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Abstract. We study two scenarios of limited-angle binary tomography
with data distorted with an unknown convolution: Either the projec-
tion data are taken from a blurred object, or the projection data them-
selves are blurred. These scenarios are relevant in case of scattering and
due to a finite resolution of the detectors. Assuming that the unknown
blurring process is adequately modeled by an isotropic Gaussian con-
volution kernel with unknown scale-parameter, we show that parameter
estimation can be combined with the reconstruction process. To this
end, a recently introduced Difference-of-Convex-Functions programming
approach to limited-angle binary tomographic reconstruction is comple-
mented with Expectation-Maximization iteration. Experimental results
show that the resulting approach is able to cope with both ill-posed
problems, limited-angle reconstruction and deblurring, simultaneously.

1 Introduction

It is a general characteristic of imaging systems that the acquired images are
some distorted versions of the ideal images of real objects. The distortion is
due to physical limitations, e.g., finite resolution in space and time, non-uniform
sensitivity in the field of view, etc. In many cases the distorted image can be
modeled as the convolution of the ideal image with some function describing the
distortion [1].

The situation is the same in tomography when the cross-sections of some 3D
object are reconstructed from its projections. The pixel values in the projection
images are usually only some approximations of the line integrals to be measured
by a perfect imaging system in an ideal physical situation. In different applica-
tion areas of tomography there are several correction methods to improve the
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quality of the reconstructed images. The correction strategies can be divided into
two classes roughly. The first class contains the methods aiming to correct the
projection data before reconstruction (let us call them preprocessing) and then
the reconstruction is performed from the corrected projection data. The second
class is the family of special methods when the correction is included into the
reconstruction process. We believe that both strategies can be useful. If the cor-
rection can be done as a preprocessing step before reconstruction then one of the
methods from the first class is preferable. However, there are situations when the
correction is impossible or too complicated before reconstruction, e.g., scatter
correction in CT or in SPECT, then the correction during the reconstruction
can still give a good solution.

The situation is very similar in the case of binary tomography, when the
range of the function to be reconstructed is just the set {0, 1} (as a summary
of binary tomography see [2]). The known discrete range can be used in the
reconstruction process as a kind of a priori information, and binary functions
can be reconstructed effectively from very few projections (e.g., 2-5). As binary
tomography is getting to be applied in several areas, the problem of distortion
of such tomography images becomes an important problem to be studied. There
are publications discussing different corrections in DT, e.g. in X-ray and neutron
tomography [3, 4], and electron microscopy [5].

In this paper we deal with the general distortion model when the distortion can
be described by the convolution with a Gaussian kernel Gσ(·). If the parameter σ is
known in advance then the correction (deconvolution) can be done as a preprocess-
ing step before the reconstruction. However, if the parameter is not known then we
are going to show that there is still a way to binary tomography by including this
parameter as an unknown value to be determined. To motivate our approach we
present some reconstructions, see figure 1, performed without deblurring.

Section 2 shows the mathematical model of distorted DT and the reconstruc-
tion problem to be solved. Our reconstruction approach including the deconvolu-
tion adaptation is described in Section 3. The optimization algorithm is specified
in section 4. Several experiments have been done to test our reconstruction pro-
cedure for both noiseless and noisy data. The corresponding results are presented
in Section 5. We conclude and indicate further work in Section 6.

2 Problem Statement

2.1 Binary Tomography and Reconstruction by DC-Programming

We consider the reconstruction problem of transmission tomography for binary
objects. As explained in figure 2, the imaging process is represented by the
algebraic system of equations

Ax = b , A ∈ R
m×n , x ∈ {0, 1}n , b ∈ R

m , (1)

where A and b are given, and the binary indicator vector x representing the
unknown object has to be reconstructed. To this end, we introduced in [6] the
variational approach
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Fig. 1. Reconstruction without deblurring fails. Panel (a) shows an object
which was blurred with a Gaussian convolution kernel Gσ at three different scales
σ ∈ {0.5, 1.0, 2.0}, and then projected along 5 directions 0◦, 22.5◦, 45◦, 67.5◦, 90◦.
Panels (b)-(d) show the reconstruction results without deblurring. The performance
considerably deteriorates for increasing σ. Note that the original object (a) can be
reconstructed without error from three projections only.

x∗
μ = argmin

x∈[0,1]n
Jμ(x) , Jμ(x) = D(x) + αS(x) − μ

1
2
〈x, x − e〉 (2)

where
D(x) =

1
2
‖Ax − b‖2 (3)

and S(x) is a convex smoothness prior (see section 3.2) which favors spatially
homogeneous objects as reconstructions and e := (1, 1, . . . , 1)� ∈ R

n.
Problem (2) constitutes a numerically convenient relaxation of the combina-

torial problem (1) because the set of feasible solutions [0, 1]n is convex. Starting
with the global optimum x0 of the convex functional J0, the last term in (2)
gradually enforces a locally optimal binary solution for increasing values of para-
meter μ. Although global optimality cannot be guaranteed, experimental results
showed an excellent reconstruction performance [6, 7]. For further details of this
framework and an overview from the optimization point of view, we refer to [8].
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Fig. 2. Discretization model for transmission tomography. The measured pro-
jection data are given in terms of a vector b ∈ R

m. Each component bi corresponds to
a projection ray measuring the absorption along the ray through the volume which is
discretized into cells. The absorption aj in each cell is assumed to be proportional to
the density of the unknown object. x1, x2, . . . are binary variables indicating whether
the corresponding cells belong to the object (xk = 1) or not (xk = 0). Assembling all
projection rays into a linear system gives Ax = b, x ∈ {0, 1}n, from which the unknown
binary object, represented by x, has to be determined.

2.2 Binary Tomography with Blurred Data

Let Gσ denote the matrix that represents the linear mapping of some data
by convolving it with an isotropic Gaussian kernel and scale-parameter σ. We
generalize problem (1) along two directions:

Reconstruction from Projections of Blurred Objects
The corresponding generalization of the reconstruction problem (1) reads:

AGσx = b , A ∈ R
m×n , x ∈ {0, 1}n , b ∈ R

m (4)

Reconstruction from Blurred Projection Data
The corresponding generalization of the reconstruction problem (1) reads:

GσAx = b , A ∈ R
m×n , x ∈ {0, 1}n , b ∈ R

m (5)

For notational simplicity, we used in both cases the same symbol Gσ, although
Gσ denotes a block-circulant matrix in (4) corresponding to the convolution of
multi-dimensional data x, whereas Gσ represents the one-dimensional convolu-
tion of the projection data in (5).

Accordingly, the variational approach (2) generalizes to

x∗
μ = argmin

x∈[0,1]n
Jμ(x; σ) , Jμ(x; σ) = D(x; σ) + αS(x) − μ

1
2
〈x, x − e〉, (6)

where the data term D(x; σ) indicates the dependency on the unknown convo-
lution operator in (4) and (5), respectively.
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3 Approach

3.1 Data Term and Scale Estimation

Optimization of Jμ in (6) is complicated through the unknown scale-parameter
σ of the convolution operator Gσ. A common and natural approach to solve this
problem is to apply the well-known Expectation-Maximization (EM) iteration
(cf.,e.g. [9]) to the probabilistic interpretation of the data term D(x; σ) as a
likelihood term, provided this is computationally feasible. We elaborate this
approach in this section.

We regard minimization of Jμ in (6) as Maximum-A-Posteriori (MAP) esti-
mation of x, given the data b:

p(x|b) ∝ exp
(

− Jμ(x; σ)
)

∝ p(b|x)p(x) (7a)

p(x) ∝ exp
(

− αS(x) + μ
1
2
〈x, x − e〉

)
(7b)

Remark. The normalizing term missing in (7a) only depends on b and therefore
it is unessential for estimating x.

The data likelihood p(b|x) is unknown due to the dependency of the data
term D(x; σ) on the unknown parameter σ. Given some estimate x̂, the standard
EM-approach is then to maximize instead the following lower bound, commonly
called Q-function, which does not depend on σ:

log p(b|x) ≥
∫

R+

p(σ|b, x̂) log
p(b, σ|x)
p(σ|b, x̂)

dσ

Expanding the log-expression shows that only the first term, commonly called
Q-function, depends on x and therefore is relevant:

Q(x|x̂, b) :=
∫

R+

p(σ|b, x̂) log p(b, σ|x)dσ (8)

To compute (8), the first term under the integral is evaluated via Bayes’ rule

p(σ|b, x̂) =
p(b|σ, x̂)p(σ|x̂)

p(b|x̂)
.

The denominator does not depend on σ and therefore it is unessential for mar-
ginalizing σ on the right in (8). The first term of the numerator is given by
the data term p(b|σ, x̂) = Z−1 exp(−D), where Z is a normalizing constant.
Furthermore, it is reasonable to assume independency p(σ|x) = p(σ). Thus, we
obtain

p(σ|b, x̂) ∝ 1
Z

exp
(

− D(x̂; σ)
)
p(σ). (9)

For the second term under the integral in (8), we compute

log p(b, σ|x) ∝ log p(b|σ, x) + log p(σ) ∝ −D(x; σ) + log p(σ) (10)
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using again p(σ|x) = p(σ), and dropping the normalizing constant of the first
term on the right, as explained above in the remark after eqns. (7). Furthermore,
we can drop the last term log p(σ) in (10) because it neither depends on x, nor
does it contribute to the averaging of D(x; σ) with respect to σ.

As a result, we insert the remaining term −D(x; σ), together with (9), into
(8) and denote the resulting expression again with Q:

Q(x|x̂, b) :=
∫

R+

1
Z

exp
(

− D(x̂; σ)
)
p(σ)

(
− D(x; σ)

)
dσ (11)

This expression shows clearly how the unknown dependency on σ of the objective
criterion (6) is dealt with: Given a current estimate x̂ and a prior distribution
p(σ), the unknown data term D(x; σ) is replaced by maximizing the average (11).
Consequently, we replace the functional Jμ(x; σ) in (6) by the approximation

Eμ(x; x̂) := −Q(x|x̂, b) + αS(x) − μ
1
2
〈x, x − e〉. (12)

In practice, we choose the prior p(σ) to be uniform within a reasonable interval
[σmin, σmax], and x̂ is the current estimate on x. Q(x|x̂, b) is then evaluated by
computing the one-dimensional integral (11) numerically using the trapezoidal
rule.

3.2 Smoothness Term

As smoothness prior S(x) in (12), we use a discrete approximation of the total-
variation (TV) measure ∫

Ω

|∇x|dΩ

of x (here temporarily regarded as a function), whose edge-preserving properties
are well-known in image processing [10]. Recently, it has also been successfully
used in connection with discrete tomography [11].

4 Optimization

The problem to minimize the functional Eμ(x; x̂) in (12) over the convex set
of feasible solutions B := [0, 1]n can be written with a corresponding indicator
function IB(x) = 0 if x ∈ B and IB(x) = +∞ if x 
∈ B, as

inf
x∈Rn

Eμ(x; x̂) , Eμ(x; x̂) = F (x; x̂) − Hμ(x), (13)

where
F (x; x̂) := −Q(x|x̂, b) + αS(x) + IB(x)

is a proper lower-semicontinuous convex functional, and where

Hμ(x) := μ
1
2
〈x, x − e〉
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is convex as well, thus concave when subtracted in (13). Therefore, a natural
minimization approach is DC (Difference of Convex functions) programming
[12, 13].

To specify the algorithm, recall the following definitions from convex analysis
[14] for a function f :

dom(f) :=
{
x ∈ R

n | f(x) < +∞
}

effective domain of f

∂f(x̄) :=
{
v | f(x) ≥ f(x̄) + 〈v, x − x̄〉

}
subdifferential of f at x̄

f∗(y) := sup
x∈Rn

{
〈x, y〉 − f(x)

}
conjugate function

We apply to (13) the following algorithm adopted from [13]:

Subgradient Algorithm

Choose x0 ∈ dom(F ) arbitrary (this choice does not dependent
on the second argument of F ).
For k = 0, 1, ... compute until convergence:

yk ∈ ∂Hμ(xk) (14)
xk+1 ∈ ∂F ∗(yk; x̂) (15)

The investigation of this algorithm in [13] includes the following results:

Proposition 1. [13] Assume F (·; x̂), Hμ : R
n → R to be proper, lower-

semicontinuous and convex, and dom(F ) ⊂ dom(Hμ), dom(H∗
μ) ⊂ dom(F ∗).

Then

(i) the sequences {xk}, {yk} according to the equations (15) and (14) are well-
defined,

(ii)
{
F (xk; x̂) − Hμ(xk)

}
is decreasing,

(iii) every limit point x∗ of {xk} is a critical point of Eμ(x; x̂) = F (x; x̂) −
Hμ(x).

Remarks
Concerning the full reconstruction algorithm, as listed on the subsequent page,
we point out:

– Estimation of the unknown scale-parameter σ through the EM-iteration
(cf. section 3.1) is done as part of step (15) – see lines 9-14 of the reconstruc-
tion algorithm listed on the following page.

– The global optimum of the convex optimization problem in line 11 of the
reconstruction algorithm (cf. subsequent page) can be computed using any
method. In our implementation, we used a dedicated algorithm [15] in view
of the simple structure of the box-constraints x ∈ [0, 1]n.
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Reconstruction Algorithm

1 Choose x0 arbitrary (for example x0 := (1
2 , ..., 1

2 )�)
2 Choose δμ ∈ R+ (our choice: δμ ∈ (0, 0.5])
3 Choose ε > 0 (our choice: 10−4 ≤ ε ≤ 10−2)
4 Set i := 0, μ0 := 0
5 Do (μ-loop)
6 Set k := 0
7 Do (DC-loop)
8 yk := ∇Hμi(xk)
9 Set l := 0, x̂0 := xk

10 Do (EM-loop)
11 x̂l+1 := argmin

x∈[0,1]n

{
F (x; x̂l) − 〈yk, x〉

}

12 l := l + 1
13 while ||x̂l − x̂l−1||2 > ε (EM-loop)
14 xk+1 := x̂l

15 k := k + 1
15 while ||xk − xk−1||2 > ε (DC-loop)
16 μi+1 := μi + δμ

17 while ∃xk
j ∈ [ε, 1 − ε] , j = 1, . . . , n (μ-loop)

5 Evaluation

5.1 Reconstruction from Projections of Blurred Objects

In figure 1, we showed that binary reconstruction fails in case of blurred objects.
We repeated the experiment, however, this time taking deblurring into account.
The results shown in figure 3 reveal that our novel reconstruction algorithm
copes with both problems, deblurring by scale-parameter estimation and binary
reconstruction, at the same time.

Further experiments showed, that the original object can be reconstructed
even with four projections only (0◦, 45◦, 90◦, and 135◦, for σ = 1.0).

5.2 Reconstruction from Blurred Projections

The upper-left image shown in figure 4 was projected along for directions 0◦, 45◦,
90◦, 135◦. Panel (b) shows these projections for illustration, and panel (d) the
blurred version (σ = 1.5). The latter data was used to compute the reconstruc-
tion shown in panel (c). Panels (e) and (f) show the reconstructions for σ = 1.0
with and without deblurring, respectively. While the latter result clearly shows
the ill-posedness of the combined deblurring-reconstruction problem, the results
(c) and (e) demonstrate the stability of our new reconstruction algorithm even
under such severe conditions.
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Fig. 3. Reconstruction from blurred objects. (a) Original image, 32 × 32. (c)
and (e): original image convolved with different Gaussian kernels, σ ∈ {1.0, 2.0}. 5
projections were taken for both images 0◦, 22.5◦, 45◦, 67.5◦, 90◦. Figures (d), and (f)
show the corresponding results of our reconstruction algorithm. Since we obtained for
σ = 0.5 the original image we present in this case the reconstruction from only three
projections, 0◦, 45◦, and 90◦. Throughout the experiments the smoothing parameter
α was set to 0.01.

To illustrate the deblurring process further, figure 5 depicts the expressions
exp(−D(x̂; σ))/Z and D(x̂; σ), respectively, as a function of σ during the recon-
struction process. It can be clearly seen that the former expression peaks most
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Fig. 4. Reconstruction from blurred projections. Projections at 0◦, 45◦, 90◦, and
135◦ were taken from the image shown in panel (a) and convolved with a Gaussian kernel,
σ = 1.5. Panels (b) and (d) show the correct projections and the blurred projections,
respectively. Panel (c) shows the reconstruction result (α = 0.05). Panel (e) shows the
reconstruction from projection data that were blurred with σ = 1.0. Panel (f) shows the
erroneous reconstruction without taking deblurring into account.

around the correct value σ = 1.5, whereas the latter term attains its global
minimum there.

The experiments also revealed that reconstruction from blurred projections is
more difficult that reconstruction from projections of blurred objects, as in the
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Fig. 5. Upper half: The term exp(−D(x̂; σ))/Z as a function of σ during the iteration.
Lower half: The term D(x̂; σ) as a function of σ during the iteration. While the former
term peaks most near the correct value σ = 1.5, the latter attains its global minimum
there. This illustrates that the inner EM-loop of the overall reconstruction algorithm
is well-defined and robust.
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(a) Original (b) Original

(c) Without deblurring (σ = 1.0) (d) Without deblurring (σ = 1.0)

(e) With deblurring (σ = 1.0) (f) With deblurring (σ = 1.0)

Fig. 6. Reconstruction from blurred projections. (a),(b) Original image, 128 ×
128. For both images, reconstruction problems were set up using 5 projections, 0◦, 36◦,
72◦, 108◦, and 144◦, and blurring these projections with a Gaussian kernel, σ = 1.0.
(c),(d) Reconstruction without deblurring. (e),(f) Reconstruction with deblurring.
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former section: Perfect reconstruction of the original object was possible for a
smaller blurring scale only (σ = 0.8).

6 Conclusion and Further Work

We extended our reconstruction algorithm for binary tomography with an
Expectation-Maximization (EM) step to improve its behavior in the presence
of degradations during data acquisition. For evaluation purposes we defined two
different degradation models. The same reconstruction algorithm can be applied
to either of them which accurately estimates an unknown scale-parameter σ,
during the reconstruction. Our results show that our approach stabilizes the
reconstruction process in the presence of degradations.

Regarding the Q function in the EM-step, further work includes an adaptive
sampling strategy of the supporting points. This is important for two reasons:
First, it is expected to produce a more accurate approximation of the integral
especially in areas where the true σ is suspected. Second, it should also reduce
the number of supporting points since we can skip areas which are of low interest.
The latter should further speed up our algorithm.

We suppose that our approach is sufficiently general to be applied to other
combined reconstruction – missing parameter estimation scenarios as well. This
will also be subject to our future work.
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6. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-
concave regularization and d.c. programming. Discrete Applied Mathematics 151
(2005) 229–243

7. Weber, S., Schüle, T., Schnörr, C., Hornegger, J.: A linear programming approach
to limited angle 3d reconstruction from dsa projections. Special Issue of Methods
of Information in Medicine 4 (2004) 320–326
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