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Abstract. High-speed image measurements of fluid flows define an im-
portant field of research in experimental fluid mechanics and the related
industry. Numerous competing methods have been developed for both 2D
and 3D measurements. Estimates of fluid flow velocity fields are often
corrupted, however, due to various deficiencies of the imaging process,
making the physical interpretation of the measurements questionable.
We present an algorithm that accepts vector field estimates from any
method and returns a physically plausible denoised version of it. Our
approach enforces the physical structure and does not rely on particular
noise models. Accordingly, the algorithm performs well for different types
of noise and estimation errors. The computational steps are sufficiently
simple to scale up to large 3D problems in the near future.

1 Introduction

Experimental fluid mechanics is a challenging field of research of imaging sci-
ence with important industrial applications [1]. During the last two decades, the
prevailing technique for investigating turbulent flows through imaging has been
particle image velocimetry in 2D [2, 3], whereas various 3D measurement tech-
niques, while being attractive from the physical viewpoint of applications, have
been suffering from various drawbacks including noisy measurements, complex-
ity and costs of the set-up, and limited resolution [4–9]. Remarkable progress
has been recently achieved through a novel technique, Tomographic Particle Im-
age Velocimetry (TomoPIV) [10] that, in principle, provides 3D estimates with
higher spatial resolution.

As a result, there are a range of methods for computing vector field estimates
of incompressible viscous flows from image data, that exhibit diverse artefacts
depending on the particular technique used, and on the particular physical sce-
nario considered. This motivates to investigate a method that denoises a given
vector field in a physically plausible way. Rather than to model noise explicitly
which is difficult and too specific due to the diversity of estimation errors that
can occur, the method should return a vector field that is close to the input data
and approximately satisfies the basic physical equations governing the flow. At
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Fig. 1. Top: Two ground truth flows, a Kelvin-Helmholtz flow (left) and a turbulent
flow (top center). Bottom left, center: The Kelvin-Helmholtz and turbulent flows
spoiled with noise. Right column: The turbulent flow corrupted by missing data
and outliers within rectangular regions. The location of these regions is assumed to be
unknown. The problem addressed in this paper is to restore the flows in a way that
takes into account the physical origin of the flows but does not depend on a particular
noise model. In the case of missing data (lower right panel), we assume these regions
to be unknown.

the same time, the method should be robust to various types of estimation errors
and computationally simple, so as to be applicable to large-scale 3D problems
that the next generation of 3D measurement techniques will raise in the near
future.

Our approach presented below is motivated by recent work on variational
PIV methods. Ruhnau and Schnörr [11] showed how to estimate physically con-
sistent flow from PIV image sequences utilizing a distributed-parameter control
approach. This has been extended in [12, 13] to a dynamic setting based on the
vorticity transport equation formulation of the Navier-Stokes equation.

The task studied in this paper is more involved, however, because we wish
to process corrupted vector fields as input data, and therefore cannot resort to
image data in order to determine additional control variables. Rather, we wish
to devise a method that accepts vector field estimates produced by any of the
algorithms mentioned above, and returns a denoised version just by preserving
and enforcing physically consistent flow structure.

Our paper is organized as follows. We introduces the basic notation and the
overall variational approach in section 2. Additional details for each computa-
tional stage involved are provided in section 3. Experimental results for various
error types and performance measures are discussed on section 4. We conclude
and point out further work in section 5.
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2 Variational Approach

2.1 Notation, Preliminaries

We formulate our approach for the 3D case. Vectors are indicated with bold
font. v denotes a velocity field and ω = ∇ × v its vorticity. The 2D case is
automatically obtained by setting v = (v1, v2, 0)>. For example, ∇ × v then
yields a vorticity field ω = (0, 0, ω3)>, with scalar vorticity ω3 = ∂x1v2 − ∂x2v1.

We denote by 〈u,v〉, ‖v‖ the euclidean inner product and norm, and by
〈u,v〉Ω , ‖v‖Ω the inner product and norm of

[
L2(Ω)]d , d = 2, 3, respectively,

where Ω ⊂ Rd is the given image section.
We list few relations used in the remainder of this paper. The vorticity-

transport equation reads

∂

∂t
ω + (v · ∇)ω + (ω · ∇)v = ν∆ω . (1)

We consider a flow on a such short time interval, that the scale of temporal
vorticity changes becomes several orderer smaller, than the scale of spatial vor-
ticity changes. The term ∂tω in (1) has a negligible impact in comparison with
impacts of other terms, and it can be omitted from the equation. In other words,
the the chosen time time interval is short enough, that one can reduce the flow
motion to a quasi stationary case. Once the time derivative was excluded, we
can focus on a fixed point of time. For the remaining left-hand side, we introduce
the short-hand

e(v) = ν∆ω , e(v) = (v · ∇)ω + (ω · ∇)v . (2)

The integral identity∫
Ω

(∇× v) · φ dx−
∫

Ω

v · (∇× φ) dx = 0 , ∀φ ∈
[
C∞0 (Ω)

]d
, (3)

is used to derive Euler-Lagrange equations below, and for incompressible flow
we have

∇×∇× ω = −∆ω . (4)

2.2 Approach

Suppose we have given a corrupted vector field d. The true underlying viscous
flow is incompressible and is assumed to satisfy (2). Regarding the design of a
denoising algorithm, we have to keep in mind computational simplicity in order
to be able to solve sequences of large-scale 3D problems that sensors will produce
in the near future.
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Iterative Algorithm. In view of these requirements, we study in this paper a
denoising approach comprising the following steps:

1. Project the data d to the subspace of divergence-free flows: d → v.
2. Compute the vorticity ωv = ∇×v. Preserve and enforce physically plausible

flow structure in terms of equation (2): ωv → ω.
3. Recover velocity from vorticity: ω → u.

If the termination criterion is satisfied, stop. Otherwise, continue with step 1.
The steps 1.-3. will be detailed in section 3.

Termination criterion. We compute the energy spectrum1 in term of the
Fourier transform ‖̂v‖2(k) , k ∈ [π, π]d, and define the magnitude of a cutoff
frequency kc depending on the flow under investigation, e.g. in terms of the
smallest scale of vorticities to be resolved. We stop the iteration once the upper
energy band has been sufficiently damped relative to the lower band∫

‖k‖∞≥kc

‖̂v‖2(k)dk ≤ ck

∫
‖k‖∞≤kc

‖̂v‖2(k)dk , (5)

where a typical value is ck = 100. See Fig. 2 below for an illustration.

3 Computational Steps: Details

3.1 Subspace Projection

Consider the orthogonal decomposition of the space V =
[
L2(Ω)

]3 = Vg ⊕Vsol

into gradients and solenoidal (divergence-free) vector fields [14]: d = ∇φ+∇×
ψ.The orthogonal projection P : V → Vsol onto the space

Vsol =
{
v ∈ V

∣∣∇ · v = 0 , v · n = 0 on ∂Ω
}

is accomplished by solving ∆φ = ∇ · d , φ = 0 on ∂Ω and removing the
divergence

v = d−∇φ ∈ Vsol . (6)

3.2 Vorticity Rectification

Set ωv = ∇× v. In order to take into account Eqn. (2), we minimize

min
ω

{
‖ω − ωv‖2

Ω + α
(
ν‖∇ × ω‖2

Ω + 2
〈
e(v),ω

〉
Ω

)}
(7)

The first term ensures that the minimizer stays close to the vorticity computed
in the previous step, and the second term enforces (2). Computing the first

1 Note that the usual definition is based on time averages. We focus in this paper on
a single time point, however.
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variation of the functional (7) and applying (3) and (4), we obtain the Euler-
Lagrange equation

ω − αν∆ω = ωv − αe(v) .

This is a system of linear diffusion equations (a single equation in 2D). Rewriting
this equation,

ω = ωv − α
(
e(v)− ν∆ω

)
,

we see that the vorticity ω is corrected by the residual of Eqn. (2) where the
nonlinearity e(v) is evaluated at v computed in the preceding step. Because
correct boundary conditions are not known, we reduce the Laplacian at ∂Ω to
linear diffusion along the boundary.

3.3 Velocity Restoration

The minimizer ω of the previous step may not correspond to a solenoidal vector
field. Hence, as a third computational step, we propose to minimize

min
u

{
‖u− v‖2

Ω + β‖∇ × u− ω‖2
Ω

}
, (8)

with v from (6) and ω from (7). Computing the first variation of the functional
(8) and applying (4), we obtain again a linear diffusion system

u− β∆u = v + β∇× ω ,
∂u
∂n

= 0 .

Here, it is plausible to impose natural boundary conditions on u.

4 Experiments and Discussion

We tested the denoising approach for 2D flows, so far. The 3D case is subject
of future work and will be reported elsewhere. The test was carried out for two
different flows:

– A Kelvin-Helmholtz flow [15], [16], see Fig. 1 top-left and Fig. 3 top, that
occurs when velocity shear is present withing a continuous fluid, or when
there is a sufficiently large velocity difference across the interface between
two fluids.

– A turbulent flow from Navier-Stokes simulations, see Fig. 1 top-right and
Fig. 4 top.

Various types of data corruptions were investigated: White Gaussian noise with
both high and low signal-to-noise ratio as well as square regions with missing
and corrupted data. Figure 1 displays these vector fields represented by d in the
first step (6) of our iterative restoration approach.

Denote g:ground truth flow, d: corrupted input data, u: denoised vector
field. In order to evaluate the denoising performance of our approach and its
robustness we used the following quantitative performance measures:
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Fig. 2. Illustration of the termination criterion (5) for the noisy turbulent flow exper-
iment shown in Fig. 4. Restoration effectively removes noise and preserves physically
significant large-scale structures of vorticity.

SDR = ‖d−g‖Ω

‖u−g‖Ω
, ADR = ‖ arccos( cdg)‖Ω

‖ arccos( cug)‖Ω
, NDR = ‖d‖Ω

‖g‖Ω
, DDR = ‖u‖Ω

‖g‖Ω
.

The meanings of these measures are as follows: SDR gives the rate between
standard deviations of noisy and denoised vector fields from groundtrouth vector
field, FDR gives the rate between average angle deviations of noisy and denoised
data from groundrouth, ADR gives the rate of average angle deviation of noisy
and denoised vector fields from groundtrouth, NDR and DDR give the average
vector length of noisy and denoised vector fields in comparison with groundtrouth
average vector length.

Figures 3-5 confirm and illustrate that the algorithm does not depend on a
particular model of noise and errors. Rather, the physical structures (vorticity)
are restored fairly well. Quantitative results are given in the figure captions.

Figure 4 shows an example of very low signal-to-noise-ratio. The still plau-
sible restoration result illustrates that our approach gracefully degrades with
increasing noise levels, and its limitation: Small-case structures cannot always
be correctly restored in such extreme situations.

5 Conclusion

We presented a black-box variational approach to the restoration of PIV-measure-
ments in experimental fluid mechanics. It restores physically significant flow
structures, copes with various types of noise and errors, degrades gracefully with
decreasing signal-to-noise ratio and involves computationally simple steps.

Our further work will further explore the trade-off between computational
simplicity (i.e. efficiency) and tigher couplings of the computational steps through
constraints, and on problem representations specific to large-scale 3D applica-
tions.
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Fig. 3. Top: Ground truth flow g.Center: Noisy data d. Noise has been cut out within
a rectangular region to illustrate the signal-to-noise ratio.Bottom: Denoised flow u.
Performance measure: SDR=4.43, ADR=6032, NDR=1.12, DDR=0.999. Number of
iterations: 3
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Fig. 4. Top: Ground truth flow g. Center: Noisy data. Noise has been cut out within
a rectangular region to illustrate the signal-to-noise ratio. Bottom: d. Denoised flow u.
Performance measures: SDR=15.12, ADR=2.45, NDR=9.51, DDR=1.004. Number of
iterations: 16. This example shows that the approach gracefully degrades with increas-
ing noise levels and its limitation: In the extreme situation above, not all small-scale
structures can be restored.
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Fig. 5. Top: Ground truth flow g. Center: Corrupted data d by missing values (left)
or outliers within rectangular regions (right). The location of these regions are assumed
to be unknown. Bottom: Denoised flows u. Performance measures, left experiment:
SDR=1.1131, DDR=1.128. Number of iterations: 4. Performance measures, right ex-
periment: SDR=1.645, ADR=0.532, NDR=1.0087, DDR=0.924. Number of iterations
k=5.
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