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Abstract. We introduce a novel second-order regularizer, the Affine
Total-Variation term, to capture the geometry of piecewise affine func-
tions. The approach is characterized by two convex decompositions of a
given image into piecewise affine structure and texture and noise, respec-
tively. A convergent multiplier-based method is presented for computing
a global optimum by computationally cheap iterative steps. Experiments
with images and vector fields validate our approach and illustrate the dif-
ference to classical TV denoising and decomposition.

1 Introduction

1.1 Overview and Motivation

In this paper, we suggest and investigate a novel second-order regularization
term,

TVa(u) :=

∫

Ω

(√

u2
xx + u2

yx +
√

u2
xy + u2

yy

)

dx , (1)

called Affine Total Variation, for denoising and decomposing functions into
piecewise affine structures. Our work has been motivated by the basic total
variation approach [15] to the piecewise constant regularization of functions,
henceforth called ROF-model, and a recent extension of this approach suggested
in [23] to the piecewise harmonic regularization of vector fields.

The latter approach demonstrates that by modifying the usual total variation
term

TV(u) =

∫

Ω

|∇u| dx , (2)

flows can be restored and decomposed into richer structure than merely piecewise
constant functions, that only model a narrow subclass of real signals sufficiently
accurate. At the same time, the basic structure of the ROF-model from the view-
point of convex optimization has been preserved, such that standard methods
from convex programming lead to efficient algorithms.



While the work [23] was motivated by flows related to image sequences from
experimental fluid dynamics, our present work investigates piecewise affine regu-
larization as an alternative to the piecewise harmonic case studied in [23]. Figure
1.1 shows the result of applying the novel regularizer (1) to a noisy image func-
tion. Our approach returns a denoised version of the input data with the piece-
wise affine structures preserved well. From the viewpoint of optimization, our
approach has the same simple structure as the ROF-model. From the viewpoint
of algorithm design, however, a bit more work is required to be able to resort
to standard algorithms, due to the second-order partial derivatives appearing in
(1).

Fig. 1. From left to right. Noisy input image f , denoised image u using the regu-
larizer (1), and the difference between the original noise-free image and the denoised
image. Up to local errors at discontinuities, this latter image is almost constant which
means that the piecewise affine structure underlying the noisy input data has been
successfully restored.

1.2 Related Work and Contribution

Related work. Applying the standard TV-term (2) to general, not necessarily
piecewise constant signals and images, leads to the well-known staircasing effect,
that is to many jumps of the minimizing functions making the decomposition of
the input data useless for signal interpretation. In this connection, higher-order
regularization has been studied in the literature.

In [1], Chambolle and Lions propose an inf-convolution of the total-variation
term and a functional based on the second-order derivatives:

R(u) = min
u=v+w

∫

Ω

|∇v| dx + α

∫

Ω

(√

w2
xx + w2

yx + w2
xy + w2

yy

)

dx.

A corresponding asymptotical case was studied in [16]. Chan et al. [3] adap-
tively add the Laplacian as regularizing term or replace the second summand
in the inf-convolution by the Laplacian in [2] to avoid staircasing. After molli-
fying the TV-measure TV(u) ≈

∫

Ω

√

|∇u|2 + ε dx , ε ≪ 1, the corresponding
Euler-Lagrange equation is iteratively solved by the lagged-diffusivity fixed-point
method (cf. [19]). Likewise, You and Kaveh [20] and Didas et al. [5] investigate
Laplacians △u and variations thereof as argument of one convex functional. In



[11], Lysaker and Tai provide two regularizars

R1(u) =

∫

Ω

(

|uxx| + |uyy|
)

dx (3)

R2(u) =

∫

Ω

√

u2
xx + u2

yx + u2
xy + u2

yy dx (4)

which are used in a PDE-based image diffusion process so as to avoid stair-
case effect in smooth regions and a fourth-order numerical scheme is given. In
[12], Lysaker and Tai further introduce the convex combination of high-order
regularizar and the classical total-variation term. The functional (3) was also
considered in [8]. In [13], Rahman, Tai and Osher suggested a two-step high-
order image denoising method, which first computes a denoised tangential field
τ = (τ1, τ2)

t, i.e. div τ = 0, by applying the regularizar
∫

|∇τ | dx which is ac-
tually equivalent to (4) for the image scalar field, then reconstructs the image
gray-values by fitting the resulting normal field n = (τ2,−τ1) through

min
u

∫

Ω

(

|∇u| − ∇u · n

|n|
)

dx , s.t.

∫

Ω

(u − f)2 dx = σ2 .

Basically, the energy functionals used in our approaches possess the same struc-
ture as the work [11] except the applied nonsmooth high-order regularizar and
the optimized functional proposed in (13b) is similar as the tangential-smoothing
step suggested in [13] except that our approach tries to smooth the curl-free gra-
dient field than the div-free field.

In connection with optical flow estimation, Trobin et al. [18] adopt from [4]
the second-order term

t(u) :=
1√
3

(

∆u,
√

2 (uxx − uyy),
√

8uxy

)

T

,

and use the corresponding TV-term
∫

Ω

√

t(u) · t(u)dx for flow estimation. The
derivation of t(u) in [4] is based on Fourier transforms and motivated by designing
local detectors for detecting ridges and valleys of image functions, say. As a
consequence, the corresponding TV-term appears not to be a proper basis for
piecewise affine decomposition, and boundaries are not treated adequately (as
is clearly visible e.g. in Fig. 2f in [18]).

Contribution. Our contribution consists in devising a novel regularization term
(1) that provides a mathematically precise solution to the problem of denoising
piecewise affine signals. Staircasing is suppressed as well, and a augmented La-
grangian based problem decomposition is derived that enables to compute a
global optimum by iterating computationally simple iterative steps. Numerical
experiments are presented mainly to illustrate and validate properties of the
approach.

2 Subspaces and Orthogonal Decompositions

Let Ω ⊂ R
2 be an open bounded and simply-connected domain with Lipschitz-

continuous boundary ∂Ω. For scalar-valued functions, we denote by | · |p, 1 ≤ p <



∞ the usual Lp(Ω) norm and by 〈·〉 the L2(Ω) inner product. For vector-valued

functions g = (g1, g2)
T, we set ‖g‖p := ‖

√

g2
1 + g2

2‖p and 〈g, h〉Ω := 〈g1, h1〉 +
〈g2, h2〉. Further, we use the notation ū := |Ω|−1

∫

Ω
u dx for the average of u and

∇u := (ux, uy)
T, ∇⊥u := (uy,−ux)T, div g := g1x + g2y and curl g := g1y − g2x.

Let H1(Ω) denote the Sobolev spaces with the inner product

〈u, v〉H1 := 〈∇u,∇v〉Ω + ū v̄ (5)

and let H1
0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0}. We are interested in the space

H(Ω) :=
{

u ∈ H1(Ω) : ∂nu|∂Ω = (ūx, ūy)T · n
}

,

where n denotes the outer unit normal vector at the boundary ∂Ω. By the
following proposition, we can decompose functions u ∈ H(Ω) into a globally
affine component ua and an oscillating part uo.

Proposition 1. The space H(Ω) admits the orthogonal decomposition

H(Ω) = Ha(Ω) ⊕H1 Ho , (6a)

Ha(Ω) :=
{

u ∈ H(Ω) : ∇u = (ūx, ūy)
T
}

, (6b)

Ho(Ω) :=
{

u ∈ H(Ω) : ū = ūx = ūy = 0 , ∂nu|∂Ω = 0
}

. (6c)

Proof. For any u ∈ H(Ω), let uox := ux − ūx and uoy := uy − ūy. Then ua :=
ūx x + ūy y + ū ∈ Ha(Ω) and the function uo defined by its partial derivatives
uox, uoy and by ūo = 0 belongs to Ho(Ω). Moreover, we have that u = ua + uo.
The orthogonality of the decomposition follows by

〈ua, uo〉H1 = 〈∇ua,∇uo〉Ω + ūa ūo = ūx

∫

Ω

uox dx + ūy

∫

Ω

uoy dx = 0. �

The Helmholtz decomposition of vector fields, see [6, 21, 22] also for the dis-
crete setting, is given by

L2(Ω)2 = ∇H1(Ω) ⊕∇⊥H1
0 (Ω),

where the spaces can be also characterized by ∇H1(Ω) = {v ∈ L2(Ω)2 : curl v =
0} and ∇⊥H1

0 (Ω) = {v ∈ L2(Ω)2 : div v = 0, v · n|∂Ω = 0}. We will need the
space

V (Ω) := {v ∈ L2(Ω)2 : v · n|∂Ω = 0, v̄1 = v̄2 = 0} . (7)

By the Helmholtz decomposition, this space admits the orthogonal decomposi-
tion

V (Ω) = V∇(Ω) ⊕ V∇⊥(Ω), (8)

where V∇(Ω) := {v ∈ ∇H1(Ω) : v · n|∂Ω = 0, v̄1 = v̄2 = 0} and V∇⊥(Ω) := {v ∈
∇⊥H1

0 (Ω) : v̄1 = v̄2 = 0}.

Proposition 2. For every vector field v ∈ V∇(Ω), there is a unique function

uo ∈ Ho(Ω) with v = ∇uo.



Proof. By definition we have for any v ∈ V∇(Ω) that there exists u ∈ H1(Ω)
such that v = ∇u. Then we see that v · n|∂Ω = ∂nu|∂Ω = 0 and v̄1 = ūx = 0,
v̄2 = ūy = 0. On the other hand, uo ∈ Ho is uniquely determined by the
Neumann problem

∆uo = div v , ∂nuo|Ω = 0 , ūo = 0 . ⊓⊔ (9)

3 Variational Approaches

In the rest of this paper, we follow the first discretize, then optimize paradigm,
yet adopt the usual (continuous) notation that is easier to read. Accordingly,
all operators like ∇, div etc. denote linear mappings between finite dimensional
spaces, | · |p are the usual ℓp norms and for g := (gi)

n
i=1, gi ∈ R

2 ‖g‖p :=
|(|gi|2)n

i=1|p. In the following, we denote by δC the indicator function of a convex
set C, i.e. δC(x) := 0 if x ∈ C, and δC(x) := ∞ otherwise and by PC the
orthogonal projector onto C.

We exhibit the effect of the regularizer (1) by computing a dual representa-
tions of the optimization problems (13) in accordance to the dual formulation of
the ROF-model.

In general, if g : R
n → R and Φ : R

m → R are proper, closed convex functions
and D : R

n → R
m is a linear operator, then the following problem (P) has the

dual (D):

(P ) inf
u∈Rn

{g(u) + Φ(Du)}, (D) − inf
p∈Rm

{g∗(−D∗p) + Φ∗(p)},

where g∗ denotes the conjugate function of g. For the problems considered in the
following, it can be shown that solutions of the primal and dual problem exist
and that the duality gap is zero.

Rudin-Osher-Fatemi (ROF) Model. We recall some basic formulas as a
reference for our approach presented below. The ROF-model reads

inf
u

{1

2
|f − u|22 + α TV(u)

}

, α TV(u) := σCα
(u), (10)

where Cα := div Bα , Bα :=
{

p : ‖p‖∞ ≤ α}.
Let û denote the minimizer of (10). Setting g(u) := 1

2 |f − u|22, D := I and
Φ(u) := αTV (u) and regarding that g∗(v) := 1

2 |f + v|22 − 1
2 |f |2 and Φ∗(v) = δCα

the dual problem reads

− inf
v∈Cα

{1

2
|f − v|22 −

1

2
|f |2

}

, (11)

where we have replaced v by −v by the symmetry of Cα. Consequently, if

p̂ := argmin
p∈Bα

{1

2
|f − div p|22

}

(12)



then v̂ := div p̂ = PCα
(f) is the minimizer of the dual problem. Primal and dual

solutions are related by the optimality condition f − div p̂ = û, that in turn
yields the image decomposition f = û + v̂.

Affine Variational Models. Based on the regularizer (1) we consider two
variational approaches:

inf
u

{1

2
|u − f |22 + α TVa(u)

}

, (13a)

inf
u

{1

2
|u − f |2H1 + α TVa(u)

}

. (13b)

These approaches differ due to the data term which is the usual one in case of
(13a), whereas the data term in (13b) is induced by the discrete counterpart of
the inner product (5).

3.1 Variational Approach (13a)

We introduce an auxiliary vector field v in order to express the regularizer (1)
in term of the ordinary TV-measure defined in (2). Then approach (13a) reads

inf
u,v

{1

2
|f − u|22 + α TV(v1) + α TV(v2)

}

, subject to v = ∇u. (14)

i.e.,

inf
u,v

{

{g(u, v) + Φ
(

D(u, v)T
)}

with g(u, v) := 1
2 |f − u|22 + α TV(v1) + α TV(v2), Φ := δ0, D := (∇ − I). Since

g∗(r, s) = 1
2 |f + r|22 − 1

2 |f |2 + δCα
(s1) + δCα

(s2), Φ∗ ≡ 0 and −D∗ =

(

div
I

)

the

dual problem becomes

− inf
q∈C2

α

{

g∗(

(

div
I

)

q)

}

= − inf
q∈C2

α

{

1

2
|f − div q|22 −

1

2
|f |2

}

.

This formulation parallels the dual formulation (11) of the ROF-model. Let

q̂ := argmin
q∈C2

α

1

2
|f − div q|22 . (15)

The higher-order TV regularization becomes apparent through the texture part
of f which is defined by the orthogonal projection v̂ = div q̂ = Pdiv C2

α

(f) onto a
different convex set.

An alternative, more explicit characterization of the regularization effect of
(1) in terms of the auxiliary field v = ∇u is obtained by reformulating (13a) as

inf
v

{

G(v)+α
(

TV(v1)+TV(v2)
)

}

, where G(v) := inf
u,∇u=v

1

2
|u−f |22 (16)



Exploiting strong duality again we obtain that

G(v) = − inf
p

{1

2
|f − div p|22 −

1

2
|f |2 − 〈v, p〉Ω

}

. (17)

Fermat’s rule yields that the minimizer p̂ has to fulfill ∇div p̂ = ∇f − v and, in
turn, ∆(div p̂) = ∆f −div v. Insertion into G(v) in (17) yields for (16) (omitting
the constant)

inf
v

{1

2

∣

∣∆−1(∆f − div v)
∣

∣

2

2
+ α

(

TV(v1) + TV(v2)
)

}

(18)

This representation of (13a) and (15), respectively, shows that the edge image
∆f is approximated by the divergence of a piecewise smooth vector field v in
terms of the | · |∆−2-norm. Clearly, inserting v = ∇u into ∆−1(∆f −div v) yields
1
2 |f − u|22 from (13a).

3.2 Variational Approach (13b)

The data term of problem (13b) decomposes according to the orthogonal de-
composition (6a). By construction, the affine component ua of u = ua + uo is
not affected by the regularizer. Thus, ûa = fa, where fa can be computed in a
preprocessing step. It remains to minimize

inf
uo,v

{1

2
‖∇fo − v‖2

2 + α
(

TV(v1) + TV(v2)
)

}

, subject to v = ∇uo .

Due to the Prop. 2 the linear constraint can be expressed as δV∇
(v). Reasoning

similar to the previous section yields

sup
w

{

〈w,∇fo − v〉Ω − 1

2
‖w‖2

2

}

+ sup
q∈C2

α

〈q,−v〉Ω + δV∇
(v)

= sup
w,q∈C2

α

{

〈w + q,−v〉Ω + δV∇
(v) + 〈w,∇f〉Ω − 1

2
‖w‖2

2

}

Interchanging inf and sup and taking infv (ignoring constants), we obtain

inf
w,q∈C2

α

1

2
‖∇fo − w‖2

2 subject to w + q ∈ V∇⊥ . (19)

The minimizer w̄ is obviously an element of V∇, which together with the con-
straints q ∈ C2

α , w + q ∈ V∇⊥ leads to the reformulation of (19)

inf
q∈P∇(C2

α
)

1

2
‖∇fo − q‖2

2 . (20)

Here P∇ denotes the orthogonal projector onto the subspace V∇. To compare
this approach with (15), we rewrite (20) as

inf
q∈P∇(C2

α
)

1

2
‖∇(fo − ∆−1 div q)‖2

2 = inf
q∈P∇(C2

α
)

1

2

∥

∥∇
(

∆−1(∆fo − div q)
)∥

∥

2

2
, (21)



where ∆−1 stands for the solution operator of problem (9). Approach (15), on
the other hand, is given by

inf
q∈C2

α

|fa + (fo − div q)|22 . (22)

Taking into account the representation of vector fields q ∈ V∇ by a potential
functions φq in terms of q = ∇φq viz. div q = ∆φq (Prop. 2), we see that (21)
focuses on the decomposition of the edge set ∆f , whereas (22) decomposes f

and does not discriminate the two components fa and fo.
Comparing (21) on the other hand with (18) indicates how regularization of

the large-scale structural components of f is accomplished by (21) in terms of
the small-scale texture component φq, by taking the gradient (after smoothing
with ∆−1) and projection onto a suitable set P∇(C2

α).

4 Optimization

In this section we specify algorithms for computing a global minimum of (13a)
and (13b), respectively. We apply an alternating version of the split Bregman
algorithm [7]. Note that the split Bregman algorithm coincides with the aug-
mented Lagrangian method applied to the primal problem [14] and that its
alternating version is just a Douglas-Rachford splitting for the dual problem
[17]. The convergence properties of this technique are well known.

4.1 Algorithm Minimizing (13a)

The split Bregman algorithm for (14) reads

(u(k+1), v(k+1)) = argmin
u,v

{1

2
|f − u|22 + α(TV(v1) + TV(v2))

+
1

2τ
‖∇u − v‖2

2 + 〈b(k),∇u − v〉Ω
}

,

b(k+1) = b(k) +
1

τ

(

∇u(k+1) − v(k+1)
)

.

Alternating the minimization of u(k+1) and v(k+1) we obtain

v(k+1) = argmin
v

{

α(TV(v1) + TV(v2)) +
1

2τ
‖∇u(k) + τb(k) − v‖2

2

}

,

u(k+1) = argmin
u

{1

2
|f − u|22 +

1

2τ
‖∇u + τb(k) − v(k+1)‖2

2.

Then v(k+1) follows as in the ROF approach by

v(k+1) = ∇u(k) + τb(k) − PC2
ατ

(∇u(k) + τ b(k))

and u(k+1) can be computed by setting the gradient to zero

u(k+1) = (I − 1

τ
△)−1

(

f − div(
1

τ
v(k+1) − b(k))

)



Algorithm. Initialization: b(0) = 0 and u(0) = f

For k = 0, 1, . . . iterate until a convergence criterion is reached

w(k+1) := ∇u(k) + τ b(k)

v(k+1) := w(k+1) − PC2
ατ

(w(k+1))

u(k+1) := (I − 1
τ
△)−1

(

f − div( 1
τ

v(k+1) − b(k))
)

b(k+1) := b(k) + 1
τ

(

∇u(k+1) − v(k+1)
)

4.2 Algorithm Minimizing (13b)

Based on the derivation in section 3.2, we consider

inf
uo,v

{1

2
‖∇fo −∇uo‖2

2 + α
(

TV(v1) + TV(v2)
)

}

, subject to v = ∇uo .

and have to iterate

(u(k+1), v(k+1)) = argmin
u,v

{1

2
‖∇fo −∇u|22 + α(TV(v1) + TV(v2))

+
1

2τ
‖∇u − v‖2

2 + 〈b(k),∇u − v〉Ω
}

,

b(k+1) = b(k) +
1

τ

(

∇u(k+1) − v(k+1)
)

.

Alternating the first minimization process we obtain the following algorithm
Algorithm. Initialization: b(0) = 0 and u(0) = f

For k = 0, 1, . . . iterate until a convergence criterion is reached

w(k+1) := ∇u(k) + τ b(k)

v(k+1) := w(k+1) − PC2
ατ

(w(k+1))

u(k+1) := τ
1+τ

△−1 div
(

∇fo + ( 1
τ

v(k+1) − b(k))
)

b(k+1) := b(k) + 1
τ

(

∇u(k+1) − v(k+1)
)

5 Numerical Experiments

In this section we illustrate the properties of our approach with few numerical
experiments. The mimetic finite difference method [9, 10] is used for discretiz-
ing relevant scalar fields and vector fields and a detailed implementation of the
nonlinear functionals is given in [22]. By this numerical scheme, the relevant
boundary conditions are kept well and turn out to be compatible with the cor-
responding integral identities.

Signals. Figure 2 shows that our approach (13b) effectively removes noise
without staircasing effect, in contrast to the ROF model. We also point out that
boundaries are treated without introducing artifacts.
Variational approach (13a) versus (13b). Figure 3 compares the minimizers
of the two variational approaches (13a) and (13b) for an arbitrary image section.



Fig. 2. Ground truth and noisy input data are shown by the first two graphs respec-
tively. Standard TV-regularizaton (ROF model) leads to the well-known staircasing
effect (see 3rd. picture). Piecewise affine TV regularization effectively removes noise
and recovers the piecewise affine signal structure (see 4th picture).

The last two pictures of Figure 3 depict 3D plots of the minimizers subtracted
from the original image section. The plot on 5th graph corresponding to the
approach (13b) clearly indicates an approximation “error” that is not noticeable
in the plot on 4th graph corresponding to (13a). This result confirms the discus-
sion above of formal differences between equations (21) and (22) and the | · |2H1

based data term is more sensitive to large noises due to the noise amplification
by partial derivatives.

Fig. 3. From left to right. Original image section, minimizer of (13a), minimizer of
(13b), 3D plots of the minimizers subtracted from the original data illustrate a major
difference between the variational approaches (13a) and (13b). While the 4th plot on
the shows almost pure noise, the rightmost plot indicates an estimation error due to
using the | · |2H1

data term which is sensitive to large noise levels.

Denoising of vector fields. Figure 4 compares the standard TV regulariza-
tion (ROF model) with piecewise affine TV regularization for the denoising of
vector fields. The input data simulate estimates obtained for a moving camera
in a scene with moving objects. This scenario is roughly represented by a piece-
wise planar layout of the scene. The numerical results confirm again that our
approach returns useful estimates of both denoised vector fields and its discon-
tinuities, while the ROF-model only returns discontinuities but no useful vector
field estimates.

6 Conclusion

We presented a novel convex variational approach to the denoising and the de-
composition of signals, images and vector fields. Based on a suitable orthogonal
decomposition of the underlying vector space, a TV measure comprising second-
order derivatives was introduced that enables to denoise noisy input data and



to preserve piecewise affine signal structure using standard algorithms of convex
programming. The latter are computationally simple due to a problem decom-
position employing the augmented Lagrangian and primal and dual variables.
By deriving dual variational formulations aking to the ROF model, differences
between first- and second order regularization and between two alternative data
terms were worked out. Numerical experiments confirm these findings.

Fig. 4. Top. Color-coded motion field corresponding to a moving camera and static
as well as moving objects represented by sections of planes; ground-thruth (1st. fig.),
input data (2nd. fig.), the ROF-based result (3rd. fig.) and the affine regulariza tion-
based (13a) result (4th. fig.) . Last two rows: Components of ∇u1 and ∇u2 for the
ROF model (2nd. row) and for piecewise affine regularization (3rd. row). The result
on the right illustrates that through piecewise affine regularization no staircasing effect
occurs, thus enabling both discontinuity detection and motion estimation, while the
latter is not feasible for such scenarios with the standard ROF-model.
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