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Abstract. The design of inference algorithms for discrete-valued Markov
Random Fields constitutes an ongoing research topic in computer vi-
sion. Large state-spaces, none-submodular energy-functions, and highly-
connected structures of the underlying graph render this problem partic-
ularly difficult. Established techniques that work well for sparsely con-
nected grid-graphs used for image labeling, degrade for non-sparse mod-
els used for object recognition.

In this context, we present a new class of mathematically sound algo-
rithms that can be flexibly applied to this problem class with a guarantee
to converge to a critical point of the objective function. The resulting
iterative algorithms can be interpreted as simple message passing al-
gorithms that converge by construction, in contrast to other message
passing algorithms.

Numerical experiments demonstrate its performance in comparison with
established techniques.

1 Introduction

Applications of Markov Random Fields (MRFs) abound in computer vision. For
a review and performance evaluation, we refer to [11].

The majority of applications amounts to some form of image labeling over
sparsely connected grid graphs, akin to PDE-based processing in the continu-
ous case. Established inference algorithms [12, 7] rely on convex relaxations and
dedicated algorithms for solving the resulting large-scale linear programs (LPs).
For a review, we refer to [13].

Yet, it has been recognized that the performance of these algorithms de-
grade for more involved problems that have a large number of states and highly-
connected underlying graphs [6]. Such problems typically arise in connection
with object recognition.

Another problem concerns convergence of the most attractive techniques.
While it is well-known that loopy belief propagation is a heuristic from the view-
point of algorithm design [14], sound relaxation techniques like tree-reweighted
belief propagation may also suffer from convergence problems [12]. Techniques to
remedy this [5] are based on restrictions that may not be satisfied in applications.
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Finally, the quickly increasing number of constraints of LP-based relaxations
is an issue caused by highly-connected graphs, in particular if the number of
states is large, too. In this connection, Ravikumar and Lafferty [10] suggested
recently a quadratic programming (QP) relaxation that essentially boils down to
mean-field based MAP-estimation. Unlike the usual fixed-point iterations used
in mean-field annealing, QP techniques can be applied, but the inherent non-
convexity of this type of relaxation remains. To cope with it, a spectral rectifi-
cation of the problem matrix was suggested in [10] in order to approximate the
non-convex relaxation again by a convex one.

In this paper, we present a novel class of inference algorithms for MRF-
inference, based on the non-convex relaxation introduced in [10]. This class is
based on Difference of Convex Functions (DC) - programming that utilizes prob-
lem decompositions into two convex optimization problems. While in our field
these technique has been previously applied for the marginalization problem
[15], without referring to the vast and established mathematical literature [4],
our present work applies these techniques for the first time to the MAP-inference
problem, leading to fairly different algorithms.

We fix the notation and introduce the MAP-inference problem in section 2.
The basic problem relaxation and the novel class of inference algorithms are de-
tailed in Section 3, followed by a comparative numerical performance evaluation
in Section 4.

2 Problem

2.1 Notation

Let G = (V,E) be a graph with a set of nodes V and edges E. The variable xs

with s ∈ V belongs to the set Xs, so the configuration space of all labellings x is⊗
s∈V Xs. The costs assigned to any value of x are given by the model functions

θst(xs, xt) and θs(xs) , ∀s, t ∈ V , s 6= t. The corresponding index sets are I =
IV ∪IE , IV = {(s; i)|s ∈ V, i ∈ Xs} and IE = {(st; ij)|s, t ∈ V, i ∈ Xs, j ∈ Xt}.

2.2 MAP Inference

The maximum a posteriori (MAP) inference problem amounts to find a labeling
x minimizing an energy function of the form

J(x) =
∑
st∈E

θst(xs, xt) +
∑
s∈V

θs(xs) . (1)

Assembling all function values of all terms into a single large vector θ ∈ R|I|,
this problem can be shown to be equivalent to evaluating the support function
of the marginal polytope1 M,

sup
µ∈M

〈−θ, µ〉 , (2)

1 The negative sign in (2) is due to our preference to work with energies that are to
be minimized.
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in terms of the vector of marginals µ. This problem, of course, is as intractable as
is problem (1). But relaxations can be easily derived by replacing M by simpler
sets. In this paper, we consider the simplest possibility, i.e. the product of all
standard (probability) simplices over V :

Λ =

{
µ ∈ RI

V

+

∣∣∣∣∣ ∑
i∈Xs

µs;i = 1 , ∀s ∈ V

}
. (3)

3 Approach

3.1 QP-Relaxation

In [10], it was suggested to reduce the problem size by replacing µ ∈ R|I|+ in (2)

by a new set of variables τ ∈ R|I
V |

+ . Inserting µst;ij = τs;i τt;j and µs;i = τs;i,
problem (2) becomes a QP of a much smaller size

min
1
2
τ>Qτ + q>τ , (4)

s.t. τ ∈ Λ .

This QP is not convex in general. Ravikumar and Lafferty [10] propose to
base inference one a convex approximation, by adding a diagonal matrix in order
to shift the spectrum of Q to the nonnegative cone, and by modifying the linear
term accordingly, in view of extreme points of the set Λ,

min
1
2
τ>(Q + diag(d))τ + (q − 1

2
d)>τ , (5)

s.t. τ ∈ Λ .

Good performance results with respect to inference are reported in [10], in ad-
dition to being computationally attractive for graphical models with large edge
sets E due to the removal of many constraints. On the other hand, the origi-
nal idea of inner-polytope relaxations in terms of a mean-field approximation to
inference is inevitably lost through the convex approximation.

It is this latter problem that we address with a novel class of algorithms, to
be described next.

3.2 DC-Decomposition

According to the discussion at the end of the previous section, we propose to
dispense with convex approximations of (4), but to tackle it directly through
DC-programming.

The basic idea is to decompose the non-convex symmetric quadratic part
into the difference of two semi-definite quadratic forms



4

f(τ) =
1
2
τ>Qτ + q>τ = g(τ)− h(τ) , (6a)

g(τ) =
1
2
τ>Q1τ + q>τ , (6b)

h(τ) = −1
2
τ>Q2τ . (6c)

Various choices of Q1, Q2 are possible:

Eigenvalue-Decomposition: DCEV

Based on the spectral decomposition Q = V diag(eig(Q))V >, where V is the
matrix of the eigenvectors and eig(Q) are the eigenvalues of Q, we define

Q1 = V diag(max{0, eig(Q)}V > , (7)
Q2 = V diag(max{0,−eig(Q)}V > . (8)

Decomposition based on the Smallest Eigenvalue: DCMIN

Since the computation of the eigenvalue decomposition is costly, another
decomposition can be based on computing a lower bound for the smallest
eigenvalue dmin < min{eig(Q)} < 0. The smallest eigenvalue can be com-
puted, e.g., by the power method.

Q1 = Q− dmin · I , (9)
Q2 = −dmin · I . (10)

Decomposition based on the Largest Eigenvalue: DCMAX

A third immediate possibility utilizes the value of the largest eigenvalue of
Q and has additionally the property that the convex part of the function
becomes very simple. Let dmax > max{eig(Q)} be an upper bound of the
largest eigenvalue. We define

Q1 = dmax · I , (11)
Q2 = dmax · I −Q . (12)

3.3 Inference Algorithm

For any decomposition introduced in the previous section, minimization is car-
ried out by the general two-step iteration2

yk ∈ ∂h(xk) , xk+1 ∈ ∂g∗(yk)

that applies to any DC-objective g(x)− h(x) and has known convergence prop-
erties [2]. Taking into account the specific structure of our objective function
(6a), we arrive at the following simple algorithm: Depending on the particular
decomposition Q = Q1 − Q2, the convex optimization steps 3 and 7 can be
efficiently conducted with dedicated algorithms.
2 ∂f(x) denotes the set of subgradients of a proper convex lower-semicontinuous func-

tion f at x, and g∗(y) denotes the Fenchel conjugate function supx{〈x, y〉 − g(x)}
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Algorithm 1 DC-Algorithm for MRF

[ x ] ← dc4mrf ( Q, q )
1: [Q1, Q2]⇐ decompose(Q)
2: i⇐ 0
3: x0 ⇐ arg minx

1
2
x>Q1x + q>x s.t. x ∈ Λ {Solve convex part}

4: repeat
5: i⇐ i + 1
6: yi−1 ⇐ Q2x

(i−1)

7: xi ⇐ arg minx
1
2
x>Q1x + (q + yi−1)>x s.t. x ∈ Λ

8: until ‖xi − xi−1‖∞ < ε

4 Experiments

We will compare nine different approaches to minimize the objective function
given in (1) for full connected graphs. For computing the global optimum we use
an A∗-based algorithm suggested in [3]. The three DC-decompositions, presented
in this paper, are compared with the LP-relaxation [12], QP-relaxations [10], Be-
lief Propagation (BP) [14], the TRBP-message passing algorithm by Wainwright
[12] and the Second-Order-Cone-Programming (SOCP) approach by Kumar [9].

Since the QP-relaxation suggested in [10] turned out to be not tight for our
data sets, we use λminI to make the problem convex. For SOCP we do not
use triangular constraints to keep the number of constraints manageable. Note,
that the latest modifications [8] are not taken into account here, in order not
to increase further the number of constraints. TRBP and BP are stopped if the
largest change of a message is smaller than 10−6 or after 1000 iterations. A∗, BP
and TRBP are C-implementations, DCMAX runs with pure MatLab research
code.

The constrained QPs achieved by DCMIN and DCEV as well as LP and QP,
are solved using MOSEK [1]. Note, the constraints for DCMIN and DCEV are
simple and performance can be increased using specific optimization-methods.
We choose ε = 10−6 and set the maximal number of iterations for DCMAX to
100000 and for DCMIN and DCEV to 1000. In cases where relaxations resulted
in fractal solution we project it to the nearest integer solution.

Some approaches strongly depend to the number of constraints and variables,
which limits the range of application. For instance, when using SOCP and LP,
the number of constraints grow very fast. Table 1 summarizes the number of
constraints and variables.

4.1 Synthetic Experiments

For synthetic experiments we generate graphical models and vary the number of
nodes and the size of the state-space of each random variable. The potentials θ
are sampled in three ways, given in Table 2.

Table 3 shows the mean energy, the calculation time (round brackets) and for
experiment C the accuracy (square brackets). For experiments A and B our DC-
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Table 1. Number of constraints and variables required for the different methods. L is
the number of labels and K is the number of not truncated edges (see [9] for details).
In the worst case K ∼ |E| · L2

Method Number of constraints Number of variables

A∗ 0 |V |
SOCP |V |+ |V | · L + 3K |V | · L + 2 ·K
DC / QP |V | |V | · L
LP |V | · L + |E| · L2 + |V | · L + 2 · |E| · L |V | · L + |E| · L2

TRBP / BP 0 2 · |E| · L

Table 2. Overview of the sythetic experiments. In experiment 1 we compute uniform
samples in 0 and 1 and set the potentials to the negative logarithm. In the second
experiment we set all unary potentials to 0. In the third one we select a configuration
x and set θstxs, xt and 5% or 10% entries in θst to 0 and the others to − log(0.1).

Exp. A Exp. B Exp. C

θs − log(U(0, 1)) − log(1) − log(1)
θst − log(U(0, 1)) − log(U(0, 1)) − log({0.1, 1})

approach outperforms BP, TRBP, SOCP, QP and LP. A∗, which always finds
the global optimum, is only applicable to small graphs, of course. In experiment
C, BP and TRBP are superior to our approach. However, there is no guarantee
for convergence.

We also kept the ratio between nodes and labels fixed to 4 and did inference
with the different approaches. The result is shown in Fig. 1. The plot for uniform
sampled potentials (top line) again shows that DCMAX outperforms state of the
art inference techniques, at higher computational costs, however. Observe how
for experiment C (bottom line) the run-time for SOCP and LP increases fast
with the number of constraints.

To analyze the influence of the initial state to our DC-approach we selected x0

in experiment A randomly, using 5 nodes and 20 labels. In the same experiments
of Table 3, with 10 random initial states, we achieved a mean energy of 3.5878,
which is fairly robust.

4.2 Application to Object Recognition

We tested different approaches on a real world scenario. The potential functions
are now no longer generated synthetically, but estimated from real data through
local classification.

We have two scenarios, the human face and the human body, as explained
detailed in [3]. Due to the strong geometry, faces are simple and A∗ solve this
problems global optimal and fast. For human bodies A∗ suffers from several
shortcomings. For some images inference with A∗ takes several minutes. The
median with 0.21 seconds its still fast. In terms of energy we get the ranking
A∗ < BP < DCMAX < TRBP as visualized in Table 4, where the difference
between BP an DCMAX is not significant.
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Fig. 1. In the first row we show energy- and runtime-plots for models of type A with
3 to 7 nodes. In the second row we show accuracy with respect to ground truth and
runtime-plots for models of type C with 5% noise and 3 to 10 nodes. We use 4 times
more labels than nodes. Accuracy for the other approaches are same than for A∗.
DCMAX finds in exp. A the lowest energy, next to A∗, and is comparable with state
of the art approaches in exp C.

Fig. 2. visualize the three images with the largest relative energy of DCMAX . From
left to right the configurations of A∗, DCMAX , BP and TRBP are shown. Surprisingly
the DCMAX solution matches the reality best.
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Table 3. The table shows for different combinations of experiment settings and opti-
mization techniques, the energy of integer solution, the required run-time (seconds) in
round brackets and the accuracy in squared brackets. In the first column the numbers
of variables and labels are given. We repeated each setting 100 times (5 times if marked
with *) with random data. A dash indicates that the experiments could not be carried
out, because the number of constraints is to high (LP, SOCP). For exp. A and B the
DC-Algorithms outperforms state of the art approaches.

Experiment A∗ DCMAX DCMIN DCEV BP TRBP SOCP QP LP

05-20-A 2.90 3.29 3.34 3.36 7.12 4.76 10.01 7.05 6.16
(0.01) (0.88) (8.30) (2.32) (0.22) (0.41) (65.14) (0.02) (0.34)

05-20-B 1.07 1.59 1.61 1.68 6.30 4.86 6.39 5.43 6.04
(0.01) (1.89) (10.20) (2.29) (0.28) (0.11) (65.21) (0.02) (0.38)

05-20-C-05% 0.00 0.00 0.00 0.62 0.00 0.00 1.82 13.22 0.00
(0.01) (0.06) (0.56) (0.11) (0.01) (0.14) (0.33) (0.02) (0.29)
[1.00] [1.00] [1.00] [0.94] [1.00] [1.00] [0.95] [0.56] [1.00]

05-20-C-10% 0.00 1.40 1.20 2.83 0.00 0.00 11.86 14.09 0.00
(0.01) (0.09) (0.87) (0.31) (0.01) (0.15) (0.98) (0.02) (0.31)
[1.00] [0.80] [0.83] [0.64] [1.00] [1.00] [0.46] [0.38] [1.00]

10-50-A 14.53* 15.77 15.90* 16.21* 42.35 30.03 - 33.75 36.76
(1162)* (21.59) (1087)* (808)* (5.68) (1.71) - (1.12) (54.86)

10-50-B 9.75* 12.11 12.26* 12.36* 42.44 39.36 - 31.89 41.86
(1297)* (16.92) (1109)* (805)* (5.74) (1.68) - (1.08) (53.49)

20-50-C-05% 0.00 0.00 0.00* 0.00* 0.00 0.00 - 47.94 -
(0.02) (1.21) (4809)* (5089)* (0.33) (9.83) - (5.08) -
[1.00] [1.00] [1.00]* [1.00]* [1.00] [1.00] - [0.94] -

20-50-C-10% 0.00 0.00 0.00* 0.00* 0.00 0.00 - 199.04 -
(0.02) (1.26) (4707)* (4844)* (0.46) (29.91) - (5.00) -
[1.00] [1.00] [1.00]* [1.00]* [1.00] [1.00] - [0.68] -

Human faces: Our DC-decomposition finds the global optimum in 93.59% of the
images. Figure 2 shows the three images in which the relative energy difference is
largest. Surprisingly the global optimum of the energy function does not match
the reality in this images in contrast to DCMAX .

Human bodies: Detecting human bodies is a very challenging task, see Figure 3.
While in the second image the solution, achieved by DCMAX , does not describe
the underlying image accurately, in the third image it is closer to the human
perception. For this complex models DCMAX ends up in 39.26% of the images
in the global optimum.

5 Conclusions

We introduced a novel class of approximate MRF-inference algorithms based
on quadratic DC-programming. Besides provable convergence properties, the
approach shows competitive performance. It is applicable to highly-connected
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Table 4. shows the mean energy, time in seconds, and accuracy with respect to the
global optimum. For real world examples DCMAX outperforms TRBP, but finds for
human bodies configurations with slightly higher energies than BP.

Experiment A∗ DCMAX BP TRBP

Face 45.7410 45.7669 46.7476 46.8325
(0.0003) (3.7384) (0.0070) (0.0074)
[1.0000] [0.9538] [0.9701] [0.7658]

Body 57.6411 60.5376 58.2711 73.8115
(5.6569) (79.0601) (0.3382) (1.4921)
[1.0000] [0.6010] [0.8673] [0.4057]

Fig. 3. The pictures above show 3 typical images. In the first one DCMAX found the
global optima, in the second it stopped in a critical point which describes the image not
well, in the third the solution of DCMAX describes the image better than the global
optimum. From left the configurations of A∗, DCMAX , BP and TRBP are shown.
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graphical models where standard LP-based relaxations cannot be applied, be-
cause the number of constraints becomes too large.

Our future work will supplement the DC-programming framework by glob-
alization strategies and focus on the derivation of performance bounds that hold
for any application.
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