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Abstract. Image segmentation based on graph representations has been
a very active field of research recently. One major reason is that pairwise
similarities (encoded by a graph) are also applicable in general situations
where prototypical image descriptors as partitioning cues are no longer
adequate. In this context, we recently proposed a novel convex program-
ming approach for segmentation in terms of optimal graph cuts which
compares favorably with alternative methods in several aspects.
In this paper we present a fully elaborated version of this approach along
several directions: first, an image preprocessing method is proposed to
reduce the problem size by several orders of magnitude. Furthermore,
we argue that the hierarchical partition tree is a natural data structure
as opposed to enforcing multiway cuts directly. In this context, we ad-
dress various aspects regarding the fully automatic computation of the
final segmentation. Experimental results illustrate the encouraging per-
formance of our approach for unsupervised image segmentation.

1 Introduction

The segmentation of images into coherent parts is a key problem of computer
vision. It is widely agreed that in order to properly solve this problem, both
data-driven and model-driven approaches have to be taken into account [1].

Concerning the data-driven part, graph-theoretical approaches are more suit-
ed for unsupervised segmentation than approaches working in Euclidean spaces:
as opposed to representations based on (dis-)similarity relations, class represen-
tations based on Euclidean distances (and variants) are too restrictive to capture
signal variability in low-level vision [2]. This claim also appears to be supported
by research on human perception [3].

The unsupervised partitioning of graphs constitutes a difficult combinato-
rial optimization problem. Suitable problem relaxations like the mean-field ap-
proximation [4,5] or spectral relaxation [6,7] are necessary to compromise about
computational complexity and quality of approximate solutions.

Recently, a novel convex programming approach utilizing semidefinite re-
laxation has shown to be superior regarding optimization quality, the absence
of heuristic tuning parameters, and the possibility to mathematically constrain
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Fig. 1. A color image from the Berkeley segmentation dataset [9] (left). Comparing
the segmentation boundaries calculated with the semidefinite programming relaxation
(right) to the human segmentations (middle), the high quality of the SDP relaxation
result is reflected by a high F -measure (see Section 5) of 0.92.

segmentations, at the cost of an increased but still moderate polynomial com-
putational complexity [8]. This motivates to elaborate this approach towards
a fully automatic and efficient unsupervised segmentation scheme providing a
hierarchical data structure of coherent image parts which, in combination with
model-based processing, may be explored for the purpose of scene interpretation
(see Fig. 1 for an example result).

To this end, we consider a hierarchical framework for the binary partitioning
approach presented in [8] to obtain a segmentation into multiple clusters (Section
2). To reduce the problem size by several orders of magnitude (to less than
0.01% of the all-pixel-based graph), we discuss an over-segmentation technique
[10] which forms coherent “superpixels” [11] in a preprocessing step (Section 3).
Section 4 treats various aspects concerning the development of a fully automatic
unsupervised segmentation scheme. Experimental results based on a benchmark
dataset of real world scenes [9] and comparisons with the normalized cut criterion
illustrate the encouraging performance of our approach (Section 5).

2 Image Segmentation via Graph Cuts

The problem of image segmentation based on pairwise affinities can be formu-
lated as a graph partitioning problem in the following way: consider the weighted
graph G(V, E) with locally extracted image features as vertices V and pair-
wise similarity values wij ∈ R

+
0 as edge-weights. Segmenting the image into

two parts then corresponds to partitioning the nodes of the graph into dis-
joint groups S and S = V \ S. Representing such a partition by an indica-
tor vector x ∈ {−1, +1}n (where n = |V |), the quality of a binary segmen-
tation can be measured by the weight of the corresponding cut in the graph:
cut(S, S) =

∑
i∈S,j∈S wij = 1

4x�Lx, where L = D − W denotes the graph
Laplacian matrix, and D is the diagonal degree matrix with Dii =

∑
j∈V wij .

As directly minimizing the cut favors unbalanced segmentations, several
methods for defining more suitable measures have been suggested in the lit-
erature. One of the most popular is the normalized cut criterion [7], which tries
to avoid unbalanced partitions by appropriately scaling the cut-value. Since the
corresponding cost function yields an NP-hard minimization problem, a spectral
relaxation method is used to compute an approximate solution which is based on
calculating minimal eigenvectors of the normalized Laplacian L′ = D− 1

2 LD− 1
2 .
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To get a binary solution of the original problem, these eigenvectors are then
thresholded appropriately.

SDP relaxation. In this paper, we employ an alternative technique to find
balanced partitions which originates from spectral graph theory [6]. As a starting
point consider the following combinatorial problem formulation:

min
x∈{−1,+1}n

x�Lx

s.t. c�x = b.
(1)

Thus, instead of normalizing the cut-value as in [7], in this case an additional
balancing constraint c�x = b is used to compute favorable partitions. A classical
approach to find a balanced segmentation uses c = (1, . . . , 1)� and b = 0, which is
reasonable for graphs where each vertex is equally important. However, this may
not be the case for the preprocessed images considered here; we will therefore
discuss alternative settings for c and b in Section 4.

In order to find an approximate solution for the NP-hard problem (1), an
advanced method is proposed in [8] which in contrast to spectral relaxation is
not only able to handle the general linear constraint, but also takes into account
the integer constraint on x in a better way. Observing that the cut-weight can
be rewritten as x�Lx = tr(Lxx�), the problem variables are lifted into a higher
dimensional space by introducing the matrix variable X = xx�. Dropping the
rank one constraint on X and using arbitrary positive semidefinite matrices
X � 0 instead, we obtain the following relaxation of (1):

min
X�0

tr(LX)

s.t. tr(cc�X) = b2

tr(eie
�
i X) = 1 for i = 1, . . . , n,

(2)

where ei ∈ R
n denotes the i-th unit vector (see [8] for details).

The important point is that (2) belongs to the class of semidefinite programs
(SDP), which can be solved in polynomial time to arbitrary precision, without
needing to adjust any additional tuning parameters (see, e.g., [12]). To finally
recover an integer solution x from the computed solution matrix X of (2), we use
a randomized approximation technique [13]. Since this method does not enforce
the balancing constraint from (1), it rather serves as a strong bias to guide the
search instead of a strict requirement (cf. [8]).

Hierarchical clustering. In order to find segmentations of the image into
multiple parts, we employ a hierarchical framework (e.g. [14]). In contrast to di-
rect multiclass techniques (cf. [15,16]), the original cost function is used through-
out the segmentation process, but for different (and usually smaller) problems
in each step. As a consequence, the number k of segments does not need to be
defined in advance, but can be chosen during the computation (which is more
feasible for unsupervised segmentation tasks). Moreover, the subsequent splitting
of segments yields a hierarchy of segmentations, so that changing k leads to sim-
ilar segmentations. However, as no global cost function is optimized, additional
decision critera are needed concerning the selection of the next partitioning step



Hierarchical Image Segmentation Based on Semidefinite Programming 123

Fig. 2. 304 image patches are obtained for the image from Fig. 1 by over-segmenting it
with mean shift. Note that in accordance with the homogeneous regions of the image,
the patches differ in size. In this way, the splitting of such regions during the hierarchical
graph cut segmentation is efficiently prevented.

and when to stop the hierarchical process. We will consider such criteria in Sec-
tion 4.

3 Reducing the Problem Size

One important issue for segmentation methods based on graph representations
is the size of the corresponding similarity matrix. If the vertex set V contains
the pixels of an image, the size of the similarity matrix is equal to the squared
number of pixels, and therefore generally too large to fit into computer memory
completely (e.g. for an image of 481×321 pixels — the size of the images from the
Berkeley segmentation dataset [9] — the similarity matrix contains 1544012 ≈
23.8 billion entries). As reverting to sparse matrices (which works efficiently for
spectral methods) is of no avail for the SDP relaxation approach, we suggest to
reduce the problem size in a preprocessing step. While in this context, approaches
based on probabilistic sampling have recently been applied successfully to image
segmentation problems [17,18], we propose a different technique.

Over-segmentation with mean shift. Our method is based on the
straightforward idea to abandon pixels as graph vertices and to use small image
patches (or “superpixels” [11]) of coherent structure instead. In fact, it can be
argued that this is even a more natural image representation than pixels as those
are merely the result of the digital image discretization. The real world does not
consist of pixels!

In principle, any unsupervised clustering technique could be used as a pre-
processing step to obtain such image patches of coherent structure. We apply
the mean shift procedure [10], as it does not smooth over clear edges and results
in patches of varying size (see Fig. 2 for an example). In this way, the important
structures of the image are maintained, while on the other hand the number of
image features for the graph representation is greatly reduced.

In summary, the mean shift uses gradient estimation to iteratively seek modes
of a density distribution in some Euclidean feature space. In our case, the feature
vectors comprise the pixel positions along with their color in the perceptually
uniform L*u*v* space. The number and size of the image patches is controlled by
scaling the entries of the feature vectors with the spatial and the range bandwidth
parameters hs and hr, respectively (see [10] for details).

In order to get an adequate problem size for the SDP relaxation approach,
we determine these parameters semi-automatically: while the spatial bandwidth
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hs is set to a fixed fraction of the image size, we calculate the range bandwidth
hr by randomly picking a certain number of pixels from the image, computing
their maximum distance dmax in the L*u*v* color space, and setting hr to a
fraction of dmax. Moreover, we fix the minimum size of a region to M = 50
pixels. For the images from the Berkeley dataset [9], experiments showed that
setting hs = 5.0 and hr = dmax

15 results in an appropriate number of 100–700
image patches (corresponding to less than 0.01% of the number of pixels).

Constructing the graph. Using the image patches obtained with mean
shift as graph vertices, the corresponding affinities are defined by representing
each patch i with its mean color yi in L*u*v* space, and calculating the similarity
weights wij between neighboring patches as wij = lij exp

(
−‖yi−yj‖2

hr

)
, where lij

denotes the length of the edge in the image between the patches i and j. Hence,
the problem is represented by a locally connected graph.

Assuming that each pixel originally is connected to its four neighbors, the
multiplication with lij simulates a standard coarsening technique for graph par-
titioning [14]: the weight between two patches is calculated as the sum of the
weights between the pixels contained within these patches. As each patch is of
largely homogeneous color, using the mean color yi instead of exact pixel colors
does not change the resulting weights considerably.

Note that additional cues like texture or intervening contours can be incor-
porated into the classification process by computing corresponding similarity
values based on the image patches, and combining them appropriately (see e.g.
[14,19]). However, we do not consider modified similarities here.

4 Towards a Fully Automatic Segmentation

Based on the image patches obtained with mean shift the SDP relaxation ap-
proach is applied hierarchically to successively find binary segmentations. While
solving the relaxation itself does not require tuning any parameters, the hierar-
chical application necessitates to discuss strategies for building up the segmen-
tation tree, which is the subject of this section.

Segmentation constraints. Concerning the balancing constraint c�x = b
in (1), the graph vertices represented by the entries of c now correspond to image
patches of varying size. For this reason, we calculate the number of pixels mi

contained in each patch i and set ci = mi instead of ci = 1, while retaining
b = 0. In this way, the SDP relaxation seeks for two coherent parts with each
containing approximately the same number of pixels.

However, if the part of the image under consideration in the current step
contains a dominating patch k with ck = maxi ci � cj for all j �= k, segmentation
into equally sized parts may not be possible. Nevertheless, we can still produce
a feasible instance of the SDP relaxation in this case by adjusting the value of
b in (1) appropriately, e.g. to b = ck − 1

2

∑
i �=k ci. Note that such an adjustment

is not possible for spectral relaxation methods!
Which segment to split next? This question arises after each binary par-

titioning step. As the goal of unsupervised image segmentation mainly consists
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in capturing the global impression of the scene, large parts of coherent structure
should always be preferred to finer details. For this reason, we generally select
the largest existing segment as the next candidate to be split.

However, we allow for two exceptions to this general rule: (1) If the candidate
segment contains less than a certain number of patches (which we set to 8 in our
experiments), it is not split any further. This prevents dividing the image into
too much detail. (2) If the cut-value obtained for the candidate segment is too
large, this split is rejected, since this indicates that the structure of this segment
is already quite coherent. To decide when a cut-value z is too large, we compare
it against the sum of all edge-weights w′ (which is an upper bound on z): only
if z is smaller than 2% of w′, the corresponding split is accepted.

Stopping criteria. The probably most difficult question in connection to
unsupervised image segmentation concerns the number of parts the image con-
sists of, or equivalently, when to stop the hierarchical segmentation process. As
every human is likely to answer this question differently, one could even argue
that without defining the desired granularity, image segmentation becomes an
ill-posed problem. The hierarchical SDP relaxation approach offers two possible
stopping criteria based on the desired granularity: the first one directly defines
the maximum number of parts for the final segmentation. The second one is
based on the fact that adding the cut-values results in an increasing function
depending on the step number, which is bounded above by w′. Therefore, we can
introduce the additional criterion to stop the hierarchical segmentation process
when the complete cut value becomes larger than a certain percentage of w′.

5 Experimental Results

To evaluate the performance of our hierarchical segmentation algorithm, we ap-
ply it to images from the Berkeley segmentation dataset [9], which contains
images of a wide variety of natural scenes. Moreover, this dataset also provides
“ground-truth” data in the form of segmentations produced by humans (cf. Fig.
1), which allows to measure the performance of our algorithm quantitatively.
Some exemplary results are depicted in Fig. 3. These encouraging segmenta-
tions are computed in less than 5 minutes on a Pentium 2 GHz processor.

As a quantitative measure of the segmentation quality, we use the precision-
recall framework presented in [19]. In this context, the so-called F -measure is a
valuable statistical performance indicator of a segmentation that captures the
trade-off between accuracy and noise by giving values between 0 (bad segmen-
tation) and 1 (good segmentation). For the results shown in Fig. 3, the corre-
sponding F -measures confirm the positive visual impression.

For comparison, we also apply the normalized cut approach within the same
hierarchical framework with identical parameter settings. While the results indi-
cate the superiority of the SDP relaxation approach, this one-to-one comparison
should be judged with care: as the normalized cut relaxation cannot appropri-
ately take into account the varying patch sizes, the over-segmentation produced
with mean shift may not be an adequate starting point for this method.
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Image SDP relaxation

FSDP = 0.92

FSDP = 0.68

FSDP = 0.69

FSDP = 0.58

Normalized cut relax.

FNcut = 0.77

FNcut = 0.61

FNcut = 0.64

FNcut = 0.35

# Seg-
ments

k = 7

k = 6

k = 8

k = 8

Fig. 3. Segmentation results for four color images (481×321 pixels) from the Berkeley
segmentation dataset [9]. Note the superior quality of the segmentations obtained with
the SDP relaxation approach in comparison to the normalized cut relaxation, which
are approved by the higher F -measures.

Fig. 4. Evolution of the hierarchical segmentation for the image from Fig. 1. Note the
coarse-to-fine nature of the evolution: First the broad parts of the image (water and
sky) are segmented, while the finer details of the surfer arise later.

Finally, Fig. 4 gives an example of how the segmentation based on the SDP
relaxation evolves hierarchically. In this context, note that although the water
contains many patches (cf. Fig. 2), it is not split into more segments since the
corresponding cut-values are too large.

6 Conclusion

We presented a hierarchical approach to unsupervised image segmentation which
is based on a semidefinite relaxation of a constrained binary graph cut problem.
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To prevent large homogeneous regions from being split (a common problem of
balanced graph cut methods) we computed an over-segmentation of the image
in a preprocessing step using the mean shift technique. Besides yielding better
segmentations, this also reduced the problem size by several orders of magnitude.

The results illustrate an important advantage of the SDP relaxation in com-
parison to other segmentation methods based on graph cuts: As the balancing
constraint can be adjusted to the current problem, we can appropriately take
into account the different size of image patches. Moreover, it is easy to include
additional constraints to model other conditions on the image patches, like con-
nections to enforce the membership of certain patches to the same segment. We
will investigate this aspect of semi-supervised segmentation in our future work.
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