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ABSTRACT

We introduce a convex model-based approach for the segmen-
tation of cell nuclei, which exploits both shape and intensity
information. The model is directly fitted to the image intensi-
ties. Previous shape-based approaches either are not globally
optimal or require prior binarization of an image. Our ap-
proach relies on a fast second-order optimization scheme to
solve a sequence of convex programs and estimate the glob-
ally optimal solution based on the image intensities. Model
fitting is performed within image regions which are deter-
mined by exploiting the local image structure. We evaluated
our approach using fluorescence microscopy images of two
different cell types and performed a quantitative comparison
with previous methods.

Index Terms— Fluorescence microscopy, cell segmenta-
tion, model fitting, convex optimization

1. INTRODUCTION

Automatic segmentation of individual cell nuclei in mi-
croscopy images is a central task in many biological stud-
ies. When using fluorescent markers, cell nuclei often appear
as bright regions of roughly elliptic shape. Segmentation is
challenging particularly in the absence of distinct borders and
the presence of strong image noise, as depicted in Fig. 1.

In previous work, intensity thresholding was often used,
however, this approach is prone to image noise and inten-
sity inhomogeneities. When segmentation is formulated as a
combinatorial problem of discrete energy minimization, the
solution can often be computed close to global optimality
(e.g., [1, 2]). Such approaches are robust because of the ab-
sence of local energy minima. Many cell segmentation meth-
ods are based on a continuous, variational framework (e.g., [3,
4, 5, 6, 7]), where object contours are represented as level sets
of functions. Formulating the evolution of such functions as
a convex program assures that a globally optimal solution is
found reproducibly for any initialization (e.g., [5]).

To better cope with strong image noise and other dis-
tortions, cell segmentation methods were proposed which
exploit shape information, like shape-regularized variational
level sets (e.g., [4, 7]) or statistical shape models (e.g., [6]).
Other approaches rely on elliptical models, which are fitted
by marked point processes (e.g., [9, 2, 10]) or snake energy

Fig. 1. Two example images of GFP-transfected GOWT1
mouse embryonic stem cell nuclei (left and right) and cor-
responding ground truth segmentation (from [8]).

minimization (e.g., [11]). None of these shape-based meth-
ods (except [2, 10]) yield globally optimal solutions. In [2],
elliptical models are randomly sampled from uniform distri-
butions. However, a large number of samples is needed to
sample a globally optimal solution, which is computationally
expensive. [10] uses only circular models, requires a bina-
rization of the image, and does not use the image intensities.

In this contribution, we introduce a new approach to cell
nuclei segmentation, which is based on convex optimization
and exploits shape and intensity information. An elliptical
model is directly fitted to the image intensities, thus binariza-
tion of the image is not required. In our approach, the globally
optimal minimizer of a continuous energy is estimated using
a sequence of convex programs. A fast second-order method
is employed to numerically solve each convex program. We
also present a robust method for automatic selection of image
regions, where model fitting is performed. We have evaluated
our approach using fluorescence microscopy images of two
different cell types and performed a quantitative comparison
with previous methods.

2. METHOD

In this section, we describe our convex shape-based approach
for cell nuclei segmentation. Sect. 2.1 details the model and
the optimization scheme based on sequential convex pro-
gramming. Sect. 2.2 describes an approach for automatic
selection of image regions for model fitting.

2.1. Model Fitting by Convex Programming

We formulate the shape model as the zero-level set Csp =
{x|sp (x) = 0} of a p-parametrized function sp, which maps



an image point to a real value. With a symmetric matrix A, a
vector b, and a scalar c, we choose the parameterization

sp (x) = (x− b)
T

A (x− b) + c, (1)

where p = {A,b, c}. Then, for a 2-D image, the zero-level
set Csp is the whole image plane R2, the empty set, a single
dot, or takes either an elliptic, hyperbolic, or linear shape.

The model function (1) also induces the two distinct
regions I+

sp = {x|sp (x) > 0} and I−sp = {x|sp (x) < 0},
which identify the inside and the outside of the model if Csp
is elliptical. Given an image g : Ω → R, which depicts an
object and its background in an image region Ω ⊂ R2, and an
intensity threshold τ , the intensity model

y (x) = g (x)− τ , (2)

induces the two regions I+
y and I−y analogously, correspond-

ing to the imaged object and its background. To segment the
object, we seek the model parameters p such that I+

sp matches
I+
y and I−sp matches I−y . Formally, we minimize

∑
x∈Ω

L (y (x) ; sp (x)) , L (y; s) =

{
1 if y · s < 0,
0 else,

(3)

which penalizes each sample x with sgn y (x) 6= sgn sp (x).
Since the energy (3) is non-smooth, we instead consider∑
x∈Ω

φσ (y (x) ; sp (x)) , φσ (y; s) = log
(

1 + e−
ys
σ

)
. (4)

The function 1
log 2φσ is a minimal upper bound of L from

(3), which also is smooth, and moreover convex in the model
sp. The factor 1

log 2 is omitted in (4) because the minimizers
of a function are invariant to positive constant factors. The
value σ > 0 governs how strong samples x with sgn y (x) 6=
sgn sp (x) are penalized. Since (4) is non-convex in the model
parameters p, we use an approximation scheme to estimate its
global minimizer by solving a sequence of convex programs,
as detailed below.

Using p = p0 + pδ , where p0 is a current estimate of the
minimizer and pδ is an increment, leads to the decomposition
sp (x) = sp0 (x) + dpδ (x) + d′pδ (x) of (1) with

dpδ (x) =
〈
Aδ,xxT − 2xbT

0 + b0b
T
0

〉
+ 2 〈bδ,A0 (b0 − x)〉+ cδ

(5)

being linear in pδ , and a higher-order term

d′pδ (x) = 〈bδ, (A0 + Aδ) bδ〉+ 2 〈bδ,Aδ (b0 − x)〉 .

Then, within the trust region ‖Aδ‖ ≤ εA and ‖bδ‖ ≤ εb with
small εA, εb we have d′pδ ≈ 0 and hence sp ≈ sp0 +dpδ . This
approximation enables us to estimate the global minimizer of
(4) by a sequential scheme: Keeping p0 fixed, we compute the
increment pδ which globally minimizes the convex energy∑
x∈Ω

fpδ (x) , fpδ (x) = φσ (y (x) ; sp0 (x) + dpδ (x)) (6)

subject to ‖Aδ‖ ≤ εA and ‖bδ‖ ≤ εb, which leads to p0 ←
p0 + pδ for the next iteration. The energy (6) is convex, since
φσ (y; s) is convex in s and sp0 +dpδ is linear in pδ . In our ex-
periments we found that constraining Csp to be located within
a predefined image region increases the robustness. With b
as the center of an elliptic shape model Csp , we formulate a
convex program that is solved in each iteration and constrains
b to stay within a maximum distance r of a preset point µ:

min
∑
x∈Ω

fpδ (x) s.t. ‖Aδ‖ ≤ εA, ‖bδ‖ ≤ εb,
‖bδ + b0 − µ‖ ≤ r. (7)

The feasible set of (7) is convex because the constraints are
determined by convex functions (norms) of affine mappings.
These constraints are different to [12], where 3-D tubular
shapes were enforced for vessel segmentation in 3-D CT data
and location constraints were not used. In contrast, we avoid
fitting an elliptical model when no such structure is present.

The global solution of (7) is found by primal-dual inte-
rior-point methods. Such methods solve the KKT conditions

2
[
Aδ 0 0
0 bδ bδ+b0−µ
0 0 0

]
λ +

∑
x∈Ω

[
∂/∂Aδ

∂/∂bδ
∂/∂cδ

]
fpδ (x) = 0,

Diag (λ) [ ε2A−‖Aδ‖2 ε2b−‖bδ‖
2 r2−‖bδ+b0−µ‖2 ]

T
= 1/t

for the primal-dual variable pδ,λ with an adaptively chosen t
repeatedly [13]. We employed the solver [14], which uses a
Newton-like scheme to solve these conditions. This second-
order optimization scheme is significantly faster than using
a first-order method to solve (7) directly. The initialization
pδ = 0 is always feasible if ‖b0 − µ‖ ≤ r is assured. We
incrementally refine the estimate p0 by solving (7), until the
increment ‖pδ‖ becomes smaller than εmin or nmax iterations
are reached. This is outlined in Algorithm 1, which deter-
mines the solution p∗ = {A∗,b∗, c∗}.

Algorithm 1: Sequence of convex programs.
input: Ω, g, τ , σ, µ, r, nmax, εmin

A0, b0, c0 ← I · −1
r2
, µ, 1;

for i← 1 to nmax do
pδ ← solution of (7) using the initialization pδ = 0;
if ‖pδ‖ < εmin then break;
p0 ← p0 + pδ;

return p0;

2.2. Selection of Image Regions

Our approach presented above determines the shape of a cell
nucleus within an image region Ω. Since the shape of Csp∗ is
not restricted to ellipses by the constraints of (7), the result of
Algorithm 1 suffices

A∗ ≺ 0 ∧ c∗ > 0 (8)

if and only if an elliptical structure is present in Ω. Thus, our
aim is to determine one region Ω for each cell nucleus in the



(a) Di = I (b) Di = −Hi (c) Our approach

Fig. 2. Voronoi diagrams (green) of detected blobs (yellow
dot and circle) using (a) Euclidean distance, (b) Mahalanobis
distance, (c) Mahalanobis distance with normalization (9) for
two example images (top, bottom) from [17].

image, where falsely detected regions without cell nuclei are
tolerable, because using (8) for testing allows identifying and
discarding empty regions in a simple but reliable manner.

To determine suitable image regions, we employed a
multiscale blob detector [15]. We used a very conservative
threshold for the detection, since falsely detected blobs (and
the corresponding fitted shapes) can be reliably discarded by
(8). Densely located cell nuclei were handled by applying
the detector not directly to the image g, but to the image
g − ‖∇g‖ /maxx ‖∇g (x)‖, where ‖∇g‖ is the gradient
magnitude of g. The image is then partitioned into distinct
regions by assigning each pixel x to the i-th blob, for which
the squared Mahalanobis distance (x− µi)

T
Di (x− µi) to

the center µi of the i-th blob is minimal. We used the matrix

Di = −Hi /
(
σ2
i λmin (−Hi)

)
, (9)

where Hi is the Hessian of the image g at µi and λmin (−Hi)
is the lowest eigenvalue of −Hi. Blobs with λmin (−Hi) = 0
were not considered. The denominator in (9) normalizes the
scale information in Hi with respect to the blob scale σi. Us-
ing the Hessian of an image for analyzing local structure is not
new (e.g., [16]). However, in our approach we use the Maha-
lanobis distance and the normalization in (9). Fig. 2 shows
that using the Euclidean distance tends to split cell nuclei into
multiple regions (first row), the Mahalanobis distance without
normalization is prone to falsely-detected blobs (second row),
and our approach performs best.

For each determined region Ω, we estimated the globally
optimal fit of our shape model using Algorithm 1. The param-
eters µ and r were chosen as the center and radius

√
2σi of the

blob, the threshold τ was determined by Otsu thresholding of
the region Ω. We used σ = 0.025, nmax = 50, εmin = 0.1,
εA = 20, and εb = 1 in all our experiments. For every fitted
model passing condition (8), we further examined the eigen-
value decomposition A∗ = UΛUT and computed the ellipse
half-axes [l1, l2] =

√
c∗ (−Λ)−1/2 U. We discarded those

results additionally, for which the ellipse area π · ‖l1‖ ·‖l2‖ or
circularity ‖l1‖ / ‖l2‖ significantly differed from the means
of the same image, and merged ellipses with sufficient over-
lap into single objects.

(a) Image (b) Ground truth (c) Convergence (d) Result

Fig. 3. (a) Section of an example image from [8]. (b) Ground
truth. (c) Convergence of our second-order method (red) com-
pared to first-order optimization (gray). (d) Our result.

3. EXPERIMENTAL RESULTS

First, we studied the convergence properties of our method,
which is based on a second-order optimization scheme. Us-
ing the image shown in Fig. 3a, we compared our method with
the first-order scheme in [12], which was previously used for
vessel segmentation in 3-D CT data, but omitting the tubular
shape constraints. Our algorithm converged in 0.6 seconds
(after five iterations there were hardly any changes), achiev-
ing a Dice coefficient of 84% (see Fig. 3d). In comparison, the
scheme in [12] required already 3.3 seconds for one iteration
(Dice coefficient: 80%) and did not terminate within 100 sec-
onds (using the same parameter settings as for our method).

Second, we applied our method to images from three
datasets. The first dataset (from [17]) consists of 49 images
of Hoechst-stained NIH3T3 cells. Visible artifacts and non-
elliptic nuclei shapes hamper the analysis of these images.
The other two datasets are training datasets from the ISBI
2013 Cell Tracking Challenge [8], consisting of 51 images
of GFP-transfected GOWT1 cells. Both datasets are difficult
due to strong image noise and low contrast (e.g., see Fig. 3a).

We used the Dice coefficient and the SEG measure from
[8] to evaluate our results. SEG was computed for all images.
It is defined as the mean Jaccard similarity index J (R) =
|R ∩ S (R)| / |R ∪ S (R)| of a ground truth cell nucleus R
and its corresponding segmented object S (R). If no seg-
mented object corresponds to R, S (R) = ∅ is set. For the
Dice coefficient, we used all images, which a fully-labeled
ground truth was available for (all 49 images for the NIH3T3
dataset and 4 images for each GOWT1 dataset).

For the evaluation with the Dice coefficient, we used the
NIH3T3 dataset and both GOWT1 datasets. For NIH3T3, re-
sults were previously reported for a convex variational level
sets approach [5], which does not use shape information. We
performed a comparison with this method and Otsu threshold-
ing, and studied the effectiveness of the location constraint of
our method in (7). The results in Tab. 1 show that the location
constraint improves the accuracy significantly. In addition,
our method outperforms [5] and Otsu thresholding.

We also assessed the performance of our method on the
two GOWT1 datasets using the SEG measure and compared
it with three other methods, for which [18] provided results.
The first method is KTH [19], which performed overall best
for segmentation in the ISBI 2013 Cell Tracking Challenge
[8]. The other two methods are a blob detection approach
(BLOB) [20] and a deep learning method (CPN) [18]. We
also used Otsu thresholding for our comparison. The results
in Tab. 2 show that our method performs best on the second



Dataset Otsu Level sets Ours w/o LC Ours
NIH3T3 40.5 85 86.4 87.4

GOWT1-01 59.2 – 57.4 63.7
GOWT1-02 60.4 – 86.7 89.4

Table 1. Average Dice coefficients (in %) of our method with
and without location constraints (LC) and other approaches.
The best-performing method of each dataset is highlighted.

GOWT1 dataset. For the first GOWT1 dataset, our method
is second best (somewhat worse than CPN), but significantly
more accurate (13.6% better) than KTH, which achieved the
best overall result for segmentation in the challenge [8]. Our
method is also 7.9% better than BLOB. The low values for
Otsu thresholding indicate the difficulties of the datasets,
where cell nuclei are easily missed due to low contrast and
strong noise. Considering this, and also that BLOB and par-
ticularly CPN exploit temporal information by performing
joint segmentation and tracking, which our method does not,
the results of our method are very competitive.

Dataset Otsu CPN BLOB KTH Ours
GOWT1-01 21.7 85.1 74.2 68.5 82.1
GOWT1-02 42.5 87.3 90.5 89.4 91.3

Table 2. SEG performance values (in %) of Otsu threshold-
ing, CPN [18], BLOB [20], KTH [19], and our method. The
best-performing method of each dataset is highlighted.

4. CONCLUSIONS

In this paper, we have presented a new model-based approach
for robust segmentation of cell nuclei in microscopy images.
The model is directly fitted to the image intensities by solv-
ing a sequence of convex programs. A fast second-order opti-
mization scheme determines the global solution of each con-
vex program. By the choice of the constraints in the convex
programs, our approach is intrinsically tolerant to falsely se-
lected image regions. A quantitative comparison with pre-
vious methods showed that our approach yields competitive
results or outperforms previous methods.
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