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Abstract Assignment flows comprise basic dynamical systems for modeling data
labeling and related machine learning tasks in supervised and unsupervised scenar-
ios. They provide adaptive time-variant extensions of established discrete graphical
models and a basis for the design and better mathematical understanding of hierar-
chical networks, using methods from information (differential) geometry, geometric
numerical integration, statistical inference, optimal transport and control. This chap-
ter introduces the framework by means of the image labeling problem and outlines
directions of current and further research.

1 Introduction

Let (F , dF) be a metric space and Fn = { fi ∈ F : i ∈ I} given data with |I | = n.
Assume that a predefined set of prototypes F∗ = { f ∗j ∈ F : j ∈ J} is given with
|J | = c. Data labeling denotes the assignment

j → i, f ∗j → fi (1)

of a single prototype f ∗j ∈ F∗ to each data point fi ∈ Fn. Adopting the common
model assumption that Fn is a finite sample set generated by an unknown under-
lying probability distribution µF , the quality of assignments may be defined via
the quantization of µF in terms of the selected (assigned) prototypes and by corre-
sponding optimality criteria of information theory [16, 18, 14]. The assignment of
indices j → i induces a partition (classification) of Fn. Accordingly, depending on
the research area, prototypes f ∗j ∈ F∗ are also called class representatives, feature
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dictionary, codebook or simply labels, and we will use interchangeably these terms
throughout this chapter.

What makes the data labeling problem challenging is that context-sensitive label
assignments are required: I forms the vertex set of a given undirected graph G =
(I, E) which defines a relation E ⊂ I × I and neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (2)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i). Indices i ∈ I
frequently index positions xi ∈ Ω ⊂ Rd in a Euclidean domain1, and k ∈ Ni

indicates a small Euclidean distance ‖xi − xk ‖. A basic example are image features
Fn extracted from raw pixel data on a image grid graph G and the corresponding
image labeling problem.

In such situations, it is plausible to assume that k ∈ Ni implies that the same
label is assigned to both i and k more frequently than different labels, which explains
the success of the total variation measure of ‘piecewise image homogeneity’ for
image denoising [45]. Yet, this assumption falls short of the enormous complexity
of assignment relations that define natural real image structure across the scales up
to a semantic level. While information theory clearly says that joint assignments are
more appropriate than individual assignments for the quantization of complex data
sources µF [14], how to accomplish this task in a mathematically and statistically
satisfying way using algorithms that are computationally feasible, has remained an
unsolved problem.

The aforementioned data encoding-decoding tasks are nowadays mainly per-
formed using deep networks, due to their striking empirical performance in bench-
mark tests across many disciplines like, e.g., in image labeling [31]. However, this
rapid development during recent years has not improved our mathematical under-
standing in the same way, so far [15]. The ‘black box’ behavior of deep networks
and systematic failures [2] are worrying not only researchers from mathematics and
scientific computing, but also industrial partners in connection with safety-critical
applications.

In this context, assignment flows are introduced in this chapter as an attempt to
extend discrete graphical models in a systematic way, which defined the prevailing
framework for data modeling, inference and learning during the last three decades
[17, 33, 51, 30, 36]. Regarding inference algorithms using discrete graphical models,
we refer to [28] for an assessment of the state of the art.

Assignment flows are smooth dynamical systems defined using information geom-
etry [1, 4]. Elementary statistical manifolds [32] provide both a target space for data
embedding and a state space on which the assignment flow evolves in order to deter-
mine a data labeling. Corresponding vector fields are parametrized and thus enable
to learn the adaptivity of regularized label assignments within neighborhoods (2),
rather than parameters of a fixed regularizer as with graphical models or traditional
variational approaches to inverse problems. Smoothness and modular compositional

1 This includes spatio-temporal data – like e.g. videos – observed at points (ti, xi ) ∈ [0, T ] × Ω ⊂
R × Rd in time and space.
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design yield efficient algorithms based on numerical geometric integration and en-
able to switch seamlessly between supervised and unsupervised scenarios within a
single framework.

The assignment flow for supervised data labeling is introduced in Section 2.
Unsupervised scenarios involving label evolution and learning labels from data are
discussed in Section 3. Section 4 reports first steps towards learning (estimating)
adaptivity parameters of the assignment flow via optimal control. Section 5 outlines
current and future work that will be undertaken along this research direction, in
order to contribute to a better mathematical understanding of the representation and
inference of natural image structure.

This chapter focuses on the basic mathematical ingredients and the discussion
of corresponding modeling aspects. We refer to [3, 22, 56, 58, 57, 59, 49, 23]
for more detailed expositions of the respective topics, numerical experiments and
a discussion of related work. Regarding the latter, we include few comments on
historical developments as Remarks 1 and 2 on page 7.

Basic Notation. We set n = |I | (number of vertices), c = |J | (number of classes
resp. labels) and [m] = {1, 2, . . . ,m} for m ∈ N. 1 = (1, 1, . . . , 1)> denotes the one-
vector whose dimension depends on the context. 〈·, ·〉 denotes the Euclidean inner
product. The probability simplex of dimension c − 1 is

∆c =
{
p ∈ Rc

+ : 〈1, p〉 =
∑
j∈[c]

pj = 1
}
. (3)

It is the convex hull of its vertices (extreme points) which are the unit vectors
e1 = (1, 0, . . . , 0)>, . . . , ec = (0, 0, . . . , 0, 1)>. The expectation with respect to a
distribution p ∈ ∆c is denoted by

Ep[q] = 〈p, q〉, q ∈ Rc . (4)

I = Diag(1) denotes the identity matrix.
Inequalities between vectors Rc 3 p > 0 hold for each component, p1 >

0, . . . , pc > 0. Likewise, the exponential function and the logarithm apply to each
component of the argument vector,

ep = (ep
1
, . . . , ep

c

)>, log p = (log p1, . . . , log pc)>, (5)

and componentwise multiplication and subdivision are simply written as

uv = (u1v2, . . . , ucvc)>,
v

p
=

( v1

p1 , . . . ,
vc

pc

)>
, u, v ∈ Rc, p > 0. (6)

It will be convenient to write the exponential function with large expressions as
argument in the form ep = exp(p). The latter expression should not be confused with
the exponential map expp defined by (23) that always involves a subscript. Likewise,
log always means the logarithm function and should not be confused with the inverse
exponential maps defined by (23).
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We write E(·) for specifying various objective functions in this chapter. The
context disambiguates this notation.

2 The Assignment Flow for Supervised Data Labeling

We collect in Section 2.1 basic notions of information geometry [32, 1, 10, 4]
that are required for introducing the assignment flow for supervised data labeling in
Section 2.2. See e.g. [34, 27] regarding general differential geometry and background
reading.

2.1 Elements of Information Geometry

We sketch a basic framework of information geometry and then consider the specific
instance on which the assignment flow is based.

2.1.1 Dually Flat Statistical Manifolds

Information geometry is generally concerned with smoothly parametrized families
of densities on some sample spaceX with open parameter setΞ in a Euclidean space,

Ξ 3 ξ 7→ p(x; ξ), x ∈ X, (7)

that are regarded as immersions into the space of all densities. Equipped with
the Fisher-Rao metric g which is a unique choice due to its invariance against
reparametrization,

(M, g) with M = {p( · ; ξ) : ξ ∈ Ξ} (8)

becomes a Riemannian manifold. Let X(M) denote the space of all smooth vector
fields on M. The Riemannian (Levi-Civita) connection ∇g is the unique affine
connection being torsion-free (or symmetric) and compatible with the metric, i.e. the
covariant derivative of the metric tensor

(∇
g
Zg)(X,Y ) = 0 ⇔ Zg(X,Y ) = g(∇

g
Z X,Y ) + g(X,∇gZY ), (9)

vanishes for all X,Y, Z ∈ X(M). A key idea of information geometry is to replace
∇g by two affine connections ∇,∇∗ that are dual to each other, which means that
they jointly satisfy (9),

Zg(X,Y ) = g(∇Z X,Y ) + g(X,∇∗ZY ), ∀X,Y, Z ∈ M(X). (10)
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In particular, computations simplify if in addition both ∇ and ∇∗ can be chosen flat,
i.e. for either connection and every point pξ ∈ M there exists a chart U ⊂ M and
local coordinates, called affine coordinates, such that the coordinate vector fields are
parallel inU. (M, g,∇,∇∗) is then called a dually flat statistical manifold.

2.1.2 The Assignment Manifold

Adopting the framework above, the specific instance ofM relevant to data labeling
(classification) is

(S, g), S = {p ∈ ∆c : p > 0} (11)

with sample space J = [c],

1S =
1
c

1 ∈ S, (barycenter) (12)

tangent bundle TS = S × T0,

T0 = {v ∈ Rc : 〈1, v〉 = 0}, (13)

orthogonal projection

Π0 : Rc → T0, Π0 = I − 1S1>, (14)

and Fisher-Rao metric

gp(u, v) =
∑
j∈J

u jv j

pj
, p ∈ S, u, v ∈ T0. (15)

Given a smooth function f : Rc → R and its restriction to S, also denoted by f ,
with Euclidean gradient ∂ fp ,

∂ fp = (∂1 fp, . . . , ∂c fp)>, (16)

the Riemannian gradient reads

gradp f = Rp∂ fp = p
(
∂ fp − Ep[∂ fp]1

)
(17)

with the linear map

Rp : Rc → T0, Rp = Diag(p) − pp>, p ∈ S (18)

satisfying
Rp = RpΠ0 = Π0Rp . (19)

The affine connections ∇,∇∗ are flat and given by the e-connection and m-
connection, respectively, where ‘e’ and ‘m’ stand for the exponential and mixture
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representation of distributions p ∈ S [1]. The corresponding affine coordinates are
given by θ ∈ Rc−1 and 0 < µ ∈ Rc−1 with 〈1, µ〉 < 1 such that

p = pθ =
1

1 + 〈1, eθ〉
(eθ

1
, . . . , eθ

c−1
, 1)> ∈ S, (20a)

p = pµ = (µ1, . . . , µc−1, 1 − 〈1, µ〉)> ∈ S. (20b)

Choosing affine geodesics in the parameter spaces

θ(t) = θ + t Ûθ, µ(t) = µ + t Ûµ, (21)

the affine e- and m-geodesics in S read with p = pθ = pµ ∈ S

pθ(t) =
pet

v
p

〈p, et
v
p 〉
, v =

(
Ûµ

−〈1, Ûµ〉

)
∈ T0, (22a)

pµ(t) = pµ + tv, t ∈ [tmin, tmax], (22b)

where t in (22b) has to be restricted to an interval around 0 ∈ [tmin, tmax], depending
on µ and v, such that pµ(t) ∈ S. Therefore, regarding numerical computations, it is
more convenient to work with the unconstrained e-representation.

Accordingly, with v ∈ T0, p ∈ S, we define the exponential maps and their
inverses

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉
, (23a)

Exp−1
p : S → T0, q 7→ Exp−1

p (q) = Rp log
q
p
, (23b)

expp : T0 → S, expp = Expp ◦Rp, (23c)

exp−1
p : S → T0, exp−1

p (q) = Π0 log
q
p
, (23d)

Applying the map expp to a vector in Rc = T0 ⊕ R1 does not depend on the constant
component of the argument, due to (19).

The assignment manifold is defined as

(W, g), W = S × · · · × S. (n = |I | factors) (24)

Points W ∈ W are row-stochastic matrices W ∈ Rn×c with row vectors

Wi ∈ S, i ∈ I (25)

that represent the assignments (1) for every i ∈ I. The jth component of Wi is
interchangeably denoted by W j

i or as element Wi, j of the matrix W ∈ W.
We set

T0 = T0 × · · · × T0 (n = |I | factors) (26)
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with tangent vectors V ∈ Rn×c, Vi ∈ T0, i ∈ I. All the mappings defined above
factorize in a natural way and apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn
) etc.

Remark 1 (Early related work: nonlinear relaxation labeling)
Regarding image labeling, our work originates in the seminal work of Rosenfeld,

Hummel and Zucker [43, 24]. Similar to the early days of neural networks [46], this
approach was not accepted by researchers focusing on applications. Rather, support
vector machines [13] were prevailing later on in pattern recognition and machine
learning due to the convexity of the training problem, whereas graph cuts [9] became
the workhorse for image labeling (segmentation), for similar reasons.

Nowadays, deep networks predominate in any field due to its unprecedented
performance in applications. And most practitioners, therefore, accept it and ignore
the criticism in the past that has not become obsolete [15, 2].

Remark 2 (Related work: replicator equation and evolutionary game dynamics)
The gradient flow

Ûp = gradp f , p(0) ∈ p0 ∈ S (27)

evolving on S, with gradp f due to (17), is known as the replicator equation in
connection with evolutionary dynamical games [21, 47]. More general ‘payoff func-
tions’ replacing ∂ fp in (17) have been considered that may or may not derive from
a potential.

In view of Remark 1, we point out that Pelillo [39] worked out connections to
relaxation labeling from this angle and, later on, also to graph-based clustering [38].
In our opinion, a major reason for why these approaches fall short of the performance
of alternative schemes is the absence of a spatial interactionmechanism that conforms
with the underlying geometry of assignments. Such a mechanism basically defines
the assignment flow to be introduced below.

2.2 The Assignment Flow

We introduce the assignment flow [3] and its components for supervised data labeling
on a graph.

2.2.1 Likelihood Map

Let i ∈ I be any vertex and (recall (1))

Di =
(
dF( fi, f ∗1 ), . . . , dF( fi, f ∗c )

)>
, i ∈ I. (28)
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Since the metric (feature) space F can be anything depending on the application
at hand, we include a scaling parameter2 ρ > 0 for normalizing the range of the
components of Di and define the likelihood map in terms of the likelihood vectors

Li : S → S, Li(Wi) = expWi

(
−

1
ρ

Di

)
=

Wie
− 1
ρDi

〈Wi, e
− 1
ρDi 〉

, i ∈ I. (29)

By (23c) and (17), a likelihood vector (29) is formed by regarding Di as gradient
vector (see also Remark 3 below) and applying the exponential map ExpWi

.
Using (29) we define the single-vertex assignment flow

ÛWi = RWi Li(Wi), Wi(0) = 1S (30a)
= Wi

(
Li(Wi) − EWi [Li(Wi)]1

)
, i ∈ I. (30b)

We have

Proposition 1 The solution to the system (30) satisfies

lim
t→∞

Wi(t) = W∗i =
1
|J∗ |

∑
j∈J∗

ej ∈ arg min
Wi ∈∆c

〈Wi,Di〉, J∗ = arg min
j∈J

D j
i . (31)

In particular, if the distance vector Di has a unique minimal component D j∗
i , then

limt→∞Wi(t) = ej∗ .

Remark 3 (Data term, variational continuous cuts)
A way to look at (29) that has proven to be useful for generalizations of the

assignment flow (cf. Section 3.2), is to regard Di as Euclidean gradient of the data
term

Wi 7→ 〈Di,Wi〉 (32)

of established variational approaches (‘continuous cuts’) to image labeling, cf. [35,
Eq. (1.2)] and [11, Thm. 2] for the specific binary case of c = 2 labels. Minimizing
this data term overWi ∈ ∆c yields the result (31). In this sense, (29) and (30) provide
a smooth geometric version of traditional data terms of variational approaches to
data labeling and a dynamic ‘local rounding’ mechanism, respectively.

2.2.2 Similarity Map

The flow (30) does not interact with the flow at any other vertex i′ ∈ I. In order
to couple these flows within each neighborhood Ni given by (2), we assign to each

2 The sizes of the components D j
i , j ∈ J relative to each other only matter.
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such neighborhood the positive weights3

Ωi =
{
wi,k : k ∈ Ni, wi,k > 0,

∑
k∈Ni

wi,k = 1
}
, i ∈ I (33)

and define the similarity map in terms of the similarity vectors

Si : W → S, Si(W) = ExpWi

( ∑
k∈Ni

wi,k Exp−1
Wi

(
Lk(Wk)

) )
(34a)

=

∏
k∈Ni

Lk(Wk)
wi,k〈

1,
∏

k∈Ni
Lk(Wk)

wi,k
〉 , i ∈ I. (34b)

The meaning of this map is easy to see: The argument of (34a) in round brackets
corresponds to the optimality condition that determines the Riemannian mean of
the likelihood vectors Lk, k ∈ Ni with respect to the discrete measure Ωi , if the
exponential map of the Riemannian connection were used [27, Lemma 6.9.4]. Using
instead the exponential map of the e-connection yields the closed-form formula (34b)
that can be computed efficiently.

Remark 4 (Parameters)
Two parameters have been introduced at this point: the size |Ni | of the neighbor-

hoods (2) that we regard as a scale parameter, and the weights (33). How to turn the
weights in adaptivity parameters and to learn them from data is discussed in Section
4.

2.2.3 Assignment Flow

The interaction of the single-vertex flows through the similarity map defines the
assignment flow

ÛW = RW S(W), W(0) = 1W, (35a)
ÛWi = RWi Si(W), Wi(0) = 1S, i ∈ I, (35b)

where 1W ∈ W denotes the barycenter ofW, each row of which is equal to 1S .
System (35a) collects the local systems (35b), for each i ∈ I, which are coupled
through the neighborhoods Ni and the similarity map (34).

Observe the structural similarity of (30a) and (35) due to the composition of the
likelihood and similarity maps, unlike the traditional additive combination of data
and regularization terms.

3 Here we overload the symbol Ω which denotes the Euclidean domain covered by the graph G,
as mentioned after Eq. (2). Due to the subscripts Ωi and the context, there should be no danger of
confusion.
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Example. Consider the case of two vertices I = {1, 2} and two labels c = 2.
Parametrize the similarity vectors by

S1 = (s1, 1 − s1)
>, S2 = (s2, 1 − s2)

>, si ∈ (0, 1), i ∈ I (36a)

and the weights Ωi = {wi,1,wi,2} by

w11 = w1, w12 = 1 − w1, w21 = 1 − w2, w22 = w2, wi ∈ (0, 1) (36b)

for i ∈ I. Due to this parametrization, one can show that the assignment flow for
this special case is essentially governed by the system(

Ûs1
Ûs2

)
=

(
s1(1 − s1)

(
w1(2s1 − 1) + (1 − w1)(2s2 − 1)

)
s2(1 − s2)

(
(1 − w2)(2s1 − 1) + w2(2s2 − 1)

) ) (37)

with initial values s1(0), s2(0) depending on the data D1,D2. Figure 1 illustrates
that the weights control the stability of stationary points at the extreme points that
correspond to unambiguous labelings to which the assignment flow may converge,
and the regions of attraction. Interior fixed points exist as well, including interior
points of the facets, but are unstable.

A corresponding study of the general case will be reported in future work.

2.2.4 Geometric Integration

We numerically compute the assignment flow by geometric integration of the system
of ODEs (35). Among a range of possible methods [19], Lie group methods [26] are
particularly convenient if they can be applied. This requires to point out a Lie group
G and an action Λ : G ×M → M of G on the manifoldM at hand such that the
ODE to be integrated can be represented by a corresponding Lie algebra action [26,
Assumption 2.1].

In the case of the assignment flow, we simply identify G = T0 with the flat tangent
space. One easily verifies that the action Λ : T0 × S → S defined as

Λ(v, p) = expp(v), (38)

satisfies

Λ(0, p) = p, (39a)

Λ(v1 + v2, p) =
pev1+v2

〈p, ev1+v2〉
= Λ(v1,Λ(v2, p)). (39b)

Based on Λ the ‘Lie machinery’ can be applied [56, Section 3] and eventually leads
to the following tangent space parametrization of the assignment flow.
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(a) (b)

(c) (d)

Fig. 1 Vector field on the right-hand side of the ODE-system (37) that represents the assignment
flow for two vertices and two labels, for different weight valuesw1, w2. Depending on these weights,
we observe stable and unstable stationary points at the vertices that represent the possible labelings,
and throughout unstable interior stationary points (including interior points of the facets) that
correspond to ambiguous labelings.

Proposition 2 ([56]) The solution W(t) to assignment flow (35) emanating from any
W0 = W(0) admits the representation

W(t) = expW0

(
V(t)

)
(40a)

where V(t) ∈ T0 solves

ÛV = ΠT0 S
(
expW0

(V)
)
, V(0) = 0 (40b)
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and ΠT0 denotes the natural extension of the orthogonal projection (14) onto the
tangent space (26).

We refer to [56] for an evaluation of geometric RKMK methods [37] including
embedding schemes for adaptive stepsize selection and more. These algorithms
efficiently integrate not only the basic assignment flow but also more involved
extensions to unsupervised scenarios, as discussed in Section 3.

2.2.5 Evaluation of Discrete Graphical Models: Wasserstein Message Passing

In Section 1 the assignment flowwasmotivated and characterized as an approach that
extends discrete graphical models in a systematic way. A natural question, therefore,
is: How can one evaluate a given graphical model using the assignment flow?

This problem was studied in [22]. Let

` : I → J (41)

denote a labeling variable defined on the graph G. We regard ` both as a function
I 3 i 7→ `i ∈ J and as a vector I 3 i 7→ `i = (`

1
i , . . . , `

c
i )
> ∈ {e1, . . . , e |J |}

depending on the context.
The basic MAP-inference problem (MAP = maximum a posteriori) amounts to

minimize a given discrete energy function with arbitrary local functions Ei, Eik ,

E(`) =
∑
i∈I

Ei(`i) +
∑
ik∈E

Eik(`i, `k), (42)

which is a combinatorially hard problem. The local interaction functions are typically
specified in terms of a metric dJ of the label space (J, dJ),

Eik(`i, `k) = dJ(`i, `k), (43)

in which case the problem tominimize E(`) is also called themetric labeling problem
[29]. The basic idea of the approach [22] is

(a) to rewrite the local energy terms in the form

E(`) =
∑
i∈I

(
〈θi, `i〉 +

1
2

∑
k∈Ni

〈`i,Θik`k〉
)

(44)

with local parameter vectors θi and matrices Θik given by

〈θi, ej〉 = Ei( j), 〈ej,Θikej′〉 = dJ( j, j ′), i, k ∈ I, j, j ′ ∈ J ; (45)

(b) to define the energy function (42) on the assignment manifold by substituting
assignment variables for the labeling variables,

` → W ∈ W, `i → Wi ∈ S, i ∈ I; (46)
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this constitutes a problem relaxation;
(c) to turn the interaction term into smoothed local Wasserstein distances

dΘik,τ(Wi,Wk) = min
Wik ∈Π(Wi,Wk )

{
〈Θik,Wik〉 + τ

∑
j, j′∈J

Wik, j j′ log Wik, j j′

}
(47a)

subject to Wik1 = Wi, W>ik1 = Wk (47b)

between the assignment vectors considered as local marginal measures and using
Θik as costs for the ‘label transport’. Problem (47) is a linear assignment problem
regularized by the negative entropy which can be efficiently solved by iterative
scaling of the coupling matrix Wik [25].
As a result, one obtains the relaxed energy function

Eτ(W) =
∑
i∈I

(
〈θi,Wi〉 +

1
2

∑
k∈Ni

dΘik,τ(Wi,Wk)

)
(48)

with smoothing parameter τ > 0, that properly takes into account the interaction
component of the graphical model.

Objective function (48) is continuously differentiable. Replacing Di in the likelihood
map (29) by ∂Wi Eτ(W) – cf. the line of reasoning mentioned as Remark 3 – bases the
likelihood map on state-dependent distances that take into account the interaction of
label assignment with the neighborhoodsNi of the underlying graph, as specified by
the given graphical model. This regularizing component of ∂Wi Eτ(W) replaces the
geometric averaging (34). An entropy term αH(W) is added in order to gradually en-
force an integral assignment W . Numerical integration yields W(t) which converges
to a local minimum of the discrete objective function (42) whose quality (energy
value) depends on the tradeoff – controlled by the single parameter α – between
minimizing the relaxed objective function (48) and approaching an integral solution
(unambiguous labeling).

The corresponding ‘data flow’ along the edges of the underlying graph resem-
bles established belief propagation algorithms [55], yet with significant conceptual
differences. For example, the so-called local-polytope constraints of the standard
polyhedral relaxation of discrete graphical models (cf. Section 2.2.6) are satisfied
throughout the iterative algorithm, rather than after convergence only. This holds by
construction due to the ‘Wasserstein messages’ the result from the local Wasserstein
distances of (48), once the partial gradients ∂Wi Eτ(W), i ∈ I are computed. We
refer to [22] for further details and discussion.

2.2.6 Global Static vs. Local Dynamically Interacting Statistical Models

The standard polyhedral convex relaxation [54] of the discrete optimization problem
(42) utilizes a linearization of (44), rewritten in the form
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E(`) =
∑
i∈I

〈θi, `i〉 +
∑
ik∈E

∑
j, j′∈J

Θik, j j′`
j
i `

j′

k
, (49)

by introducing auxiliary variables `ik, j j′ that replace the quadratic terms ` ji `
j′

k
. Col-

lecting all variables ` ji , `ik, j j′, i, k ∈ I, j, j ′ ∈ J into vectors `I and `E and similarly
for the model parameters to obtain vectors θI and θE , enables to write (49) as linear
form

E(`) = 〈θI, `I〉 + 〈θE, `E〉, ` = (`I, `E) (50)

and to define the probability distribution

p(`; θ) = exp
(
〈θI, `I〉 + 〈θE, `E〉 − ψ(θ)

)
, (51)

which is a member of the exponential family of distributions [5, 51]. p(`; θ) is the
discrete graphical model corresponding to the discrete energy function (42) with
log-partition function

ψ(θ) = log
∑

`∈labelings
exp

(
〈θI, `I〉 + 〈θE, `E〉

)
. (52)

The aforementioned polyhedral convex relaxation is based on the substitution (46)
and replacing the integrality constraints on ` by

Wi ∈ ∆c, i ∈ I (53a)

and further affine constraints∑
j∈J

Wik, j j′ = Wk, j′,
∑
j′∈J

Wik, j j′ = Wi, j, ∀i, k ∈ I, ∀ j, j ′ ∈ J (53b)

that ensure local consistency of the linearization step from (49) to (50). While this
so-called local polytope relaxation enables to compute good suboptimal minima
of (42) by solving a (typically huge) linear program as defined by (50) and (53)
using dedicated solvers [28], it has also a major mathematical consequence: the
graphical model (51) is overcomplete or non-minimally represented [51] due to
linear dependencies among the constraints (53b). For this reason the model (51)
cannot be regarded as point on a smooth statistical manifold as outlined in Section
2.1.1.

In this context, the assignment flow may be considered as an approach that
emerges from an antipodal starting point. Rather than focusing on the static global
and overcomplete model of the exponential family (51) defined on the entire graph
G, we assign to each vertex i ∈ I a discrete distributionWi = (W1

i , . . . ,W
c
i )
>, which

by means of the parametrization (20a) can be recognized as minimally represented
member of the exponential family
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W`i
i = p(`i; θi) = exp

(
〈(θi, 1), e`i 〉 − ψ(θi)

)
, `i ∈ J, i ∈ I (54a)

ψ(θi) = log(1 + 〈1, eθi 〉), (54b)

and hence as point Wi ∈ S of the statistical manifold S. These states of label
assignments dynamically interact through the smooth assignment flow (35).

We point out that the parameters θi of (54) are the affine coordinates of S and
have nothing to do with the model parameter θI, θE of the graphical model (51). The
counter part of θI are the distance vectors Di, i ∈ I (28) as part of the likelihood
map (29), whereas the counterpart of θE are the weightsΩi, i ∈ I (33) as part of the
similarity map (34). The parameters θI, θE are static (fixed), whereas the smooth
geometric setting of the assignment flow facilitates computationally the adaption
of Di,Ωi, i ∈ I. Examples for the adaption of distances Di are the state-dependent
distances discussed in Section 2.2.5 (cf. the paragraph after Eq. (48)) and in the
unsupervised scenario of Section 3.2. Adapting the weights Ωi by learning from
data is discussed in Section 4.

Regarding numerical computations, using discrete graphical models to cope with
such tasks is more cumbersome.

3 Unsupervised Assignment Flow and Self-Assignment

Two extensions of the assignment flow to unsupervised scenarios are considered in
this section. The ability to adapt labels on a feature manifold, during the evolution of
the assignment flow, defines the unsupervised assignment flow [58, 57] introduced
in Section 3.1. On the other hand, learning labels directly from data without any
prior information defines the self-assignment flow [59] introduced in Section 3.2.

3.1 Unsupervised Assignment Flow: Label Evolution

Specifying a proper set F∗ of labels (prototypes) beforehand is often difficult in
practice: Determining prototypes by clustering results in suboptimal quantizations
of the underlying feature space Fn. And carrying out this task without the context
that is required for proper inference (label assignment) makes the problem ill-posed,
to some extent.

In order to alleviate this issue, a natural approach is to adapt an initial label set
during the evolution of the assignment flow. This is done by coupling label and
assignment evolution with interaction in both directions: labels define a time-variant
distance vector field that steers the assignment flow,whereas regularized assignments
move labels to proper positions in the feature space F .

In this section, we make the stronger assumption that (F , gF) is a smooth
Riemannian feature manifold with metric gF . The corresponding linear tangent-
cotangent isomorphism ĝF connecting differentials and gradients of smooth func-
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tions f : F → R is given by

grad f = ĝ−1
F
(df ). (55)

Furthermore, we assume a smooth divergence function [6] to be given,

DF : F × F → R, DF( f , f ′) ≈
1
2

dF( f , f ′)2, (56)

that approximates the squared Riemannian distance, including equality as special
case. A proper choice of DF is crucial for applications: It ensures that approximate
Riemannian means can be computed efficiently. See [57, Section 5] for few scenarios
worked out in detail.

Let
F∗(t) = { f ∗1 (t), . . . , f ∗c (t)}, t ∈ [0,T] (57)

denote set of evolving feature prototypes, with initial set F∗(0) = F∗0 computed by
any efficient method like metric clustering [20], and with the final set F∗(T) = F∗ of
adapted prototypes. In order to determine F∗(t), the assignment flow (35) is extended
to the system

ÛF∗ = VF(W, F∗), F∗(0) = F∗0 , (58a)
ÛW = VW(W, F∗), W(0) = 1W . (58b)

The solution F∗(t) to (58a) evolves on the feature manifold F . It is driven by local
Riemannian means that are regularized by the assignments W(t). Equation (58b) is
the assignment flow determining W(t), based on a time-variant distance vector field
in the likelihood map (29) due to the moving labels F∗(t).

A specific formulation of (58) is worked out in [57] in terms of a one-parameter
family of vector fields (VF,VW) that define the followingunsupervised assignment
flow for given data Fn = { f1, . . . , fn},

Ûf ∗j = −α
∑
i∈I

νj |i(W, F∗)ĝ−1
F

(
d2DF( fi, f ∗j )

)
, f ∗j (0) = f ∗0, j, j ∈ J, (59a)

ÛWi = RWi Si(W), Wi(0) = 1S, i ∈ I, (59b)

with parameter α > 0 controlling the speed of label vs. assignment evolution, and

νj |i(W, F∗) =
Lσi, j(W, F∗)∑

k∈I Lσ
k, j
(W, F∗)

, Lσi, j(W, F∗) =
Wi, je

− 1
σ DF ( fi, f

∗
j )∑

l∈JWi,le−
1
σ DF ( fi, f

∗
l
)

(60)

with parameterσ > 0 that smoothly ‘interpolates’ between two specific formulations
of the coupled flow (58) (cf. [57]).
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In Eq. (59a), the differential d2DF( fi, f ∗j )means dDF( fi, ·)| f ∗j (t) which determines
the evolution f ∗j (t) by averaging geometrically data points F = { fi}i∈I , using
weights νj |i

(
W(t), F∗(t)

)
due to (60) that represent the current assignments of data

points fi, i ∈ I to the labels f ∗j (t), j ∈ J . This dependency on W(t) regularizes the
evolution F∗(t).

Conversely, the dependency ofW(t) on F∗(t) due to the right-hand side of (58b) is
implicitly given through the concrete formulation (59b) in terms of the time-variant
distances

Di(t) =
(
DF( fi, f ∗1 (t)), . . . ,DF( fi, f ∗c (t))

)> (61)

that generalize the likelihood map (29) and in turn (59b), through the similarity map
(34).

In applications, a large number c of labels (57) is chosen so as to obtain an ‘over-
complete’ initial dictionary F∗(0) in a preprocessing step. This helps to remove the
bias caused by imperfect clustering at this initial stage of the overall algorithm. The
final effective number c of labels F∗(T) is smaller, however, and mainly determined
by the scale of the assignment flow (cf. Remark 4): The regularizing effect of the
assignments W(t) on the evolution of labels F∗(t) causes many labels f ∗j (t) to merge
or to ‘die out’, which can be recognized by weights νj |i

(
W(t), F∗(t)

)
converging to

0. Extracting the effective labels from F∗(T) determines F∗.
The benefit of the unsupervised assignment flow (59) is that the remaining labels

moved to positions f ∗j (T) ∈ F that are difficult to determine beforehand in supervised
scenarios.

3.2 Self-Assignment Flow: Learning Labels from Data

This section addresses the fundamental problem: How to determine labels F∗ directly
from given dataFn without any prior information? The resulting self-assignment flow
generalizes the unsupervised assignment flow of Section 3.1 that is based on an initial
label set F∗(0) and label adaption.

A naive approach would set F∗(0) = Fn and apply the unsupervised assignment
flow. In applications this is infeasible because n generally is large. We overcome this
issue by marginalization as follows.

Let F ′n = { f ′1 , . . . , f ′n} denote a copy of the given data and consider them as initial
labels by setting F∗(0) = F ′n . We interpret

Wi, j = Pr( j |i), Wi ∈ S, j ∈ J, i ∈ I (62)

as posterior probabilities of assigning label f ′j to datum fi , as discussed in [3].
Adopting the uninformative prior Pr(i) = 1

|I |
, i ∈ I and Bayes rule, we compute

Pr(i | j) =
Pr( j |i)Pr(i)∑

k∈I Pr( j |k)Pr(k)
=

(
WC(W)−1)

i, j, C(W) = Diag(W>1). (63)



18 Christoph Schnörr

Next we determine the probabilities of self-assignments fi ↔ fk of data points by
marginalizing over the labels (data copies F ′n ) to obtain the self-assignment matrix

Ak,i(W) =
∑
j∈J

Pr(k | j)Pr( j |i) =
(
WC(W)−1W>

)
k,i . (64)

Note that the initial labels are no longer involved. Rather, their evolution as hidden
variables is implicitly determined by the evolving assignments W(t) and (63).

Finally, we replace the data term 〈D,W〉 =
∑

i∈I 〈Di,Wi〉 of supervised scenarios
(cf. Remark 3) by

E(W) = 〈D, A(W)〉, (65)

with Di,k = dF( fi, fj) and A(W) given by (64). In other words, we replace the
assignment matrix W by the self-assignment matrix A(W) that is parametrized by
the assignment matrix, in order to generalize the data term from supervised scenarios
to the current completely unsupervised setting.

As a consequence, we substitute the Euclidean gradient ∂Wi E(W)) for the dis-
tances vectors (28) on which the likelihood map (29) is based. These likelihood vec-
tors in turn generalize the similarity map (34) and thus define the self-assignment
flow (35).

The approach has attractive properties that enable interpretations from various
viewpoints.Wemention here only two of them and refer to [59] for further discussion
and to the forthcoming report [60].

(1) The self-assignment matrix A(W) (64) may be seen as a weighted adjacency ma-
trix of G and, in view of its entries, as a self-affinitymatrix with respect to given
data fi, i ∈ I supported by G. A(W) is parametrized by W(t) and (64) shows
that it evolves in the cone of completely positive matrices [8]. This reflects the
combinatorial nature of label learning problem, exhibits relations to nonnegative
matrix factorization [12] and via convex duality to graph partitioning [42].

(2) A(W) is nonnegative, symmetric and doubly stochastic. Hence it may be seen as
transportation plan corresponding to the discrete optimal transport problem [40]
of minimizing the objective function (65). Taking into account the factorization
(64) and the parametrization by W(t), minimizing the objective (65) may be
interpreted as transporting the uniform prior measure Pr(i) = 1

|I |
, i ∈ I to the

support of data points fi that implicitly define latent labels. In this way, by means
of the solution W(t) to the self-assignment flow, labels F∗ directly emerge from
given data Fn.

4 Regularization Learning by Optimal Control

A key component of the assignment flow is the similarity map (34) that couples
single-vertex flows (30) within neighborhoods Ni, i ∈ I. Based on the ‘context’ in
terms of data observed within these neighborhoods, the similarity map discriminates
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structure from noise that is removed by averaging. In this section we describe how
the weights (33) that parametrize the similarity map can be estimated from data [23].

Our approach is based on an approximation of the assignment flow that is governed
by an ODE defined on the tangent space T0 which linearly depends on the weights
(Section 4.1). Using this representation, the learning problem is subdivided into two
tasks (Section 4.2):

(i) Optimal weights are computed from ground truth data and corresponding la-
belings.

(ii) A prediction map is computed in order to extrapolate the relation between
observed data and optimal weights to novel data.

4.1 Linear Assignment Flow

We consider the following approximation of the assignment flow (35), introduced
by [56].

ÛW = RW

(
S(W0) + dSW0 RW0 log

W
W0

)
, W(0) = W0 = 1W . (66)

The ‘working point’ W0 ∈ W can be arbitrary, in principle. Numerical experiments
[56, Section 6.3.1] showed, however, that using the barycenter W0 = 1W suffices for
our purposes.

Assuming that elements of the tangent spaceV ∈ T0 ⊂ Rn×c are written as vectors
by stacking row-wise the tangent vectors Vi, i ∈ I, the Jacobian dSW0 is given by the
sparse block matrix

dSW0 =
(
Ai,k(W0)

)
i,k∈I, Ai,k(W0) =

{
wi,kRSi (W0)

( Vk

W0,k

)
, if k ∈ Ni,

0, otherwise.
(67)

We call the nonlinear ODE (66) linear assignment flow because it admits the
parametrization [56, Prop. 4.2]

W(t) = ExpW0

(
V(t)

)
, (68a)

ÛV = RW0

(
S(W0) + dSW0V

)
, V(0) = 0. (68b)

Eq. (68b) is a linear ODE. In addition, Eq. (67) shows that it linearly depends on the
weight parameters (33), which is convenient for estimating optimal values of these
parameters.
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4.2 Parameter Estimation and Prediction

Let
P = {Ωi : i ∈ I} (69)

denote the parameter space comprising all ‘weight patches’ Ωi according to (33),
one patch assigned to every vertex i ∈ I within the corresponding neighborhood
Ni . Note that P is a parameter manifold: The space containing all feasible weight
values of each patch Ωi has the same structure (ignoring the different dimensions)
as S given by (11).

Parameter estimation is done by solving the constrained optimization problem

min
Ω∈P

E
(
V(T)

)
(70a)

s.t. ÛV = f (V,Ω), t ∈ [0,T], V(0) = 0, (70b)

where (70b) denotes the linear ODE (68b) and the essential variables V and Ω =
{Ω1,Ω2, . . . ,Ωn} (all weight patches) in compact form. A basic instance of the
objective function (70a) is

E
(
V(T)

)
= DKL

(
W∗,ExpW0

(
V(t)

) )
, (71)

which evaluates the Kullback-Leibler divergence of the labeling induced by V(T) by
(68a) from a given ground-truth labeling W∗ ∈ W.

Problem (70) can be tackled in two ways as indicated by the following diagram.

E
(
V(T)

)
s.t. ÛV = f (V,Ω) adjoint system

nonlinear program sensitivity

differentiate

discretize discretize

differentiate

(72)

Differentiation yields the adjoint system which, together with the primal system
(70b) and proper discretization, enables to compute the sensitivity d

dΩE
(
V(T)

)
by

numerical integration. Alternatively, one first selects a numerical scheme for inte-
grating the primal system (70b) which turns (70) into a nonlinear program that can
be tackled by established methods.

Most appealing are situations where these two approaches are equivalent, that is
when the above diagram commutes [44]. A key aspect in this context concerns the
symplectic numerical integration of the joint system. We refer to [23] for details and
to [48] for the general background.

The weight parameters are updated by numerically integrating the Riemannian
gradient descent flow

ÛΩ = − gradP E
(
V(T)

)
= −RΩ

d
dΩ

E
(
V(T)

)
, Ω(0) = 1P, (73)
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based on the sensitivities determined using either (equivalent) path of diagram (72).
The linear map RΩ factorizes according to (69) into components RΩi , i ∈ I that are
given by (18) and well-defined due to (33).

Running this algorithm for many instances of data F 1
n , F

2
n , . . . and corresponding

ground-truth labelings W∗1,W∗2, . . . produces the optimal weights Ω∗1,Ω∗2, . . . ,{
{F 1

n , F
2
n , . . . }, {W

∗1,W∗2, . . . }} −→
{
{F 1

n , F
2
n , . . . }, {Ω

∗1,Ω∗2, . . . }
}
. (74)

We rearrange the data patch-wise and denote them by F ∗1 , F
∗

2 , . . . , i.e. F
∗
i denotes a

feature patch4 extracted in any order from some F k
n . Grouping these feature patches

with the corresponding optimal weight patches, extracted from Ω∗1,Ω∗2, . . . in the
same order, yields the input data{

(F ∗1 ,Ω
∗
1), . . . , (F

∗
N,Ω

∗
N )

}
(75)

for prediction, possible after data size reduction by condensing it to a coreset [41].
The predictor

ω̂ : F → P, Fi 7→ Ωi (76)

returns for any feature patch Fi ⊂ Fn of novel data Fn a corresponding weight patch
Ωi (33) that controls the similarity map (34).

A basic example of a predictormap (76) is theNadaraya-Watson kernel regression
estimator [52, Section 5.4]

ω̂(Fi) =
∑
k∈[N ]

Kh(Fi, F
∗
k
)∑

k′∈[N ] Kh(Fi, F
∗
k′
)
Ω
∗
k (77)

with a proper kernel function (Gaussian, Epanechnikov, etc.) and bandwidth param-
eter estimated, e.g., by cross-validation based on (75). We refer to [23] for numerical
examples.

Remark 5 (Feasibility of learning.)
The present notion of context is quite limited: itmerely concerns the co-occurrence

of features within local neighborhoods Ni . This limits the scope of the assignment
flow for applications, so far.

On the other hand, this limited scope enables to subdivide the problem of learning
these contextual relationships into two manageable tasks (i), (ii) mentioned in the
first paragraph of this section: Subtask (i) can be solved using sound numerics (recall
the discussion of (72)) without the need to resort to opaque toolboxes, as is common
in machine learning. Subtask (ii) can be solved using a range of state-of-the-art
methods of computational statistics and machine learning, respectively.

The corresponding situation seems less clear for more complex networks that
are empirically investigated in the current literature on machine learning. Therefore,
the strategy to focus first on the relations between data, data structure and label

4 Not to be confused with labels F∗!
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assignments at two adjacent scales (vertices↔ neighborhoodsNi↔ neighborhoods
of neighborhoods, and so forth) appears to be more effective, in the long run.

5 Outlook

This project has started about two years ago. Motivation arises from computational
difficulties encountered with the evaluation of hierarchical discrete graphical models
and from our limited mathematical understanding of deep networks. We outline our
next steps and briefly comment on a long-term perspective.

Current Work. Regarding unsupervised learning, we are focusing on the low-rank
structure of the factorized self-assignment matrix (64) that is caused by the regu-
larization of the assignment flow and corresponds to the reduction of the effective
number of labels (cf. the paragraph below Eq. (61)). Our objective is to learn labels
directly from data in terms of patches of assignments for any class of images at hand.

It is then a natural consequence to extend the objective (71) of controlling the
assignment flow to such dictionaries of assignment patches, that encode image struc-
ture at the subsequent local scale (measured by |Ni |). In addition, the prediction map
(77) should be generalized to feedback control that not only takes into account feature
similarities, but also similarities between the current state W(t) of the assignment
flow and assignment trajectories W∗k(t). The latter are computed anyway when esti-
mating the parameters on the right-hand side of (74) from the data on the left-hand
side.

Coordinating in this way unsupervised learning and control using the assignment
flow will satisfactorily solve our current core problem discussed as Remark 5.

Perspective. In order to get rid of discretization parameters, we are currently studying
variants of the assignment flow on continuous domains [50]. ‘Continuous’ here not
only refers to the underlying Euclidean domain Ω replacing the graph G, but also
to the current discrete change of scale i → |Ni |, that should become infinitesimal
and continuous. This includes a continuous-domain extension of the approach [49],
where a variational formulation of the assignment flow was studied that is inline
with the additive combination of data term and regularization in related work [53, 7].
Variational methods (Γ-convergence, harmonic maps) then may provide additional
mathematical insight into the regularization property of the assignment flow, into a
geometric characterization of partitions of the underlying domain, and into the pros
and cons of the compositional structure of the assignment flow.
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