E

−1gz − κ−2
z (eη1E−1gz) Î E

−1gz
)

· (yz − hz(E))�Q
)

=
∑

z∈Ω

tr
((

κ−1
z Îη1E

−1gz − κ−2
z Î E−1gzeη1E−1gz

)

· (yz − hz(E))�Q
)

=
∑

z∈Ω

tr
((

κ−1
z Î − κ−2

z Î E−1gze
)
η1E

−1gz(yz − hz(E))�Q
)

=
∑

z∈Ω

tr
(
E−1gz(yz − hz(E))�Q

(
κ−1
z Î − κ−2

z Î E−1gze
)
η1

)

=
∑

z∈Ω

〈 (
κ−1
z Î − κ−2

z Î E−1gze
)�

Q(yz − hz(E))g�
z E−�

︸ ︷︷ ︸
=:Ĝt

z (E,y)=:Ĝz (E)

, η1
〉
Id.

(96)

Here we used the property that the trace is cyclic. We obtain
theRiemannian gradient on SE3 by projecting (cf. [1, Section
3.6.1]) the left-hand side of the Riemannian metric in (96)
onto TE SE3, which is for x = (E, v)

dEH(x, μ, t) = e−α(t−t0)
∑

z∈Ω

PrE
(
EĜz(E)

)

= e−α(t−t0)
∑

z∈Ω

E Pr
(
Ĝz(E)

)
,

(97)
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with Ĝz(E) := Ĝz(E, y) := (
κ−1
z Î − κ−2

z Î E−1gze
)�

Q(yz − hz(E))g�
z E−�, and PrE : GL4 → TE SE3 denotes

the projection onto the tangential space TE SE3 that can
be expressed in terms of PrE (E ·) = E Pr(·). Besides,
Pr : GL4 → se3 denotes the projection onto the Lie algebra
se3 as given in (80).

Putting together (91) and (97) results in

d1H(x, μ, t)

=
(

e−α(t−t0)
∑

z∈Ω

E Pr
(
Ĝz(E)

)
,−[μ1]

∨
se

)

∈ TxG. (98)

��
Proof (of Lemma 2) Eq. (52) can be easily found by consid-
ering a basis of se3 and by the fact that Z is a linear operator
on the Lie algebra. Since the resulting matrix K (t)[η]∨g :=
Z(x) ◦ η depends only on t , equation (53). Eq.(54) is trivial
since Z is linear.

1. With the symmetry of the Levi-Civita connection, i.e.,

[η, ξ ] = ∇ηξ − ∇ξ η, (99)

we gain the following equalities

[
Z(x)[ωx−1 ẋη] + Z(x)

[
ω�
d2H(x,0,t)η

]]∨
g

(52)= K (t)
[
ωx−1 ẋη + ω�

d2H(x,0,t)η
]∨
g

(49)= K (t)
([∇−d2H(x,0,t)η

]∨
g

−
[
∇e−α(t−t0)Z(x)−1[G(x)]η + ∇ηd2H(x, 0, t)

]∨
g

)

(99)= K (t)
(
[−[d2H(x, 0, t), η]]∨g

−
[
∇e−α(t−t0)Z(x)−1[G(x)]η

]∨
g

)

(88)= K (t)
(
[[ f (x), η]]∨g

− Γ ∗([e−α(t−t0)Z(x)−1[G(x)]
]∨
g

)
[η]∨g

)

(52)= K (t)
(
[( f (x), η)]∨g

+ Γ ∗(−e−α(t−t0)K (t)−1[G(x)]∨g
)
[η]∨g

)

(82)= K (t)
(
ad∨

g ( f (x))

+ Γ ∗(−e−α(t−t0)K (t)−1[G(x)]∨g
))
[η]∨g

=:K (t)B(x)[η]∨g . (100)

The claim follows from the fact that the adjoints and the
Christoffel symbols on R6 are zero, such that B reads as
i.e.,

B(x) =
(−Ct

1,1(x) 06×6

06×6 06×6

)
. (101)

with Ct
1,1 from Theorem 1.

2. Since this expression is dual to the expression in 1., the
claim follows by using its transpose.

3. Recall that the Hamiltonian in (32) is given by

H((E, v), μ, t) = 1
2e

−α(t−t0)
(∑

z∈Ω

‖yz − hz(E)‖2Q
)

− 1
2e

α(t−t0)
( 〈

μ1,
[
S−1
1 [μ1]

∨
se

]∧
se

〉

Id

+ 〈
μ2, S

−1
2 μ2

〉) − 〈
μ1, [v]

∧
se

〉
Id.

The Riemannian Hessian w.r.t. the first component can
be computed for x = (E, v) ∈ G, η = (η1, η2) ∈ g and
the choice μ = (μ1, μ2) = (04×4, 06) as

eα(t−t0)
[
x−1 Hess1H(x, μ, t)[xη]

]∨
g

= eα(t−t0)
[
x−1∇xηd1H(x, 0, t)

]∨
g

(102)

= eα(t−t0)
[
∇ηx

−1d1H(x, 0, t)
]∨
g

(103)

=
[

∇η

(∑

z∈Ω

Pr(Ĝz(E)),−eα(t−t0)
[
04×4

]∨
se

)
]∨

g

(104)

=
(∑

z∈Ω

[
∇η1 Pr

(
Ĝz(E)

)]∨
se

, 06
)

=
∑

z∈Ω

(
Γ

([
Pr(Ĝz(E))

]∨
g

)
[η1]

∨
se

+
∑

i

([η1]
∨
se)i

[
dPr

(
Ĝz(E)

)
)[Ei ]

]∨
se

, 06
)
. (105)

Here, line (102) follows from the general definition of the
Hessian (cf. [1, Def. 5.5.1]). Line (103) is valid because
of the linearity of the affine connection, equation (104)
results from insertion of the expression in Lemma 1 and
(105) can be achieved with (89).

Next, we calculate the differential dPr(Ĝz(E))[η1] in
(105) for an arbitrary direction η1. Since the projection
is a linear operation (cf. (80)), i.e., dPr(Ĝz(E))[η1] =
Pr(dĜz(E)[η1]), we require calculating dĜz(E)[η1]. By
using the product rule and the definition of Ĝz from (37),
we obtain

dĜz(E)[η1]
= d

((
κ−1
z Î − κ−2

z Î E−1gze
)�

Q(yz − hz(E))g�
z E−�)[η1]

= (
d
(
κ−1
z Î − κ−2

z Î E−1gze
)�[η1]Q(yz − hz(E))g�

z E−�)
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+ (
κ−1
z Î − κ−2

z Î E−1gze
)�

Q
((

−dhz(E)[η1]
)
g�
z E−�)

+ (
(yz − hz(E))g�

z dE
−�[η1]

))
. (106)

The directional derivative of
(
κ−1
z Î − κ−2

z Î E−1gze
)
is

d
(
κ−1
z Î − κ−2

z Î E−1gze
)[η1]

= −κ−2
z edE−1[η1]gz Î + 2κ−3

z edE−1[η1]gz Î E−1gze

− κ−2
z ÎdE−1[η1]gze

= κ−2
z eE−1ηE−1gz Î − 2κ−3

z eE−1η1E
−1gz Î E

−1gze

+ κ−2
z Î E−1η1E

−1gze. (107)

By inserting the directional derivatives (107), (94) and
dE−�[η1] = −(E−1η1E−1)� into (106), we obtain the
vector-valued function ζ k(E)(·) : se3 → R

6 defined as

[
ζ k(E)(η1)

]∧
se

:= Pr
(
dĜz(E)[η1]

)

= Pr

((
κ−2
z eE−1η1E

−1gz Î − 2κ−3
z eE−1η1E

−1gz Î E
−1gze

+ κ−2
z Î E−1η1E

−1gze
)�

Q
(
yz − hz(E)

)
g�
z E−�

+ (
κ−1
z Î − κ−2

z Î E−1gze
)�

Q
((

κ−1
z Î E−1η1E

−1gz

− κ−2
z eE−1η1E

−1gz Î E
−1gz

)
g�
z E−�

− (
yz − hz(E)

)
g�
z E−�η�

1 E−�))
. (108)

Using the basis {E j }6j=1 of se3, with E j :=
[
e6j

]∧
se

we

define, as in (90), the following matrix Dz(E) ∈ R
6×6

with components

(Dz(E))i, j := ζ k
i (E j ). (109)

By using Eq. (89), we find that

[
∇η1 Pr(Ĝz(E))

]∨
se

= (
Γ (Pr(Ĝz(E)))+ Dz(E)

)
[η1]

∨
se.

Insertion of this expression into (105) finally leads to the
desired result, i.e.,

eα(t−t0)
[
x−1 Hess1H(x, μ, t)[xη]

]∨
g

=
(∑

z∈Ω

(
Γ
([
Pr

(
Ĝz(E)

)]∨
se

) + Dz(E)
)
06×6

06×6 06×6

)

[η]∨g .

4. The Riemannian gradient of the Hamiltonian regarding
the second component is zero, thus we obtain

d2H(x, 0, t) = (− [v]∧se , 0
) = − f (x). (110)

Computation of the differential regarding the first com-
ponent at η = (Eη1, η2) ∈ TxG results in

d1(d2H(x, 0, t))[η] = − d f (x)[η]
= − d(E,v)([v]

∧
se , 0)[η]

= − ([η2]
∧
se , 0).

Finally, we compute the complete expression, which is
for η = (η1, η2) ∈ g and x = (E, v) ∈ G
[
Z(x)

[
d1(d2H(x, 0, t))[xη]]]∨

g

= K [d1(d2H(x, 0, t))[Eη1, η2]]∨g (111)

= −K
[
([η2]

∧
se , 0)

]∨
g

(112)

= −K

(
06×6 16

06×6 06×6

)
[η]∨g . (113)

5. The following duality is vaild

d2(d1H(x, 0, t)) =(d1(d2H(x, 0, t)))∗

= − (dx f (x))∗,
(114)

as well as the following duality rule for linear operators
f, g : g → g∗ (i.e., f ∗, g∗ : g → g∗ by the identification
g∗∗ = g) and η, ξ ∈ g,

〈(g∗ ◦ f ∗)(η), ξ 〉Id = 〈 f ∗(η), g(ξ)〉Id
= 〈η, ( f ◦ g)(ξ)〉Id = 〈( f ◦ g)∗(η), ξ 〉Id, (115)

resulting in

(g∗ ◦ f ∗) = ( f ◦ g)∗. (116)

Note that for g = se3 we replace the Riemannian met-
ric 〈·, ·〉 by the trace, and that the dual notation can be
replaced by the transpose.

Applying the [·]∨g operation for η ∈ g results in

[
TIdL

∗
x ◦ d2(d1H(x, 0, t)) ◦ Z(x)[η]]∨

g

(114)= −[
TIdL

∗
x ◦ (d f (x))∗ ◦ Z(x)[η]]∨

g

(116)= −[
(d f (x) ◦ TIdLx )

∗ ◦ Z(x)[η]]∨
g

(113)= −
(
06×6 06×6

16 06×6

)
[Z(x)[η]]∨g

= −
(
06×6 06×6

16 06×6

)
K (t)[η]∨g .

6. For η = (η1, η2) ∈ g and the definition of the Rieman-
nian Hessian, we obtain

Hess2 H(x, μ, t)[η] = ∇(η1,η2)d2H(x, μ, t). (117)
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The Riemannian gradient of the Hamiltonian regarding
the second component can be computed for x = (E, v) ∈
G as

d2H(x, μ, t)

=
(

−eα(t−t0)
[
S−1
1 [μ1]

∨
se

]∧
se

− [v]∧se ,−eα(t−t0)S−1
2 μ2

)
.

(118)

Inserting (118) into (117) results in

e−α(t−t0) Hess2 H(x, μ, t)[η]
= −∇(η1,η2)

([
S−1
1 [μ1]

∨
se

]∧
se

+ [v]∧se , S−1
2 μ2

)

= −Prg

(
dμ

([
S−1
1 [μ1]

∨
se

]∧
se

+ [v]∧se
)

[η],dμ(S−1
2 μ2)[η]

)

= −
(
Pr

([
S−1
1 [η1]

∨
se

]∧
se

)
, S−1

2 η2

)

= −
([

S−1
1 [η1]

∨
se

]∧
se

, S−1
2 η2

)
,

where Prg : R4×4 ×R
6 → g denotes the projection onto

the Lie algebra g. Note that the second component of the
projection is trivial.

This result coincides with [46] where the Hessian of
theHamiltonian regarding the second component is com-
puted directly. Applying the [·]∨goperation leads to

[Hess2 H(x, μ, t)[TIdLxη]]∨g
= −eα(t−t0)

[[
S−1
1 [η1]

∨
se

]∧
se

, S−1
2 η2

]∨

g

= −eα(t−t0)((S−1
1 [η1]

∨
se)

�, (S−1
2 η2)

�)�

= −eα(t−t0)
(
S−1
1 06×6

06×6 S−1
2

)

︸ ︷︷ ︸
=:S−1

[η]∨g .

Nowwe apply the [·]∨g -operation to the expression Z(x)◦
Hess2H(x, 0, t) ◦ Z(x):

[
Z(x)

[
Hess2 H(x, 0, t)

[
Z(x)[η]]]]∨

g

= K (t)[Hess2 H(x, 0, t)[Z(x)[η]]]∨g
= −eα(t−t0)K (t)S−1[Z(x)[η]]∨g
= −eα(t−t0)K (t)S−1K (t)[η]∨g .

��

Appendix 3: Christoffel Symbols

The Christoffel symbols Γ k
i j , i, j, k ∈ {1, . . . , 6} for the Rie-

mannian connection on SE3 are given by

Γ 3
12 = Γ 1

23 = Γ 2
31 = 1

2 ,

Γ 2
13 = Γ 3

21 = Γ 1
32 = − 1

2 ,

Γ 6
15 = Γ 4

26 = Γ 5
34 = 1,

Γ 5
16 = Γ 6

24 = Γ 4
35 = −1 .

and zero otherwise. Note that this Christoffel symbols are
similar to these of the kinematic connection in [60]. However,
for theRiemannian connection,we need to switch the indexes
i and j .

Appendix 4: Derivations for Extended Kalman
Filter

The function Φ : R12 → R
12×12 in Alg. 2 is

Φ(v) =
(

ΦSE3(v1:6) 06×6

06×6 16

)
,

whereas the function ΦSE3 is given in [49, Section 10]
(cf. [13, Eq. (17)]).

Derivations for Nonlinear Observations

The expression of Hl that is defined in [13, Eq. (59)] is simply
the Riemannian gradient of the observation function hz , i.e.,

Hl :=
∑

z∈Ω

dhz(x(tl)),

where hk is defined as in (92); and the dhz can be computed
component-wise (for j = 1, 2) for x(tl) = (E(tl), v(tl)) by
the directional derivative for a direction xη ∈ TxG.

dh j
z (x)[xη] = d

(
(e43E

−1gz)
−1e4j E

−1gz
)[(Eη1, η2)] (119)

= κ−2
z e43η1E

−1gze
4
j E

−1gz − κ−1
z e4jη1E

−1gz
(120)

=
〈(

κ−2
z E−1gze

4
j E

−1gze
4
3 − κ−1

z E−1gze
4
j

)�
, η1

〉

(121)

=: 〈ρ j
k (x), η1〉, (122)

where the third line follows from the definition of the Rie-
mannian metric on SE3, i.e., 〈η, ξ 〉Id = η�ξ , and the fact
that the trace is cyclic. By projection of ρ1

k (x(tl)) onto the
Lie algebra se3 and by vectorization, we obtain the Rie-
mannian gradient. Stacking the vectors leads to the Jacobian
Hl ∈ R

2×12, which is provided through

Hl =
l∑

k=1

(([
Pr(ρ1

k (tl))
]∨
se

)� 01×6([
Pr(ρ2

k (tl))
]∨
se

)� 01×6

)

. (123)
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Next, we consider the calculation of the function J (t) in
Alg. 2 in line 3. Following [13], J (t) can be calculated as

J (t) = F(t) − adg( f (x(t))) + 1
12C(S), (124)

where the differential of F(t) = d f (x(t)) can be computed
as

F(t) =
(
06×6 16

06×6 06×6

)
. (125)

For a diagonal weighting matrix S, we find that in (124) the
functionC can be computed for diagonal weighting matrices
S as

C(S) =
((

Ξ 03×3
03×3 Ξ

)
06×6

06×6 06×6

)

, (126)

where Ξ = − diag((S22 + S33, S11 + S33, S11 + S22)�), and
the adjoint in (124) can be computed with (82).
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