
Prior Learning and Convex-Concave
Regularization of Binary Tomography
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Abstract

In our previous work, we introduced a convex-concave regularization approach to
the reconstruction of binary objects from few projections within a limited range of
angles. A convex reconstruction functional, comprising the projections equations
and a smoothness prior, was complemented with a concave penalty term enforcing
binary solutions. In the present work we investigate alternatives to the smoothness
prior in terms of probabilistically learnt priors encoding local object structure. We
show that the difference-of-convex-functions DC-programming framework is flexible
enough to cope with this more general model class. Numerical results show that
reconstruction becomes feasible under conditions where our previous approach fails.
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1 Introduction

1.1 Overview and Motivation

Discrete Tomography is concerned with the reconstruction of discrete-valued
functions from projections. Historically, the field originated from several
branches of mathematics like, for example, the combinatorial problem to de-
termine binary matrices from its row and column sums (see the survey [12]).
Meanwhile, however, progress is not only driven by challenging theoretical
problems [7,10] but also by real-world applications where discrete tomogra-
phy might play an essential role (cf. [11, chapters 15–21]).

The work presented in this paper is motivated by the reconstruction of
volumes from few projection directions within a limited range of angles. From
the viewpoint of established approaches to computational tomography [16],
this is a severely ill-posed problem. The motivation for considering this diffi-
cult problem relates to the observation that in some specific scenarios [19] it is
reasonable to assume that the function f to be reconstructed is binary-valued .
This poses one of the essential questions of discrete tomography: how can
knowledge of the discrete range of f be exploited in order to regularize and
solve the reconstruction problem?

In our previous work [18], we introduced a convex-concave regularization
approach to the binary reconstruction problem. Minimizing the squared resid-
uals of the projection equations together with a smoothness prior favoring spa-
tially homogeneous reconstructions was shown to considerably alleviate the
ill-posedness of the reconstruction problem. Binary solutions were gradually
computed in a “ reconstruction-sensitive” way by simultaneously minimizing a
concave penalty term. A primal-dual DC-programming algorithm particularly
suited for this class of non-convex optimization problems showed promising
performance.

Smoothness priors are convenient from the computational viewpoint be-
cause they result in convex functionals having relaxed the binary constraint.
On the other hand, the signal class modelled thereby is limited to coarse-scale
objects with large homogeneous areas or volumes. This motivates to inves-
tigate, within the same optimization framework, the use of priors encoding
various object structures that have been probabilistically learnt from exam-
ples beforehand.



1.2 Related Work

Our objective falls into the area of Markov Random Field modelling which
has a long history in image processing [2,8,9,13,20]. In the field of discrete
tomography, related work includes [4,14,15]. In a similar way, we learn a
standard prior from examples of specific image classes. The novelty of the
present work is the incorporation of such priors into the overall convex-concave
optimization framework. Rather than computing a-posteriori estimates by
MCMC-sampling, we decompose the objective functional into the difference of
convex functions and apply the DC-programming technique introduced in our
previous work. Numerical results show that this deterministic optimization
technique that just relies on a sequence of simple convex optimization problems
and corresponding fast numerical linear algebra, yields high-quality binary
reconstructions.

2 Problem Statement

2.1 Projection

The imaging geometry is represented by a linear system of equations Ax = b.
Each projection ray corresponds to a row of matrix A, and its projection
value is the corresponding component of b. The row entries of A represent the
length of the intersection of pixels (voxels in the 3D case) of the (arbitrarily)
discretized volume and the corresponding projection ray (see Fig. 1). This
corresponds to the assumption that the function to be reconstructed is binary-
valued, i.e. x is a binary-valued vector. Each component xi ∈ {0, 1} indicates
whether the corresponding pixel belongs to the reconstructed object, xi = 1,
or not, xi = 0 (see Fig. 1). This result in an under -determined linear system
relating the unknown image (or volume) x and measured projection values b.

Ax = b, x = (x1, ..., xn)> ∈ {0, 1}n(1)

2.2 Reconstruction

In [18], we investigated binary reconstruction in terms of minimizing the func-
tional

E(x) =
1

2

{

|Ax − b|2 + α
∑

〈i,j〉

(xi − xj)
2 + µ〈x, e − x〉

}

, x ∈ [0, 1]n.(2)
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Fig. 1. Discretization model leading to the algebraic representation of the recon-
struction problem: Ax = b, x ∈ {0, 1}n.

The first term minimizes the residuals of the projection equations (1). The
second term is a standard smoothness prior that ranges over all edges 〈i, j〉 of
the underlying grid graph and favors spatial homogeneity of reconstructions x.
The third term, e denotes the vector with all components equal to 1, enforces
binary solutions x for increasing values of the parameter µ.

Our objective is to replace and to investigate alternatives to the standard
smoothness prior, i.e. the second term in (2).

3 Markov Random Field Priors

3.1 Priors

Regarding x as random variables indexed by the pixel sites, and assuming the
Markov property that non-adjacent variables xi and xj are conditionally inde-
pendent given the respective neighborhood variables, probability distributions
over the x-space may be specified as Gibbs distributions

p(x) =
1

Z
exp

(

−
1

T
Ep(x)

)

(3)

where the functional Ep is the sum of potentials indexed by the cliques C ∈ C
of the pixel grid graph, and with the corresponding x-variables as arguments:

Ep(x) =
∑

C∈C

EC(xC).(4)

In order to study directly generalizations of the smoothness prior (second
term) in (2), we use the very same neighborhood-structure as depicted in
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Fig. 2. We consider a second-order neighborhood structure for our MRF approach
depending on 5 parameters, ν = {ν0, ..., ν4}. The first parameter ν0 depends only
on the central pixel itself whereas all other parameters also depend on neighboring
pixels, as shown in this figure.

Fig. 2 and replace the smoothness prior by

Ep(x) = −ν0

n
∑

i=1

xi −
∑

〈i,j〉

ν〈i,j〉xixj.(5)

Note that this corresponds to (4) with single sites and edges as cliques. Fur-
thermore, as we wish to obtain a stationary (translation-invariant) random
field, (5) comprises 5 parameters arranged with respect to pixel site i as illus-
trated in Fig. 2.

For the purpose of parameter estimation (see next section), we specify the
local conditional distribution for the variable xi given all remaining variables:

p(xi|xN(i)) =
exp

(

xi(ν0 +
∑

j∈N(i) ν〈i,j〉xj)
)

1 + exp
(

ν0 +
∑

j∈N(i) ν〈i,j〉xj

) .(6)

3.2 Parameter estimation

To estimate the parameters or the prior (5) from a sample of given data, we
apply the method [3] which has some advantages over more classical estimates.
For the readers convenience, we briefly sketch the estimation procedure here.
We rewrite (6) as

p(xi|xN(i)) =
exp(xiah)

1 + exp(ah)
(7)



where

ah = w>
h ν, wh :=























1

xi;n + xi;s

xi;nw + xi;se

xi;w + xi;e

xi;ne + xi;sw























, ν :=























ν0

ν1

ν2

ν3

ν4























.(8)

In (8), vector wh contains values of the neighbour pixels of xi according to
Fig. 2, and h ∈ {1, 2, ..., 81} indicates which of 34 = 81 possible values this
vector takes.

Accordingly, we compute 81 histograms using all pixels xi = 1 and xi = 0,
respectively, i = 1, ..., n. Using this histograms, the 81 values ah are estimated
using (7), and the following linear system is set up:

Wν = a, W :=























w>
1

w>
2

w>
3

...

w>
81























, a :=























a1

a2

a3

...

a81























.(9)

Due to the special structure of the matrix W , it is possible to solve this system
analytically for the parameters ν.

We point out, that this approach to parameter estimation has been used
recently by [14] for discrete tomography as well.

4 Optimization and Reconstruction

4.1 Objective Functional

As discussed and motivated in the introduction, we wish to replace in (2)
the second term by the prior (5) with the ν-parameters learnt beforehand as
explained in the previous section. The modified objective functional reads:

E2(x) :=
1

2
|Ax − b|2 − τ

(

ν0

n
∑

i=1

xi +
∑

〈i,j〉

ν〈i,j〉xixj

)

+
1

2
µ〈x, e − x〉

=
1

2
|Ax − b|2 − τ(ν0〈e, x〉 + 〈x, B, x〉) +

1

2
µ〈x, e − x〉.(10)



4.2 DC-Programming

In order to minimize our quadratic but non-convex functional (10), we use DC-
programming which generally applies to objective functions f(x) = g(x)−h(x)
that may represented as the difference of convex functions g and h.

Specifically, we use following primal-dual subgradient algorithm suggested
in [5,6]:

DC-algorithm (DCA):
Choose x0 ∈ dom g arbitrary.
For k = 0, 1, . . . compute (until convergence):

y-step:

x-step:

yk ∈ ∂h(xk)

xk+1 ∈ ∂g∗(yk)

Here, g∗ denotes the Fenchel conjugate function with respect to g (see,
e.g., [17]). The DCA has the following properties:

Proposition 4.1 ([5]) Assume g, h : R → R to be proper, lower-semicontinuous
and convex, and dom g ⊂ dom h , dom h∗ ⊂ dom g∗ . Then

(i) the sequences {xk}, {yk} according to (11), (11) are well-defined,

(ii) {g(xk) − h(xk)} is decreasing,

(iii) every limit point x∗ of {xk} is a critical point of g − h.

4.3 Reconstruction Algorithm

In order to apply the DCA to the minimization of (10), we have to decompose
the functional E2 into the difference of two convex functions. We point out that
this decomposition is not unique. Our choice is motivated by the simplicity
and efficiency of the resulting DCA operations which can be easily applied to
large-scale problems.

Using the definitions

Q := A>A , q := −A>b , δC(x) =







0 if x ∈ C = [0, 1]n

+∞ otherwise

and choosing constants λQ, λB such that λQI − Q and λBI + B are positive
definite, we decompose the objective functional E2:

E2(x; µ) = g(x) − h(x; µ)(11)

where



g(x)=
1

2
〈x, (λQ + 2λB)Ix〉 + δC(x)(12)

h(x; µ)=
1

2

〈

x, [(λQ + 2λB)I + 2τB − Q]x
〉

−〈q + τν0e, x〉 −
1

2
µ〈x, (e − x)〉

=
1

2

〈

x, [(λQ + 2λB + µ)I + 2τB − Q]x
〉

−〈q + τν0e +
1

2
µe, x〉.

Since h is smooth, the y-step of the DCA amounts to evaluate the gradient:

yk =∇h(xk; µ)(13)

= [(λQ + 2λB + µ)I − 2τB − Q]xk − [q − (τν0 −
1

2
µ)e].

On the other hand, function g is non-smooth due to the constraint x ∈ C,
and we have to solve:

xk+1 ∈ ∂g∗(yk)(14)

=argminx{g(x) − 〈yk, x〉}

=argminx

{

λQ + 2λB

2
‖x‖2 − 〈yk, x〉 + δC(x)

}

=argminx{g̃(x) + δC(x)}.

The solution is easily found to be:

(xk+1)i =



















0 , yk
i ≤ 0

1 , yk
i ≥ (λQ + 2λB)

1
λQ+2λB

yk
i otherwise

, i = 1, ..., n.(15)

Remark: For the specific decomposition (12), the reconstruction algo-
rithm turns out to be a special instance of the Goldstein-Levitin-Polyak pro-
jection method [1]. However, our approach proves convergence for the damping
parameter 1

λQ+2λB
, too.

5 Evaluation

In order to evaluate the performance of the MRF prior within the convex-
concave regularization framework we created different texture-like images and
estimated the MRF parameters. Throughout all experiments we compared
the reconstruction based on the criterion (10) with the reconstruction using



the standard smoothness prior, i.e. criterion (2).

If not mentioned otherwise we initialized parameter µ with µ0 = 0.0 and
used increments µ∆ = 0.1 after each termination of the DCA. We recall that
this gradually enforces the binary constraints xi ∈ {0, 1}.

5.1 Experiment I

Figure 3(a) shows a chessboard texture from which we took just the horizontal
and the vertical projections as measurements b. The reconstruction using (2) is
shown in Fig. 3(b). Obviously, this image structure does not at all conform to
the smoothness prior. Consequently, the reconstructions are poor, no matter
how the parameter α is chosen.

The remaining figures depict the reconstruction results using the MRF
prior: 3(c) for τ = 3.0, and 3(d) for τ = 4.0. The notable fact here is that
the DCA computes a very good local minimum of the non-convex objective
functional (10).

5.2 Experiment II

Figure 4(a) shows the original image from which we again took the horizontal
and the vertical projection. Reconstruction of this problem with the standard
smoothness prior, α = 0.25, fails again, as shown in Fig. 4(b).

The texture in Fig. 4(c) was used for estimating the parameters ν of the
MRF prior. The reconstructions for the following parameter values are shown:
Figure 4(d) τ = 2.0, 4(e) τ = 3.0, and 4(f) τ = 10.0. For τ = 2.0, Fig. 4(d),
the reconstruction fits the projection constraints best. By increasing the pa-
rameter τ , Figs. 4(e) and 4(f), the prior influences more and more the recon-
struction so as to get closer to the texture image, Fig. 4(c), from its parameters
were learnt.

5.3 Experiment III

For this experiment we created a reconstruction problem by taking the ver-
tical and both diagonal projections from the image shown in Fig. 5(a). The
original image was also used for the parameter estimation. We sampled the
corresponding Gibbs distribution (3) with a Gibbs sampler and artificial tem-
perature parameter T−1 = 10, Fig. 5(b). Figure 5(c) shows the poor recon-
struction with the standard smoothness prior, α = 0.25. The MRF prior, on
the other hand, enables a very good reconstruction shown in Fig. 5(d) τ = 10,
based on the prior knowedge illustrated in Fig. 5(b)
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Fig. 3. (a) Original image, 64 × 64, from which we took the vertical and the
horizontal projection for the reconstruction problem. (b) DCA with smoothness
prior, α = 0.25. (c) DCA with MRF prior, τ = 3.0. (d) DCA with MRF prior,
τ = 4.0.

5.4 Experiment IV

In the final experiment, we show that the MRF prior is also able to cope with
situations where the standard smoothness prior is not inferior. To this end, we
took two projections, horizontal and one diagonal (north-west to south-east),
from the image shown in Fig. 6(a). The reconstruction with the standard
smoothness prior is shown in Fig. 6(b) for α = 0.25.

In order to apply the MRF prior, we estimated corresponding the param-
eters again from the original image, Fig. 6(a). Figures 6(c) and 6(d) show the
reconstruction based on the MRF prior for different values of τ .

These results demonstrate that the MRF prior turns into a standard smooth-
ness prior if the sample data used for learning provide corresponding evidence.
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Fig. 4. (a) Original image, 64 × 64, from which the vertical and the horizontal
projections were taken as measurements b for the reconstruction problem. (b) DCA
with smoothness prior, α = 0.25. (c) Texture image used for estimating the MRF
parameters, ν0 = 0.206522, ν1 = −0.22789, ν2 = 0.468601, ν3 = −0.22789, and
ν4 = −0.22789. (d) DCA with MRF prior, τ = 2.0. (e) DCA with MRF prior,
τ = 3.0. (f) DCA with MRF prior, τ = 10.0.
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Fig. 5. (a) Original image, 64 × 64, from which vertical and both diagonal pro-
jections were taken as measurements b for the reconstruction problem. (b) Sam-
ple of the Gibbs distribution with the estimated Markov random field parameters,
ν0 = −0.116639, ν1 = 0.361875, ν2 = −0.321148, ν3 = 0.361875, ν4 = −0.321148,
and artificial temperature T−1 = 10. (c) Result of the DCA with smoothness prior
and α = 0.25, (d) Result of the DCA with MRF prior, τ = 10.

6 Conclusion

We investigated reconstructions in discrete tomography from few projections
using MRF-based priors. Incorporation of this prior into a convex-concave
regularization framework allows to efficiently minimize a highly non-convex
reconstruction functional with a sequence of simple convex optimization prob-
lems and related deterministic algorithms, as opposed to MCMC sampling
commonly used in the MRF literature.

Our further work will focus on larger image classes relevant for, e.g. med-
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Fig. 6. (a) Original image, 64×64, from the horizontal and one diagonal projection
(north-west to south-east) were taken as measurements b. (b) Result of the DCA
with smoothness prior, α = 0.25. (c) Result of the DCA with MRF prior, τ = 0.001.
(d) Result of the DCA with MRF prior, τ = 0.005.

ical imaging, and correspondingly extended MRF priors.
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editor, École d’Été de Probabilités de Saint-Flour XVIII – 1988, Lect. Notes in
Math. 1427, Springer Verlag, Berlin, 1990 pp. 113–193.

[9] Geman, S. and D. Geman, Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images, IEEE Trans. Patt. Anal. Mach. Intell. 6 (1984),
721–741.

[10] Gritzmann, P., D. Prangenberg, S. de Vries and M. Wiegelmann, Success
and failure of certain reconstruction and uniqueness algorithms in discrete
tomography, Int. J. Imag. Syst. Technol. 9 (1998), 101–109.

[11] Herman, G. and A. Kuba, editors, Discrete Tomography: Foundations,
Algorithms, and Applications, Birkhäuser, Boston, 1999.
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