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Abstract

Recently, we proposed an algorithm for binary tomography based on DC ( differ-
ence of convex functions ) programming [13,15]. In this paper, we extend the binary
reconstruction problem to multi-valued objects. We describe how such objects can
be reconstructed just by combining binary decisions. The proposed algorithm re-
mains practicable for multi-valued reconstructions, and even with a large number of
discrete values. Furthermore, we show how approximately known absorption levels
can be adaptively estimated within the reconstruction process.
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1 Introduction

Material and body tissue can be modeled in many cases with a limited set
of classes, so binary or discrete valued objects arise naturally in industrial
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and medical applications. To get information about the distribution inside
such objects, transmission tomography has gained a wide-spread use as non-
destructive technique. Here the absorptions of X-rays passing through an
object are measured for a set of projection angles. Unfortunately standard
non-discrete reconstruction techniques such as filtered back-projection need
a very large amount of projections over an angle covering more than 180o in
order to achieve usable results. In contrast a typical application of discrete
tomography is the reconstruction of discrete valued objects from only a few
projections with a limited scanning angle geometry. These scenarios arise
because of technical limitations or because the object is very sensitive against
radiation. The main topic in discrete tomography is to use the prior knowledge
of discrete valued objects to achieve better reconstruction results on such
scenarios.

2 Related Work

Based on the work in [15] we extend our approach to reconstructions with
more than two values. Our mathematical programming method provides an
alternative to sequential update techniques and other iterative reconstruction
methods, see e.g. [5,9]. We incorporate prior information based on Markov-
Random-Field models without using stochastic sampling methods [2,11]. The
adaptive estimation of absorption coefficients is motivated as hidden parame-
ter model in the context of expectation maximization (EM), see e.g. [16] and
references therein for EM in discrete tomography.

3 Binary Objects

3.1 Reconstruction

Using a linear transformation for the projection process of transmission to-
mography, the reconstruction problem becomes an inverse problem for

Ax = b(1)

with unknown x ∈ {0, 1}n for the binary reconstruction problem. Elements
of the matrix A ( with aij ≥ 0 ) represent the portion of a X-ray through the
discretized subspace of the object domain, e.g. a pixel element in 2D or a
volume element in 3D.

We model the binary reconstruction problem as an optimization problem

min
x∈{0,1}n

f(x) :=
1

2
(Ax − b)2.(2)



This integer program is a combinatorial problem and algorithms especially
for large scale systems are computationally demanding. Therefore we use a
variational formulation with relaxated x ∈ [0, 1]n. Due to the ill-posedness
of the inverse problem an improvement of the reconstruction quality can be
achieved with an regularization term, which models prior information about
the properties of an object. We use a smoothness prior to penalize non-
homogeneous and isolated areas:

min
x∈[0,1]n

E(x) := f(x) + α〈x, Lx〉(3)

= xT Qx + 〈q, x〉 + c,(4)

with L describing the difference of neighboring elements and with the regu-
larization parameter α. This yields

〈x, Lx〉 :=
∑

〈i,j〉

(xi − xj)
2 ,(5)

where 〈i, j〉 ranges over the edges of the underlying grid graph.

3.2 Convex-Concave Regularization

The drawback of the variational formulation in (3) is the relaxation of solutions
to non-binary values. Hence a thresholding scheme is needed to obtain binary
or discrete-valued results. To avoid this post-processing step we enrich the
functional with a concave part to drive the solution to binary values:

min
x∈[0,1]n

F (x; λ) := E(x) + λ〈x, e − x〉.(6)

By starting with λ = 0 and increasing λ slowly we end up in binary values.
Note that we have now a functional minx∈[0,1]n F (x; λ) with both convex and
concave parts. To solve this constrained optimization problem, we use the DC
( difference of convex functions ) programming approach.

4 DC Programming

In this section we give a sketch of DC ( difference of convex functions ) pro-
gramming and how the optimization of F (x; λ) is related to DC. For more
details on DC, we refer to [13,15].

By decomposing F (x; λ) into a convex and a concave part, we model our
problem as d.c. program, which is defined as the following minimization prob-
lem [13]

α = inf{f(x) := g(x) − h(x), x ∈ X}(7)



with proper lower semicontinuous convex functions g(x) and h(x) on X. To
solve (7), the simplified DC-algorithm uses a primal-dual iteration scheme [13]:

Algorithm 1 DC-Algorithm (DCA):

• Choose x0 ∈ dom g arbitrary.

• For k = 0, 1, . . . compute:

yk ∈ ∂h(xk),(8)

xk+1 ∈ ∂g∗(yk).(9)

Here, g∗ denotes the Fenchel-conjugate of (7) and ∂ denotes the subgradient,
see [13].

5 Binary Reconstruction Algorithm

The decomposition of F (x; λ) into two convex functions is not unique. In
order to investigate how reconstruction performance and efficiency depends
on the decomposition, we choose two different decompositions. The crucial
part is step (9). because there we have to solve a constrained optimization
problem which is not trivial for large scale problems. To keep this step as
simply as possible, we choose the following first decomposition

Decomposition I:

g(x)=
1

2
〈x, τIx〉 + δC(x) , C = [0, 1]n,(10)

h(x; λ)=
1

2
〈x, (τI − Q)x〉 − 〈q, x〉 − 1

2
λ〈x, (e − x)〉(11)

=
1

2
〈x, [(τ + λ)I − Q]x〉 − 〈q +

1

2
λe, x〉,(12)

where τ is chosen sufficiently large to guarantee convexity of h.

Note that both g and h are convex. Since h is smooth, ∂h(x) = {∇h(x)}
and step (8) amounts to evaluate the gradient:

yk =∇h(xk; λ)(13)

= [(τ + λ)I − Q]xk − (q +
1

2
λe).(14)

Function g, on the other hand, is non-smooth due to the constraint x ∈ C,
and we have to solve problem:

xk+1 ∈ ∂g∗(yk)(15)

=argminx{g(x) − 〈yk, x〉}.(16)



Starting with a convex functional for λ = 0, we increase λ to enforce binary
solutions. This yields the following algorithm [15]

Algorithm 2 Binary Reconstruction Algorithm:

• Choose λ0 = 0, x0 = 1
2
e, ∆λ

• Repeat ( outer DC-loop)
· Repeat ( inner DC-loop )

yk = ∇h(xk; λ)
xk+1 = argminx{g(x) − 〈yk, x〉}

· until |xk+1 − xk| ≤ ε
· λl+1 = λl + ∆λ

• until xk+1
i /∈ [ε′, 1 − ε′] ∀ i

Note that (16) can be calculated analytically for decomposition I, see [15].
To increase convergence speed, other decompositions are plausible. The ma-
trix Q is positive semi-definite which suggests to use the following second
decomposition

Decomposition II:

g(x)=
1

2
〈x, Qx〉 + 〈q, x〉 + δC(x) , C = [0, 1]n,(17)

h(x; λ)=−1

2
λ〈x, (e − x)〉.(18)

The optimization problem in step (16) is now a constrained quadratic pro-
gram, which can be solved with standard quadratic program solvers. Hence
the binary reconstruction algorithm solves a sequence of quadratic programs
which converge to a binary solution. As we gain convergence speed in the
outer loop, each inner loop step needs to calculate (16), which may be compu-
tationally very demanding for large scale problems. For this kind of problems,
decomposition I seems to be more convenient, as we can use sparse matrix
multiplications to calculate a solution.

To show the convergence properties of both decompositions, we simulated
3 projections over 90 degree of a 20 × 20 image ( see figure 1 ). Both de-
compositions, I and II, were able the reconstruct the original image in this
case. Decomposition II was solved with CPLEX 7.5, a commercial quadratic
program solver. In figure 1 we plotted the inner iteration loop for λ = 0
against E(x). Note that decomposition II shows faster convergence in his
example, but keep in mind that each iteration step is computationally more
costly. Figure 1 shows also the outer loop for both decompositions where the



quadratic programming approach ( decomposition II ) achieves better local
minima during the iteration loop.
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Fig. 1. Top: Ground truth of reconstruction problem. Bottom left: Convergence
of inner DC loop for λ = 0 for decomposition I and II. Bottom right: Developing of
E(x) for outer DC loop for decomposition one and two.

6 From Binary to Discrete-Valued Objects

The basic idea of our discrete-valued reconstruction algorithm is to represent
a non-binary object consisting of n + 1 different absorption coefficients with
binary variables. Therefore we define for each variable i, which may correspond
to a pixel or voxel, the true or physical absorption x̃i associated to this variable.
Then the absorption x̃i of i can be represented as linear combination with
coefficients from a set M := {µ0, . . . , µn} of all possible absorption coefficients.
This yields

x̃i = xi · µi,t + (1 − xi) · µi,t−1,(19)

with µi,t ∈ M and µt−1 ≤ µt. Index t ∈ {0, . . . , n} in (19) picks the corre-
sponding absorption coefficient µi,t ∈ M for variable i.

Note that for xi ∈ {0, 1} we get x̃i ∈ {µ0, ..., µn}, i.e all pixels or voxels
have discrete values. Based on this representation, we define the following



optimization problem

min
x∈[0,1]n

F ′(x; λ, µt) := E(x̃) + λ〈x, e − x〉,(20)

with x̃ as defined in (19) and by increasing λ we obtain discrete-valued solu-
tions.

6.1 Convex Solution

For λ = 0 the problem (20) is convex and we do not have to calculate a specific
binary representation for x̃i. We solve

min
x∈[0,1]n

F ′(x; 0) = E(x̃)(21)

by setting

x̃i = xi · µn + (1 − xi) · µ0(22)

where µ0 and µn represent the lowest and highest absorption level respectively.
Note that we can use the binary DC decomposition to calculate this solution.

6.2 Bin Update Step

In this step we determine µi,t−1 and µi,t for each variable i. Therefore we
identify in which half-open interval bint := [µt−1, µt) the current iterate x̃i

k−1

is located and represent it as linear combination of µt−1 and µt, which are the
corresponding bin borders:

Bin Update Step:

If x̃i
k−1 ∈ bint

set µi,t−1 = µt−1, µi,t = µt and calculate xi such that:
x̃i

k−1 = xi · µi,t + (1 − xi) · µi,t−1.

If x̃i
k−1 = µn

use binn for representation.

Note that we have just chosen another representation of the current iterate
x̃i

k−1 in terms of the two absorption levels µi,t and µi,t−1 associated with
each variable xi. x̃i

k−1 itself remains unchanged. Furthermore, we have not
introduced any further variables to reconstruct more than two values at each
pixel i. We still use the binary model independent from the number of discrete
levels.



6.3 Bin Border Step

The bin definition above is not symmetric, i.e. values of xi ∈ bint may con-
verge into bint+1 during the iteration, but not into bint−1. Consequently we
iteratively change the bin borders as follows

Bin Border Step:
for iteration k odd define bint as:

bint := [µt−1, µt)
for iteration k even define bint as:

bint := (µt−1, µt]

6.4 Discrete DC-Algorithm

We insert the bin update and bin border step in the DC loop to reconstruct
non-binary objects within the DC framework:

Algorithm 3 Discrete DC-Algorithm:
• Step0 - calculate a convex solution

• Repeat
· bin border step
· bin update step
· arg minx∈[0,1]n F ′(x; λ)
· increase λ

• until xk+1
i /∈ [ε′, 1 − ε′] ∀ i

A reconstruction example for the discrete-valued algorithm is given in fig-
ure 2. Although the convex solution is far from the original image, the recon-
struction shows how convex-concave regularization increases the reconstruc-
tion quality also for the multi-valued case.

7 Adaption of Absorption Coefficients ( Binary Case )

For real world problems absorption coefficients may be known only approxi-
mately due to noise or inhomogeneous distributions inside an object. Using
the expectation-maximization (EM) algorithm, we describe how these absorp-
tion coefficients can also be estimated as hidden variables and adapted to
increase the reconstruction quality. Note that we focus in this paper on the
two-valued case, but an extension to discrete-valued reconstructions is possi-
ble, in principle.



Fig. 2. Reconstruction result of a 100 × 100 image consisting of 4 different classes
( left:ground truth ) with 5 projections over 90o. The reconstruction of the convex
quadratic functional (λ = 0 ) is shown in the middle. The right image displays the
reconstruction result of our new discrete-valued reconstruction algorithm.

7.1 Two-Valued Reconstruction Problem

Lets express the optimization problem (6) in terms of the EM algorithm. Then
our objective is to compute the maximum a posteriori reconstruction given by

p(x|b) ∝ p(b|x)p(x),(23)

where

p(b|x) ∝ exp

(

−1

2
(Ax − b)T (Ax − b)

)

,(24)

p(x) ∝ exp

(

−α〈x, Lx〉 − 1

2
λ〈x, e − x〉

)

.(25)

Now consider the following general two-valued reconstruction problem

Axµ1 + A(e − x)µ0 = b,(26)

with x ∈ {0, 1}n. For this problem the projection values b are given and we
want to find a reconstruction of x with scalar parameters µ0 and µ1. These
parameters define the unknown absorption coefficients of the two classes to
reconstruct and they are the missing ( or hidden ) data in terms of EM.

7.2 EM-Algorithm

The expectation-maximization (EM) algorithm converges to a local maximum
of the a posteriori function p(x|b) by including and estimating the missing (
or hidden ) absorption parameters µ = (µ0, µ1)

T via marginalization [10]

p(b|x) =

∫

µ

p(µ, b|x)dµ,(27)



=

∫

µ0

∫

µ1

p(µ0, µ1, b|x)dµ1dµ0.(28)

Then the expectation value of the complete data log-likelihood log p(b, µ|x) is
given by

E-step:

Q(x, x(k−1))= log p(x) + Eµ[log p(b, µ|x)|b, x(k−1)](29)

= log p(x) +

∫

µ

log p(b, µ|x)p(µ|b, x(k−1))dµ,(30)

and for the maximization step we calculate

M-step:

x(k) = arg max Q(x, x(k−1)).(31)

7.3 E-Step

In the appendix we show how Q can be defined as

Q := F ?(x; µ̂, σ̂, ρ̂, λ) := α(〈x, Lx〉) + λ〈x, e − x〉 − (c0(µ̂
2
1 + σ̂2

1) + c1µ̂1(32)

+ c2(µ̂
2
0 + σ̂2

0) + c3(µ̂0)(33)

+ c4(µ̂0µ̂1 + ρ̂σ̂0σ̂1) + c5),(34)

where c0, . . . , c5 are linear and quadratic terms of x and b ( see the appendix
for details ) and µ̂1 and µ̂0 are the estimated µ parameters. µ̂0, µ̂1, σ̂0, σ̂1 and
ρ̂ are calculated in each E-step based on x(k−1) as described in the appendix.

7.4 M-Step

The M-step is given by

min
x∈[0,1]

F ?(x; µ̂, σ̂, ρ̂, λ),(35)

which can be calculated with the binary DC decomposition. Now we embed
the EM step inside the DC loop which yields the following algorithm



Algorithm 4 Adaptive DC-Algorithm:

• Choose µ̂(0), σ̂(0) and set λ(0) = 0

• Repeat (DC-loop)
· Repeat (EM-loop)

E-step : calculate µ̂k, σ̂k and ρ̂k

M-step : x(k+1) = argminx∈[0,1]F
?(x, µ̂k, σ̂k, ρ̂, λ(l))

· until |x(k+1) − x(k)| ≤ ε (EM-loop)
· λ(l+1) = λ(l) + ∆λ

• until xk+1
i /∈ [ε′, 1 − ε′] ∀ i ( DC-loop )

In figure 3 we give a numerical example which shows the result without and
with adapting the absorption coefficients. Without adaption, the background
is modeled here as object in order to fulfill the projection constraints. In
contrast, the adaptive DC algorithm was able to adjust µ which yields a
better reconstruction.

8 Numerical experiments

8.1 Discrete-Valued Reconstruction

We used a 100 × 100 Shepp-Logan phantom ( figure 4 ) to test the discrete-
valued algorithm which was implemented with decomposition one. The ground
truth image has 6 different pixel values, namely

µ = {µ0, . . . , µ5} = {0.0, 0.1, 0.2, 0.3, 0.4, 1.0}.(36)

Since these absorption levels are not equally spaced, a direct usage of the
smoothness prior 〈x̃, Lx̃〉 tends to over-smooth elements with µ5 whereas
µ0, . . . , µ4 are underregularized. As a result we use the following mapping

µ = {µ0, . . . , µN} → µ̄ = {0, 1

N
,

2

N
, ..., 1}(37)

to model smoothness according to classification. This yields the prior 〈x̄, Lx̄〉
with

x̄i = xi · µ̄i,t + (1 − xi)µ̄i,t−1.(38)

We simulated 8,16, 24, 32 and 64 projections over 180 degree using parallel
projection. The calculation time was about 600s with research code on a
standard 3 GHz Pentium 4 PC. The numerical results in figure 4 demonstrate
that our new approach is also applicable to quite complex objects.
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Fig. 3. Top left: Ground truth with two absorption levels of 0.1 ( black ) and 0.9 (
white ). We used 5 projections over 90o for reconstruction. Top middle: Binary DC
reconstruction with fixed absorption estimations of 0.0 and 1.0. Top right: Result by
adapting the absorption levels. Bottom: Convergence of absorption levels from the
initial estimate to ground truth values of 0.1 and 0.9 for this experiment. The upper
line plots the object value ( white ), whereas the lower line plots the background
value ( black ).

8.2 Estimation of Absorption µ

To show the robustness of our adaptive algorithm we used different kinds of
noise to model inhomogeneous absorption. Figure 5, 6 and 7 shows that the
absorption estimation is also usable for low signal to noise ratios with uniform,
Gaussian and salt and pepper noise.

9 Conclusion and Further Work

In this work we have shown that the extension of our binary reconstruction
algorithm to reconstructions of multi-valued objects via a binning step is pos-
sible. Convex-concave regularization improves the reconstruction quality also
in case of discrete-valued objects. Furthermore we used the EM-algorithm to



motivate the adaption of the absorption coefficients as hidden data estimation
and embedded this idea in our DC approach.
The smoothness prior used in this paper tends to over-smooth thin structures,
like the outer white ellipse in the Shepp-Logan case. Hence more sophisticated
priors should be used to further improve the reconstruction quality. From
an application point of view a wide range of alternative decompositions are
investigable to increase convergence speed without introducing a high compu-
tational burden.
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A Appendix

A.1 E-Step

Assuming normal distributions for the projection values we can define the
following distribution

p(b|µ, x) =
1

√

(2π)n
e−0.5(b−(Axµ1+A(e−x)µ0))T (b−(Axµ1+A(e−x)µ0)).(A.1)



Fig. 4. Top left: Ground truth 100×100 Shepp-Logan phantom. Top right: Recon-
struction result using 8 projections over 180 degree. Middle left: Reconstruction
with 16 projections. Middle right: Reconstruction with 24 projections. Bottom
left: Reconstruction with 32 projections. Bottom right: Reconstruction with 64
projections.
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Fig. 5. Uniform noise: Reconstruction result with uniform additive noise for a
100 × 100 image using 5 projections over 180 degree. Left column: Ground truth
with noise and µ0 = 0.2 and µ1 = 0.9 Center column: Reconstruction result with
adaptive DC-algorithm Right column: Developing of absorption coefficients. Top
row: uniform noise ∈ [0, 0.05]. Middle row: uniform noise ∈ [0, 0.1]. Bottom row:
uniform noise ∈ [0, 0.2].

For the E-step of the EM algorithm we have to compute

p(µ|b, xk−1) ∝ p(b|µ, xk−1)p(µ|xk−1).(A.2)

Using an improper prior for µ we calculate a bivariate Gaussian represen-
tation for µ based on reconstruction xk−1 and given projection values b. So
we want to find

p(µ|b, xk−1) =
1

2π|Σ| 12
e−

1

2
(µ−µ̃)Σ−1(µ−µ̃),(A.3)

Σ =





σ2
1 ρσ1σ0

ρσ0σ1 σ2
0



 ,(A.4)
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Fig. 6. Gaussian noise : Reconstruction result with Gaussian noise ( mean=0 ) for
a 100 × 100 image using 5 projections over 180 degree. Left column: Ground truth
with noise and µ0 = 0.2 and µ1 = 0.9 Center column: Reconstruction result with
adaptive DC-algorithm Right column: Developing of absorption coefficients. Top
row: noise with σ = 0.01 Middle row: noise with σ = 0.05 Bottom row: noise with
σ = 0.1

with µ = [µ1, µ0]
T and ρ := cor(µ0, µ1) = σ01

σ0σ1

where ρ is the correlation of µ0

and µ1. The covariance is given by

cov(µ0, µ1) = ρσ0σ1,(A.5)

and we get the following moments

〈µ2
i 〉= µ2

i + σ2
i ,(A.6)

〈µi〉= µi,(A.7)

〈µ0µ1〉= cov(µ0, µ1) + µ0µ1.(A.8)
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Fig. 7. Salt and pepper noise: Reconstruction result with salt and pepper noise
for a 100 × 100 image using 5 projections over 180 degree. Left column: Ground
truth with noise and µ0 = 0.2 and µ1 = 0.9 Center column: Reconstruction result
with adaptive DC-algorithm Right column: Developing of absorption coefficients.
Top row: 5 % noise. Middle row: 10 % noise. Bottom row: 20 % noise.

A.2 µ Estimation

To estimate the normal parameters of µ we convert the quadratic functional

(b − (Axµ1 + A(e − x)µ0))
T (b − (Axµ1 + A(e − x)µ0))(A.9)

into a Gaussian representation for µ









µ1

µ0



 −





µ̃1

µ̃0









T

Σ−1









µ1

µ0



 −





µ̃1

µ̃0







 .(A.10)



We calculate Σ with

M :=





(Ax)T Ax (Ax)T A(e − x)

(A(e − x))T Ax (A(e − x))T A(e − x)



 ,(A.11)

Σ = M−1 =





γ1 γ2

γ2 γ3



 ,(A.12)

which yields the estimates σ̂1 =
√

γ1, σ̂0 =
√

γ3 and ρ̂ = γ2

σ̂0σ̂1

. Now the
estimation µ̂ is given by





µ̂1

µ̂0



 = Σ
(

bT
[

Ax A(e − x)
])

.(A.13)

A.3 Q function

Lets define

Q? := log p(x) +

∫

log(p(b|µ, x))p(µ|x(k−1), b)dµ.(A.14)

Now we can rewrite the first integral term to

log p(b|µ, x) =−0.5(b − (Axµ1 + A(e − x)µ0))
T(A.15)

(b − (Axµ1 + A(e − x)µ0))(A.16)

= c0(x, b)µ2
0 + c1(x, b)µ0 + c2(x, b)µ2

1(A.17)

+ c3(x, b)µ1 + c4(x, b)µ1µ2 + c5(x, b),(A.18)

with c0 . . . c5 dependent on x and b. Note that c0 . . . c5 can be calculated by
writing log p(b|µ, x) in terms of µ2

0, µ0 , µ2
1, µ1, µ1µ0. To keep notation simple,

we will now use ci instead of ci(x, b). For the E-step this yields

Q? = log p(x) +

∫

log(p(b|µ, x)p(µ|x(k−1), b)dµ(A.19)

= log p(x)(A.20)

+

∫

(c0µ
2
0 + c1µ0 + c2µ

2
1 + c3µ1 + c4µ1µ2 + c5)p(µ|x(k−1), b)dµ.(A.21)

As we use Gaussian representation of p(µ|x(k−1), b), the integration can be
done analytically by using the moments of a normal distribution. This yields
the following four cases for µ1 based on the estimations µ̂1, µ̂0, σ̂1,σ̂0 and ρ̂ :

∫

µ1

∫

µ0

µ2
1p(µ0, µ1|x(k−1), b)dµ0dµ1 = µ̂2

1 + σ̂2
1 ,(A.22)



∫

µ1

∫

µ0

µ1p(µ0, µ1|x(k−1), b)dµ0dµ1 = µ̂1,(A.23)

∫

µ1

∫

µ0

µ1µ0p(µ0, µ1|x(k−1), b)dµ0dµ1 = ρ̂σ̂1σ̂0 + µ̂1µ̂0,(A.24)

∫

µ1

∫

µ0

p(µ0, µ1|x(k−1), b)dµ0dµ1 = 1.(A.25)

The corresponding terms for µ0 can be obtained accordingly. Given µ̂, σ̂ and
ρ̂ yields for Q?:

Q? := F ?(x; µ̂, σ̂, λ) :=α(〈x, Lx〉) + λ〈x, e − x〉 − (c0(µ̂
2
1 + σ̂2

1) + c1µ̂1(A.26)

+ c2(µ̂
2
0 + σ̂2

0) + c3(µ̂0)(A.27)

+ c4(µ̂0µ̂1 + ρ̂σ̂0σ̂1) + c5).(A.28)
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