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Abstract. We present a novel variational approach to dense motion
estimation of highly non-rigid structures in image sequences. Our repre-
sentation of the motion vector field is based on the extended Helmholtz
Decomposition into its principal constituents: The laminar flow and two
potential functions related to the solenoidal and irrotational flow, re-
spectively. The potential functions, which are of primary interest for
flow pattern analysis in numerous application fields like remote sensing
or fluid mechanics, are directly estimated from image sequences with a
variational approach. We use regularizers with derivatives up to third
order to obtain unbiased high–quality solutions. Computationally, the
approach is made tractable by means of auxiliary variables. The perfor-
mance of the approach is demonstrated with ground-truth experiments
and real-world data.

1 Introduction

In a number of domains affecting our everyday life, the analysis of image se-
quences involving fluid phenomena is of importance. This includes for instance
domains such as visualization in experimental fluid mechanics [1,12], environ-
mental sciences (meteorology [3,4,11,13,21], oceanography [6]) or medical imag-
ing [2,7,18]. For all these domains it is of primary interest to extract reliable
velocity fields and to the observed fluid flow. With respect to that goal, image
sensors have considerable advantages compared to dedicated probes. Compared
to these probes, image sensors provide a huge amount of almost continuous
spatio-temporal data in a fast, tireless, reproducible and contact-free way. How-
ever, the sought motion information has then to be extracted from the luminance
function which is not an easy task.

But in such a fluid context the extraction of a velocity field is far from being
the ultimate goal of the analysis. Differential or integrated information from the
velocity field is indeed far more valuable for concerned experts. For example, it
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is essential to characterize fluid flows to extract the vorticity fields, the stream-
lines, or the singular points of the flows. All these features may be estimated
indirectly from the velocity field by differentiation or by integration. Among all
these information, the two potential functions called the velocity potential and
the stream function are of great interest: (i) their gradients provide a description
of the irrotational and the solenoidal components of the velocity fields; (ii) their
Laplacians give access to the vorticity and the divergence of the velocity fields;
(iii) their level lines allow us to extract directly the streamlines and the equipo-
tential curves of the velocity potentials; (iv) their extrema provide the location
of the singular points of major interest [5] (namely sources, sinks and vortexes).

Knowing the curl and the divergence of the flow, the extraction of such poten-
tial functions can be done by solving two Dirichlet problems. Such an estimation
is particularly difficult for sparse velocity fields such as those obtained by the
usual correlation methods [12] since an additional interpolation step is needed
[16,17]. Dense motion estimation, on the other hand, allows to recover these po-
tential functions more accurately. However, such an estimation as proposed in
[5] is not “direct”. It requires a process of three steps: First, the motion field
has to be extracted, next the motion field is separated into its irrotational and
solenoidal components, and finally the potential functions are estimated from
these two vector fields by integration.

In this paper, we propose to estimate directly the velocity potential and the
stream function from the luminance data. Instead of expressing the velocity field
explicitly, it is represented by its irrotational, solenoidal and laminar compo-
nents using the Helmholtz decomposition with a non-zero border condition. In
addition, the first two components are expressed explicitly by the velocity po-
tential and the stream function. This representation is applied to the Brightness
Constancy Constraint Equation (BCCE) and embedded into an energy func-
tional using a quadratic penalizer function. In a second step a structure preserv-
ing regularization based on the divergence of the velocity potential and the curl
of the stream function is introduced. Since the original regularization contains
high-order derivatives causing numerical difficulties it is then modified by intro-
ducing auxiliary variables. Finally the energy is integrated in a multi-resolution
framework to minimize linearization errors.

The second section of this paper describes the representation of the decom-
posed velocity field and its integration into the BCCE. Furthermore, the regu-
larization is introduced and the embedding into a multi-resolution framework as
well as the energy minimization is described. The third section is dedicated to
three experiments. The first one illustrates the influence of regularization param-
eters on the approximation quality. The second experiment compares the new
approach to the approach of Corpetti et al. [5] by means of two dedicated cases.
In the third and last experiment the approach is applied to real data. Finally,
we conclude with a discussion in section four.
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2 Description of the Approach

2.1 Helmholtz Decomposition and BCCE

Let us consider a smooth vector field w = (u(x, y), v(x, y))� : R
2 → R

2 defined
over a sectionΩ of the image plane. Without loss of generality we can extend w to
the whole plane and assume that it vanishes at infinity. As a consequence, it can
be decomposed into a sum of a divergence free component (marked as solenoidal)
and a curl free component (marked as irrotational). This decomposition is known
as the Helmholtz Decomposition of a vector field

w = wso + wir (1)

with

divwso =
∂u

∂x
+
∂v

∂y
= 0 and curlwir = −∂v

∂x
+
∂u

∂y
= 0. (2)

In case of a non-zero border condition, the decomposition also includes a laminar
component which is both irrotational and solenoidal:

w = wso + wir + wlam. (3)

Furthermore, it is well known that both wso and wir derive from potential
functions φ and ψ : Ω → R denoted as stream potential and velocity potential,
respectively:

wir = ∇φ =
(
∂φ

∂x
,
∂φ

∂y

)�
(4)

wso = ∇ψ⊥ =
(

−∂ψ

∂y
,
∂ψ

∂x

)�
. (5)

Let w denote the motion field of an image sequence I : Ω×[0, T ] → R. Assuming
brightness constancy, i.e. changes in intensity are due to motion only, leads to

I(x + w(x, t), t+∆t) − I(x, t) = 0 (6)

with
w = ∇φ+ ∇ψ⊥ + wlam. (7)

The goal of the approach presented in the following paragraphs will be the
direct approximation of those two potential fields φ and ψ from the brightness
constancy constraint equation (6) in contrast to estimating the flow field first
and followed by a path integration as proposed in [5].

The laminar component will not be of interest here. It is assumed that the
motion in the given image sequence has no laminar component, which can be
reached by approximating it separately in advance and removing it from the
image sequence by defining I(x, t) := Ī(x + wlam(x, t), t), with Ī representing
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the original sequence. In most applications wlam can be estimated roughly by a
multi-scale Horn and Schunck estimator using a strong regularization.

Embedding (6) into an energy framework leads to the functional

J(φ, ψ) :=
∫
Ω

[
I(x + ∇φ(x, t) + ∇ψ⊥(x, t), t+∆t) − I(x, t)

]2
dx, (8)

for which optimal estimates φ̂ and ψ̂ of both potentials are given by

(φ̂, ψ̂) = arg min
φ,ψ

J(φ, ψ) (9)

and the corresponding flow by ŵ = ∇φ+ ∇ψ⊥, respectively. Separate lineariza-
tions for ∇ψ⊥ and ∇φ

J1(φ, ψ) :=
∫
Ω

[∇I(x + ∇φ, t+∆t)�∇ψ⊥

+I(x + ∇φ, t+∆t) − I(x, t)]2 dx (10)

J2(φ, ψ) :=
∫
Ω

[∇I(x + ∇ψ⊥, t+∆t)�∇φ

+I(x + ∇ψ⊥, t+∆t) − I(x, t)
]2
dx (11)

lead to two coupled minimization problems



arg min
ψ
J1(φ, ψ)

arg min
φ
J2(φ, ψ)

. (12)

By defining abbreviations

∇Iν(x) := ∇I(x + ∇ν, t+∆t) (13)
∂Iν := I(x + ∇ν, t+∆t) − I(x, t) (14)

(12) can be written as



arg min
ψ

∫
Ω

[
∇I�

φ ∇ψ⊥ + ∂Iφ

]2
dx

arg min
φ

∫
Ω

[
∇I�

ψ ∇φ+ ∂Iψ

]2
dx.

. (15)

Minimizing each energy J1, J2 requires the first variations to vanish, i.e.

dJ1(φ, ψ + τψ̃)
dt

∣∣∣∣∣
τ=0

= 0 and
dJ2(φ+ τ φ̃, ψ)

dt

∣∣∣∣∣
τ=0

= 0, (16)

for arbitrary test functions ψ̃ and φ̃. This results in the system of equations:
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


∫
Ω

[
(∇Iφ∇I�

φ )∇ψ⊥ + ∂Iφ∇Iφ
]
∇ψ̃⊥ dx = 0

∫
Ω

[
(∇Iψ∇I�

ψ )∇φ+ ∂Iψ∇Iψ
]
∇φ̃ dx = 0

. (17)

Since the matrices ∇Iφ∇I�
φ and ∇Iψ∇I�

ψ are singular, terms of the form εI for
small ε can be added to make the system well-posed. Numerical experiments re-
vealed, however, that this regularization is too weak and does not yield satisfying
results. Accordingly, we investigated additional regularizing smoothness terms
which preserve the flow field structure as much as possible (see next section).

2.2 Structure-Preserving Regularization

Since the components of the motion fields (sources, sinks and vortexes) which
we want to estimate explicitly in terms of potential functions φ and ψ contain
discontinuities by their nature, first-order smoothness terms like those of the
Horn and Schunck approach [9] or non-quadratic extensions [14,15,20] are inad-
equate. Instead we suggest using a second-order div-curl regularizer as proposed
by Suter [19]:

∫
Ω

||∇divw||2 + ||∇curlw||2dx (18)

which enforces a smoothing constraint not on the motion field w itself but only
on its structural components we are interested in. Hence discontinuities in the
motion field resulting from sources, sinks and vortexes are not penalized with
this regularization term, but only abrupt changes in strength and direction of
those components. Replacing w by its definition (7) (and neglecting the laminar
component), this regularization term takes the form

∫
Ω

||∇div∇φ||2 + ||∇curl∇ψ⊥||2dx (19)

since div∇ψ⊥ = 0 and curl∇φ = 0 by definition (see (2), (4-5)). Unfortunately,
the high-order derivatives render a direct numerical approach quite involved. To
overcome this problem we follow the approach of Corpetti et al. [4] and introduce
auxiliary variables ξ1 and ξ2, enforce them to approximate curl∇ψ⊥ and div∇φ
by additional (soft) constraints and impose the original regularization constraint
on them, i.e.

∫
Ω

γ
(
[div∇φ− ξ2]

2 +
[
curl∇ψ⊥ − ξ1

]2)
+ λ

(||∇ξ2||2 + ||∇ξ1||2
)
dx, (20)

with some regularization parameters γ, λ ∈ R
+. As a consequence, the degree of

derivation is lowered at the cost of slightly weakening the regularization strength.
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The final form of the energy thus becomes

J(φ, ψ, ξ1, ξ2) :=
∫
Ω

[
I(x, t) − I(x + ∇φ+ ∇ψ⊥, t+∆t)

]2
(21)

+γ
(
[div∇φ− ξ2]

2 +
[
curl∇ψ⊥ − ξ1

]2)

+λ
(||∇ξ2||2 + ||∇ξ1||2

)
dx,

leading to the minimization problem

arg min
φ,ψ,ξ1,ξ2

J(φ, ψ, ξ1, ξ2). (22)

As before, the data term can be approximated by separate linearizations with
respect to ∇ψ⊥ and ∇φ keeping only the involved regularization terms:

J1(φ, ψ, ξ1) :=
∫
Ω

[∇I�
φ ∇ψ⊥ + ∂Iφ

]2
+ γ

[
curl(∇ψ⊥) − ξ1

]2

+λ||∇ξ1||2dx (23)

J2(φ, ψ, ξ2) :=
∫
Ω

[∇I�
ψ ∇φ+ ∂Iψ

]2
+ γ [div(∇φ) − ξ2]

2 + λ||∇ξ2||2dx. (24)

As a result, we arrive at the regularized version of (22):




arg min
ψ,ξ1

J1(φ, ψ, ξ1)

arg min
φ,ξ2

J2(φ, ψ, ξ2)
. (25)

2.3 Extensions to Multiple Resolutions

The minimization furthermore can be integrated into a coarse-to-fine framework
in order to keep the magnitudes of ∇ψ⊥ and ∇φ on each resolution level prefer-
ably small, which lowers the error resulting from the data term linearization.

Given the solutions φl−1 and ψl−1 from resolution level l − 1 (starting with
φ0 ≡ 0 and ψ0 ≡ 0) φl and ψl are calculated by

(ψl, ξl1) = (Pψl−1, 0) + arg min
ψ,ξ1

J1(φ, Pψl−1, ψ, ξ1, γl, λl) (26)

(φl, ξl2) = (Pφl−1, 0) + arg min
φ,ξ2

J2(Pφl−1, φ, ψ, ξ2, γl, λl) (27)

with
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J1(φ, ψ0, ψ, ξ1, γ, λ) := (28)∫
Ω

[∇Ī�
φ ∇ψ⊥ + ∂Īφ

]2
+ γ

[
curl∇(ψ0 + ψ)⊥ − ξ1

]2
+ λ||∇ξ1||2dx

J2(φ0, φ, ψ, ξ2, γ, λ) := (29)∫
Ω

[∇Ī�
ψ ∇φ+ ∂Īψ

]2
+ γ [div∇(φ0 + φ) − ξ2]

2 + λ||∇ξ2||2dx

and

Ī(x, t) := I(x, t)
Ī(x, t+∆t) := I(x + ∇φ0 + ∇ψ⊥

0 , t+∆t). (30)

Let P be a prolongation operator mapping from resolution level l−1 to l. Except
for the first resolution level φ and ψ are incremental refinements of the complete
solution. Note that the linearization of the data terms is carried out only for
the increments, in order to keep the linearization error small, since solutions
from coarser resolutions (Pφl−1 and Pψl−1) are included in the data itself (cf.
(30)). (30) is equivalent to an incremental back-mapping of a each frame to its
predecessor.

In contrast to that the regularization terms apply to the complete potential
functions (Pφl−1 + φ and Pψl−1 + ψ), not only to the increments. For the aux-
iliary variables the coarse-to-fine method is not applied here, since they are not
involved in the linearization. Hence, ξ1 and ξ2 are non-increments and calculated
independently at each resolution.

2.4 Minimization and Discretization

In order to evaluate (26) and (27) , we compute the Euler-Lagrange equations
for J1 w.r.t. ψ, ξ1 and for J2 w.r.t.φ and ξ2:



curl
(
(∇Ī�

φ ∇ψ⊥ + ∂Īφ)�∇Īφ
)

+ γ
[
∆2(ψ0 + ψ) +∆ξ1

]
= 0

γ [∆(ψ0 + ψ) + ξ1] − λ∆ξ1 = 0

div
(
(∇Ī�

ψ ∇φ+ ∂Īψ)�∇Īψ
)

+ γ
[
∆2(φ0 + φ) −∆ξ2)

]
= 0

γ [−∆(φ0 + φ) + ξ2] − λ∆ξ2 = 0

. (31)

The Biharmonic Operator

∆2 = ∂x4 + 2∂x2y2 + ∂y4 (32)

occurring in two equations can be discretized by a standard 13-points-stencil [8].
In addition, we impose the boundary conditions

φ(x) = σφ(x) ∧ ∇nφ(x) = ρφ(x), ∀x ∈ ∂Ω (33)
ψ(x) = σψ(x) ∧ ∇nψ(x) = ρψ(x), ∀x ∈ ∂Ω (34)
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with boundary functions σφ, σψ, ρφ and ρψ. ∇n denotes the outer normal gradi-
ent with respect to Ω.

3 Experimental Results

This section is organized into three parts. First, the quantitative and qualitative
influence of the parameters γ and λ is investigated in Section 3.1. Second, the
proposed method is compared with the method of Corpetti et al. [5] on artificial
motion fields, i.e. with ground truth, in Section 3.2. Finally, results for a real
image sequence are presented.

In all experiments, the Euler-Lagrange equations (31) were solved sequen-
tially in 3000 iterations using an incomplete CLG solver iterating 50 times in
each (outer) iteration. Two resolution levels (including the original one) have
been used for the experiments in Sections 3.1 and 3.2 and three for those in
Section 3.3.

Furthermore, due to lack of data, the boundary values of φ and ψ have been
set to zero, i.e. σφ,ψ ≡ 0. The same has been done for the normal derivatives
∇nφ,∇nψ, i.e. ρφ,ψ ≡ 0. Since it is not adequate for the vector field to vanish
at the border ∂Ω, Ω was artificially enlarged by 30% of the width/height of the
original image section and also set to zero1.

As error measure the average squared L2 norm error and the average angular
error (mean and first standard derivation) proposed by [10] have been taken.
Since the potentials φ and ψ are defined up to a constant it was difficult to find
an appropriate error measure for the velocity potential and the stream functional
directly instead for the derived flow components.

The intensities of all input images have been normalized to [0, 1].

3.1 Parameter Studies

In first experimental studies the influence of the parameters γ and λ were inves-
tigated on synthetic potentials in order to have a ground truth (cf. Figure 1).
The associated synthetic flow field was applied to a real image, i.e. the real image
was mapped using the velocity field to obtain a second image resulting in the
input image pair for the current experiments. Note that the vector field consist
of an exact spatial overlap of the true components we wish to determine and
distinguish.

Figure 3 shows the results for estimation the potential functions with param-
eter values γ ∈ {0.1, 0.25, 0.5, 1, 2, 3, 4} and λ = 103 fixed. These results clearly
illustrate the positive regularizing effect of the high-order smoothness terms in
(23) and (24) which were made computationally tractable by means of auxiliary
functions. It’s remarkable that both vector field components can be distinguished
— despite a complete spatial overlap and only partially given image structures
— by subsequent linearizations of a single data term (cf. Section 2.1).
1 Note that this is (approximately) consistent with the initial assumption (w.r.t. the

Helmholtz Decomposition) that the velocity field vanishes at infinity.
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Fig. 1. Setting for Parameters Studies (a) Ground truth velocity potential φ (b)
Ground truth stream function ψ (c) Associated synthetic velocity field w = ∇φ+∇ψ⊥

(d) The real image the velocity field w was applied to in order to generate the input
image pair for the experiments (size: 128 × 100 pixels). Note that the vector field
consist of an exact spatial overlap of the true components we wish to determine and
distinguish.
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Fig. 2. Influence of parameters λ and γ on error measurements. (a,c) Average
squared L2 norm error of ŵir +ŵso (solid), ŵir (pointed) and ŵso (dashed) depending
on γ (a) and λ (c) (b,d) Average angular error of ŵir + ŵso (solid), ŵir (pointed) and
ŵso (dashed) depend-ending on γ (b) and λ (d). Direct estimation of potential functions
as the objects of primary interest leads to a small global error of the corresponding
gradient velocity fields (a,c) but to local angular errors from 10◦ − 20◦.

Whereas Figs. 2(a,c) and 3(d,k) show that the deformation pattern has been
computed well, Figs. 2(b,d) reveal a relatively large angular error of 10◦ −20◦ of
the respective velocity fields. This is plausible since the velocity fields are related
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Fig. 3. Qualitative influence of parameter γ. Approximated velocity potentials
φ (a–g) and stream functions ψ (h–n) for γ ∈ {0.1, 0.25, 0.5, 1, 2, 3, 4} and λ = 103.
Both vector field components can be distinguished, despite a complete spatial overlap.
The positive effect of the high–order regularization implemented by means of auxiliary
functions is clearly visible.

to the derivatives of the quantities we estimate directly (potential functions). As
a consequence, inaccuracies are amplified. However, it should be noted again that
the potential functions are the quantities of primary interest for flow pattern
analysis. A comparison with an approach which uses indirect computation of
the potential functions by integrating velocity fields along stream lines is the
objective of the next section.

Figure 4 shows that for low values of the regularizing parameter γ the corre-
sponding auxiliary function must not be smoothed too much (too large values of
λ). This finding reveals a dependency between γ and λ, the closer investigation
of which is left for future work.

3.2 Comparison with the Approaches
of Corpetti et al. and Horn and Schunck

In [5] an approach was presented in which the potential functions were approxi-
mated indirectly by first estimating a motion field using a regularization similar
to (21) and a subsequent integration along the stream lines in order to obtain
the velocity potential and the stream function. Both approaches were compared
in two experiments here based on given synthetic potential functions (cf. Figure
5). In order to have a reference both experiments have been carried out with
a Horn and Schunck estimator also. The parameters of all methods have been
optimized manually. Note that the setting of Comparison Experiment 1 is the
same as for the parameters studies.

The results for Experiment 1 (Figure 6 and Table 1) and Experiment 2 (Fig-
ure 7 and Table 2) both show that the new approach yield similar good results
as the approach of Corpetti et al., despite the higher order of differential equa-
tions involved in the minimization. Furthermore, they show that the standard
regularization of Horn and Schunck is insufficient to preserve the desired image
structures, since this regularization penalizes strong discontinuities like those in
the center of the velocity field in Experiment 1 resulting from a vortex and a
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Fig. 4. Qualitative influence of parameter λ. Approximated velocity potentials
φ (a-d) and stream functions ψ (e-h) for λ ∈ {102, 103, 104, 105} and γ = 0.5. Param-
eters for enforcing regularization γ and smoothing the auxiliary functions λ are not
independent. For low values of γ, the auxiliary functions must not be smoothed too
much.

Fig. 5. Setting for Comparison Experiments 1–2. (a,b) Ground truth velocity
potential φ and stream function ψ for Comparison Experiment 1 (c) Associated velocity
field w = ∇φ + ∇ψ⊥, max ||w|| = 1.86 (d,e) Ground truth velocity potential φ and
stream function ψ for Comparison Experiment 2 (f) Associated velocity field w =
∇φ+∇ψ⊥, max ||w|| = 1.89. Both synthetic velocity fields have been used to map the
real image in Figure 1(d) in order to generate the second images of the input image
pairs.
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Fig. 6. Results of Comparison Experiment 1. Results of the direct approach
(γ = 3.0, λ = 1000): (a) Velocity potential φ̂ (b) Stream function ψ̂ (c) Associated
velocity field ŵ (d) Irrotational part of the vel. field ŵir (e) Solenoidal part of the
vel. field ŵso (f) Difference between approximated and true vel. field ŵ −w. Result of
the Corpetti et al. approach (α = 300, λ = 250): (g) Velocity potential φ̂ (h) Stream
function ψ̂ (i) Associated velocity field ŵ (j) Irrotational part of the vel. field ŵir (k)
Solenoidal part of the vel. field ŵso (l) Difference between approximated and true vel.
field ŵ − w. Both methods lead to very similar results in this case, despite significant
differences in the approach.
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Fig. 7. Results of Comparison Experiment 2. Results of the direct approach
(γ = 0.5, λ = 100): (a) Velocity potential φ̂ (b) Stream function ψ̂ (c) Associated
velocity field ŵ (d) Irrotational part of the vel. field ŵir (e) Solenoidal part of the vel.
field ŵso (f) Difference between approximated and true vel. field ŵ − w. Results of
the Corpetti et al. approach (α = 300, λ = 250): (g) Velocity potential φ̂ (h) Stream
function ψ̂ (i) Associated velocity field ŵ (j) Irrotational part of the vel. field ŵir (k)
Solenoidal part of the vel. field ŵso (l) Difference between approximated and true vel.
field ŵ−w. Also here the results are quite similar, although the false second maximum
of the stream function is more distinct with the direct approach.
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Table 1. Approximation errors of Comparison Experiment 1. Both the average
squared L2 norm error and the average angular error of the complete velocity field
(wir + wso) as well as for the irrotational and solenoidal components (wir, wso) are
depicted. Approach dependent parameters have been optimized manually. The errors
of the Horn and Schunck approach show clearly that, despite the flow directions are
estimated similarly well, there is a significant higher error in the magnitudes which
results from the penalization of the discontinuity in the velocity field (cf. Fig. 5(c)).

Approach/ Direct Approach Corpetti et al. Horn&Schunck

Error Measure γ = 3.0, λ = 1000 α = 300, λ = 250 α2 = 0.17

Aver. Sq. L2 Norm Error wir + wso 137.11 175.81 208.979

×103 wir 116.38 152.89

wso 67.51 102.24

Aver. Angular. Error wir + wso 8.69◦ ± 6.72◦ 10.12◦ ± 7.95◦ 8.93◦ ± 6.39◦

(Mean/1. Stand. Dev.) wir 11.52◦ ± 5.58◦ 12.89◦ ± 7.71◦

wso 8.35◦ ± 5.39◦ 10.36◦ ± 6.12◦

Table 2. Approximation errors of Comparison Experiment 2. While the ap-
proximation quality compared to the indirect approach of Corpetti et al. is more equal
here, the difference in approximation quality to the approach of Horn and Schunck is
not as distinct as in Experiment 1 since the discontinuities of the velocity field are
smaller in this case see Fig. 5(f)).

Approach/ Direct Approach Corpetti et al. Horn&Schunck

Error Measure γ = 0.5, λ = 100 α = 300, λ = 250 α2 = 0.07

Aver. Sq. L2 Norm Error wir + wso 162.18 168.7 170.514

×103 wir 60.69 70.59

wso 129.56 65.76

Aver. Angular. Error wir + wso 14.68◦ ± 9.59◦ 14.65◦ ± 11.51◦ 16.19◦ ± 10.26◦

(Mean/1. Stand. Dev.) wir 10.56◦ ± 5.93◦ 11.15◦ ± 7.52◦

wso 14.11◦ ± 9.72◦ 10.29◦ ± 7.36◦

source, which we want to preserve. Even for weak regularizations the results of
the Horn and Schunck estimator is less accurate in both experiments.

3.3 Reconstructing the Vortexes of a Landing Air Plane

Finally, the new approach has been applied on an image pair coming from a
real image sequence. The sequence is a recording of the motion of smoke behind
a landing passenger air plane. It contains a strong vortex in the center and a
weaker but larger one in the other direction with its center laying outside the
image plane, approximately 50% from the right border. In addition a weak source
is present in the right half, centered vertically (cf. Figure 8(a,b)).

In order to eliminate the laminar component of the velocity field, the laminar
flow has been approximated roughly by a Horn and Schunck estimator with a
strong regularization α2 = 106 and used to map the second image of the input
image pair back (cf. Section 2.1).
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(a) (b)

(c) (d)

Fig. 8. Result of the Air Plane Sequence Experiment. (a,b) Two successive
images from the sequence, gray values, 128×100 pixels (c) Approximated velocity po-
tential φ̂ (d) Approximated stream function ψ̂ (e) Associated irrotational component
ŵir (f) Associated solenoidal component ŵso. Parameters were: γ = 0.5, λ = 103,
Maximum approximated displacement: max ||ŵ|| = 2.75. The image sequence contains
a strong vortex in the center and a weaker but larger one in the other direction laying
outside, approximately 50% from the right border. In addition a weak source is present
in the right half, vertically centered. Both the main vortex and the weak source are well
reconstructed despite the lack of image structures in the lower half of the sequence.
But the weaker counter-vortex is detected only in outlines. This is plausible since the
latter one has its maximum outside the image plane and the velocity potential ψ is set
to be zero on the enlarged border.

The results in Figure 8 show that both the main vortex and the weak source
are well reconstructed, despite the lack of image structures in the lower half of
the sequence. But the weaker counter-vortex is detected only in outlines. This
is plausible since the latter one has its maximum outside the image plane and
the stream function ψ is set to be zero on the large border (see beginning of this
section).
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Fig. 8. (Continued).

4 Conclusion

Many important application areas pose the problem of computing highly non-
rigid fluid flow from image sequences. In contrast to traditional variational ap-
proaches for optical flow computation which are not appropriate in this context,
we dealt with this problem by using higher-order regularization terms which
merely penalize changes of the principal flow constituents. The approach was
made computationally tractable by the use of auxiliary functions. A significant
feature of our approach is that the associated potential functions are directly
computed. This is a favorable property regarding the recognition and analysis
of flow patterns. Numerical experiments confirmed that both components can
be estimated separately by subsequent linearizations of a single data term. A
comparison with an indirect approach revealed no loss in performance, despite
the higher order of differential equations to be solved.

Our further work will focus on the computation of the laminar flow in the
same step as well, and on the problem of unknown boundary conditions at the
image border (recall that, at present, we use standard boundary conditions for
the biharmonic operator at an artificially enlarged image border). Moreover, we
will investigate in more detail the dependency on the auxiliary functions and
corresponding smoothing terms.
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15. C. Schnörr, R. Sprengel, and B. Neumann. A variational approach to the design
of early vision algorithms. Computing Suppl., 11:149–165, 1996.

16. J. Shukla and R. Saha. Computation of non-divergent streamfunction and ir-
rotational velocity potential from the observed winds. Monthly weather review,
102:419–425, 1974.

17. J. Simpson and J. Gobat. Robust velocity estimates, stream functions, and sim-
ulated Lagrangian drifters from sequential spacecraft data. IEEE trans. on Geo-
sciences and Remote sensing, 32(3):479–492, 1994.

18. S.M. Song and R.M. Leahy. Computation of 3D velocity fields from 3D cine and
CT images of human heart. IEEE trans. on medical imaging, 10(3):295–306, 1991.

19. D. Suter. Motion estimation and vector splines. In Proc. Conf. Comp. Vision
Pattern Rec., 1994.
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