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Abstract A novel approach to the reconstruction problem of binary tomography from a
small number of X-ray projections is presented. Based on our previous work,
we adopt a linear programming relaxation of this combinatorial problem which
includes an objective function for the reconstruction, the approximation of a
smoothness prior enforcing spatially homogeneous solutions, and the projection
constraints. We supplement this problem with an unbiased concave functional
in order to gradually enforce binary minimizers. Application of a primal-dual
subgradient iteration for optimizing this enlarged problem amounts to solve a
sequence of linear programs, where the objective function changes in each step,
yielding a sequence of solutions which provably converges.

Keywords: Discrete Tomography, Combinatorial Optimization, Linear Programming,
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1. Introduction

Discrete Tomography is concerned with the reconstruction of discrete-valued
functions from projections. Historically, the field originated from several branches
of mathematics like, for example, the combinatorial problem to determine bi-
nary matrices from its row and column sums (see the survey [10]). Meanwhile,
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however, progress is not only driven by challenging theoretical problems [5, 7]
but also by real-world applications where discrete tomography might play an
essential role (cf. [8, chapters 15–21]).

The work presented in this paper is motivated by the reconstruction of vol-
umes from few projection directions within a limited range of angles. From the
viewpoint of established mathematical models [11], this is a severely ill-posed
problem. The motivation for considering this difficult problem relates to the
observation that in some specific medical scenarios (see below), it is reason-
able to assume that the function f to be reconstructed is binary-valued. This
poses one of the essential questions of discrete tomography: how can knowl-
edge of the discrete range of f be exploited in order to regularize and solve the
reconstruction problem?

Medical Application. A potential application of discrete tomography in
the field of medical imaging is the 3D reconstruction from Digital Subtrac-
tion Angiography (DSA) images. DSA is a common technique for separating
contrast-filled vessels from the background. To this end, two images of the
same scenery are taken, one with contrast-agent and another one without (see
Figure 1). This results in low-noise projection images as input data for the
reconstruction of a function which is assumed to be binary.

− =

Figure 1. Illustration Digital Subtraction Angiography (DSA) imaging. A pair of images is
taken from each projection direction, one (left) with and another one (center) without contrast
agent. Subtraction of both images yields an image (right) that shows the distribution of the
contrast agent only.

Problem Statement. The imaging geometry is represented by a linear sys-
tem of equations Ax = b. Each projection ray corresponds to a row of matrix
A, and its projection value is the corresponding component of b. The row en-
tries of A represent the length of the intersection of pixels (voxels in the 3D
case) of the (arbitrarily) discretized volume and the corresponding projection
ray (see Fig. 2). This corresponds to the assumption that the function to be re-
constructed is binary-valued, i.e. x is a binary-valued vector. Each component
xi ∈ {0, 1} indicates whether the corresponding pixel (belongs to the recon-
structed object, xi = 1, or not, xi = 0 (see Fig. 2). The reconstruction problem
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is to compute the binary indicator vector x from the under-determined linear
system of projection equations:

Ax = b, x = (x1, ..., xn)> ∈ {0, 1}n (1)
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Figure 2. Discretization model leading to the algebraic representation of the reconstruction
problem: Ax = b, x ∈ {0, 1}n.

2. Previous Work and Contribution

Due to noise in the measurement vector b when dealing with real data, (1)
is likely to have no feasible solution. In order to take advantage of continu-
ous problem formulations and numerical interior point methods, Fishburn et
al. [4] considered the relaxation xi ∈ [0, 1], i = 1, . . . , n, and investigated the
following linear programming approach for computing a feasible point:

min
x∈[0,1]n

〈0, x〉, Ax = b (2)

In particular, the information provided by feasible solutions in terms of addi-
tivity and uniqueness of subsets S ⊂ Z

n is studied in [4].
Gritzmann et al. [6] introduced the following linear integer programming

problem for binary tomography:

max
x∈{0,1}n

〈e, x〉, e := (1, . . . , 1)>, Ax ≤ b , (3)

and suggested a range of greedy approaches within a general framework for
local search. Compared to (2), the objective function (3), called best-inner-
fit (BIF) in [6], looks for the maximal set compatible with the measurements.
Furthermore, the formulation of the projection constraints is better suited to
cope with measurement errors and noise.

In [13, 14], we studied the relaxation of (3) xi ∈ [0, 1], ∀i, supplemented
with a standard smoothness prior enforcing spatial coherency of solutions

∑

〈i,j〉

(xi − xj)
2 (4)
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Here, the sum runs over all 4 nearest neighbors of the pixel grid (6 neighbors
in the 3D case). In order to incorporate this prior into the linear programming
approach (3), we used the following approximation by means of auxiliary vari-
ables {z〈i,j〉}:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉 +
α

2

∑

〈i,j〉

z〈i,j〉 (5)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Contribution. A global minimizer of the linear program (5) can straight-
forwardly be computed using an interior point method. In [14] we showed
that for sparse volume structures, like blood vessels in the brain, in principle,
rather accurate 3D-reconstructions may result from solving (5), provided an
additional user parameter determining the rounding [0, 1] 3 xi → {0, 1}, ∀i,
is set properly in a postprocessing step.

To get rid of this parameter, we supplement (5) with a concave functional
enforcing binary solutions x ∈ {0, 1}n. Applying a two-step subgradient min-
imization technique leads to a sequence of programs of type (5), whose solu-
tions converge to a local binary-valued minimizer.

Our approach may be regarded as an alternative to [9, 1] where different
techniques have been suggested for rounding solutions of relaxed optimization
problems. Rather than rounding in a postprocessing step, we integrate both ob-
jective functionals for reconstruction and binary-valued solutions into a single
optimization problem, and solve it with a suitable mathematical programming
approach.

3. Optimization Approach

Our approach reads:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉 +
α

2

∑

〈i,j〉

z〈i,j〉 +
µ

2
〈x, e − x〉 (6)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Compared to (5), we supplemented in (6) the concave functional

µ

2
〈x, e − x〉 =

µ

2

∑

i

xi − x2
i , (7)

which is minimal at the vertices of the domain [0, 1]n. Furthermore, since it
vanishes at {0, 1}n, it does not alter binary minimizers of the original prob-
lem. Our strategy is to choose an increasing sequence of values for µ and to
minimize for each of them (6).
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Problem (6) is no longer convex, of course. To explain our approach for
computing a minimizer, we put

z := (x>, . . . , z〈i,j〉, . . . )
> (8)

and rewrite with a slight abuse of notation all constraints of (6)

0 ≤ xi ≤ 1 , Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

in the form
Az ≤ b , (9)

with A, b re-defined accordingly. Using the notation

δC(z) =

{

0 , z ∈ C

+∞ , z 6∈ C

for the indicator functions of a convex set C, problem (6) then reads:

min
z

f(z) ,

where (cf. definition (8))

f(z) = −〈e, x〉 +
α

2

∑

〈i,j〉

z〈i,j〉 +
µ

2
〈x, e − x〉 + δK(b − Az) , (10)

= g(z) − h(z) , (11)

K = R
n
+ is the standard cone of nonnegative vectors, and

g(z) = −〈e, x〉 +
α

2

∑

〈i,j〉

z〈i,j〉 + δK(b − Az) , (12)

h(z) =
µ

2
〈x, x − e〉 . (13)

Note that both functions g(z) and h(z) are convex, and that g(z) is non-smooth
due to the linear constraints.

To proceed, we need the following basic concepts [12] defined for a function
f : R

n → R and a set C ⊂ R
n:

dom f =
{

x ∈ R
n

∣

∣ f(x) < +∞
}

effective domain of f

f∗(y) = sup
x∈Rn

{

〈x, y〉 − f(x)
}

(conjugate function)

∂f(x) =
{

v
∣

∣ f(x) ≥ f(x) + 〈v, x − x〉 , ∀x
}

subdifferential of f at x

We adopt from [3, 2] the following two-step subgradient algorithm for min-
imizing (11):
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Subgradient algorithm:
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, . . . compute:

yk ∈ ∂h(zk) (14)

zk+1 ∈ ∂g∗(yk) (15)

The investigation of this algorithm in [2] includes the following results:

Proposition 1 ([2]) Assume g, h : R
n → R be proper, lower-semicontinuous

and convex, and

dom g ⊂ dom h , dom h∗ ⊂ dom g∗ . (16)

Then

(i) the sequences {zk}, {yk} according to (14), (15) are well-defined,

(ii)
{

g(zk) − h(zk)
}

is decreasing,

(iii) every limit point z∗ of {zk} is a critical point of g − h.

4. Reconstruction Algorithm

We apply (14), (15) to problem (6). Condition (16) holds, because obviously
dom g ⊂ dom h, and g∗(y) = supz

{

〈z, y〉 − g(z)
}

< ∞ for any finite vector
y.

(14) reads

yk = ∇h(zk)

= µ(xk −
1

2
e) (17)

since
∂h(z) =

{

∇h(z)
}

if h is differentiable [12]. To compute (15), we note that g is proper, lower-
semicontinuous, and convex. It follows [12] that

∂g∗(y) =
{

z
∣

∣ g∗(y) ≥ g∗(y) + 〈z, y − y〉, ∀y
}

(18)

= argmaxz

{

〈y, z〉 − g(z)
}

, (19)

which is a convex optimization problem. Hence, (15) reads:

zk+1 ∈ argminz

{

g(z) − 〈yk, z〉
}

Inserting yk from (17), we finally obtain by virtue of (12), (9), and (8):
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Reconstruction algorithm (µ fixed)
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, ..., compute zk+1 as minimizer of the linear program:

min
x∈[0,1]n,{z〈i,j〉}

−

〈

e + µ(xk −
1

2
e), x

〉

+
α

2

∑

〈i,j〉

z〈i,j〉 (20)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Here, Ax ≤ b are the original constraints from (6).

In practice, we start with µ = 0 and repeat the reconstruction algorithm for
increasing values of µ, starting each iteration with the previous reconstruction
zk. This outer iteration loop terminates when ∀i, min{xi, 1 − xi} < ε.

Note that for µ = 0, we minimize (5), whereas for µ > 0 it pays to shift
in (20) the current iterate in the direction of the negative gradient of the “bina-
rization” functional (7). While this is an intuitively clear modification of (5),
convergence of the sequence of minimizers of (20) due to proposition 1 is not
obvious.

5. Experimental Results

We compare iterative linear programming (20), with the regularized best
inner fit approach (5).

(a) Original, 64 × 64, experiment 1. (b) Original, 256 × 256, experiment 2.

Figure 3. From each image, 3 projections, 0◦, 45
◦, and 90

◦ were taken for setting up the two
reconstruction problems used in our evaluation.

For evaluation purposes, we created two reconstruction problems from the
images shown in figure 3. From each image, three projections were taken,
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0◦, 45◦, and 90◦. Figure 4 shows the reconstruction results of the regularized
best inner fit approach (5). This result illustrates that both reconstruction prob-
lems are not easy to solve due to the large area covered by the objects and the
corresponding amount of self-occlusions.

(a) Regularized BIF, experiment 1. (b) Regularized BIF, experiment 2.

Figure 4. Results obtained by the regularized best inner fit approach (5).

Throughout all experiments, the parameter µ was initialized with 0. After
each iteration µ was increased by 0.1 in the first experiment and 0.05 in the
second one. Further, the regularization parameter α was choosen as 0.5 in the
first and 1.0 in the second experiment.

Comparison of the results for (20) and (5) in figures 5 and 7, respectively,
shows the superior performance of the approach (20). The reason is that,
through iterating the linear programs, rounding is not done as a separate post-
processing step, but during optimization, while taking into account the projec-
tion constraints. Figures 8 and 9 illustrate intermediate results for both recon-
struction problems after different numbers of iterations. One can see how the
solution converges towards a binary vector because of the increasing influence
of the functional (7). Figure 6 further illustrates this process.

Concerning computation time, a single iteration (solving one LP) of the
64 × 64 image costs about 7 seconds, while it was about 4 minutes and 6
seconds for the 256 × 256 image.

6. Conclusion and Further Work

In this paper we have shown a new reconstruction approach based on lin-
ear programming for the problem of discrete tomography. Unlike other LP
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(a) Regularized BIF (b) Iterated LPs (10 Iterations).

Figure 5. Comparison between the regularized best inner fit approach and our approach
proposed in this paper.
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(a) First reconstruction problem. (b) Second reconstruction problem.

Figure 6. Both graphs show the percentage of non-binary pixels per iteration. The graph
in (a) corresponds to the first reconstruction experiment and to the images shown in figure 8.
After 9 iterations the solution became binary which in this case was the original image. The
graph in (b) shows the same data for the second experiment which is shown in figure 9. After
51 iterations the curve dropped down to 0.07%. We simply set these tiny fraction of pixels to
zero and terminate the algorithm.

methods, the rounding process is now explicitly done within the reconstruc-
tion process and not as a postprocessing step after the reconstruction. Hence,
the problem constraints of the linear program do affect the rounding. On the
other hand, one has to solve a sequence of LPs instead of a single one which of
course leads to more computationally effort. However, the linear programs do
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(a) Regularized BIF (b) Iterated LPs (51 Iterations).

Figure 7. Comparison between regularized BIF and iterating LPs for the second experi-
ment. We terminated the iterated LPs after 51 iterations and set the remaining non-binary pixels
(0.07%) to zero in order to obtain a binary solution.

not differ too much from each other, as only the target vector c has to be mod-
ified. Therefore, it would be interesting to see if this can be exploited in order
to speed-up computations. For instance, the decomposition of linear programs
appears to be attractive in this context since the decomposition of matrix A has
to be done only once and could then be used in all iterations.
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(a) Iteration 1. (b) Iteration 5.

(c) Iteration 8. (d) Iteration 9.

(e) Iteration 10. (f) Original

Figure 8. (a)–(e) Results at different iterations of our proposed reconstruction method. The
original image is shown in figure 8(f) from which three projections, 0

◦, 45
◦, and 90

◦ were
taken.
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(a) Iteration 1. (b) Iteration 6.

(c) Iteration 11. (d) Iteration 21.

(e) Iteration 51. (f) Original.

Figure 9. (a)-(e) show the results at different iteration steps. The original image is shown in
(f) from which three projections, 0

◦, 45
◦, and 90

◦, were taken.


