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Abstract

Approximate inference by decomposition of discrete
graphical models and Lagrangian relaxation has become
a key technique in computer vision. The resulting dual ob-
jective function is convenient from the optimization point-
of-view, in principle. Due to its inherent non-smoothness,
however, it is not directly amenable to efficient convex op-
timization. Related work either weakens the relaxation by
smoothing or applies variations of the inefficient projected
subgradient methods. In either case, heuristic choices of
tuning parameters influence the performance and signifi-
cantly depend on the specific problem at hand.

In this paper, we introduce a novel approach based on
bundle methods from the field of combinatorial optimiza-
tion. It is directly based on the non-smooth dual objec-
tive function, requires no tuning parameters and showed a
markedly improved efficiency uniformly over a large variety
of problem instances including benchmark experiments.

Our code will be publicly available after publication of
this paper.

c©2012 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any cur-
rent or future media, including reprinting/republishing this mate-
rial for advertising or promotional purposes, creating new collec-
tive works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1. Introduction

We consider the problem of finding the most likely con-
figuration of a discrete graphical model.1 Adopting the
common assumption that the objective function factorizes
according to a factor graph G = (V, F,E), this amounts to

1Precise definitions follow in subsequent sections.

the energy minimization problem

min
x∈X

JG(x), JG(x) =
∑
f∈F

ϕf (xne(f)). (1)

Since problem (1) is NP-hard, research has focused
on approximate inference for larger problem sizes.
Schlesinger [18] and Wainwright [24] proposed a linear pro-
gramming (LP) relaxation based on the so-called local poly-
tope. Although the corresponding LP can be solved in poly-
nomial time, the number of variables and constraints can be
quite large for a range of typical computer vision problems,
such that standard solvers can not be applied.

Recently, Ravikumar et al. [15] and Schmidt et al. [20]
presented primal/primal-dual methods, which partially
overcomes this problem by exploiting the underlying graph-
ical structure. However, since all primal variables have to
be stored, corresponding to a point of the local polytope, the
memory requirements are huge.

Schlesinger [18] analyzed the dual LP as a lower bound
for (1) and proposed algorithms that can be interpreted as
block-coordinate descent, c.f . [25] for a recent review. The
TRW-S algorithm [10] generalizes this by considering arbi-
trary subtrees as subproblems. However, because the dual
problem is intrinsically non-smooth, such methods can –
and also often do – converge to non-optimal fixed points.

As an alternative a projected subgradient scheme
was independently proposed by Komodakis [11] and
Schlesinger [19]. Although this method guarantees conver-
gence to the optimal dual solution, single subgradient di-
rections defining the iterates may not improve the objective
value, and choosing the step-size sequence is crucial for the
overall performance. In order to find better update direc-
tions, Kappes et al. [7] used an ’averaged’ update direction,
motivated by a paper of Ruszczynski [16], and reported bet-
ter convergence. Yet, subgradient-based methods can deal
with a larger class of decompositions [7, 1, 26, 22] and can
also provide tighter relaxations [12].

Another line of research [6, 4, 17] considered smooth-
ing of the objective function in order to apply established
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gradient-based methods of smooth convex optimization. On
the other hand, the evaluation of the dual becomes more
complicated, which limits the set of feasible decomposi-
tions and generates additional computational costs. A more
detailed consideration of this alternative research direction
is beyond the scope of the present paper.

Contribution. As a case study, we consider the same
primal and dual formulations related to problem (1), as
e.g. in Komodakis [12], and introduce – to our knowl-
edge for the first time in computer vision – bundle meth-
ods [9, 13] to replace simple subgradient-based iterations
and heuristic step-size rules by more efficient, mathemati-
cally sound schemes.

The key idea is to construct and maintain a local upper
approximation of the dual objective function, which then
can be optimized by proximal-point methods. Thus, sub-
gradients are no longer directly used to update the dual
variables. Rather, they serve to improve a polyhedral ap-
proximation of the dual objective and thus to cope with the
inherent non-smoothness in a less myopic way. Specifi-
cally, we use an aggregate bundle approach [8] and an adap-
tive method to adjust the trust region [9] with guaranteed
convergence property. The resulting optimization scheme
does not require parameter tuning. The evaluation of our
approach in comparison to state-of-the-art methods based
on subgradient schemes [12] showed significantly improved
convergence rates using a single fixed parameter set without
problem-specific tuning, uniformly over a broad range of
problem instances including benchmark data. Our method
is general enough to cope with problems beyond the case
study underlying the present paper.

Organization. The problem and problem decomposi-
tions are defined and detailed in Section 2. In Section 3,
we describe state-of-the-art solvers and our novel approach
utilizing a bundle method. A comprehensive, competitive
evaluation taking into account benchmark data is reported
in Section 4.

Notation. Single primal variables are denoted by xa ∈
Xa and indexed by nodes a ∈ V . We use the shorthands
xA = (xa)a∈A, XA =

∏
a∈AXa for any A ⊆ V , and

x = xV ∈ X . Besides the vertices V , factor graphs G =
(V, F,E) comprise factor nodes F and an edge set E ⊆
V×F . With each factor f ∈ F , we associate a functionϕf :
Xne(f) → R that has as argument the variables indexed by
the neighbors ne(f) = {a ∈ V | (a, f) ∈ E} of f . For
simplicity, we assume that for each a ∈ V there exists a
fa ∈ F with ne(fa) = {a}. Notation PC(·) is used for the
Euclidean projection onto the set C.

2. Problem Formulation
Problem (1) is defined over a discrete domain, X =∏
a∈V Xa, Xa = {1, . . . , La}, and it is convenient to

reformulate it as a linear (integer) program. Let N =

∑
f∈F

∏
a∈ne(f) |Xa|, and let θ ∈ RN collect all possible

function values as components θf,i = ϕf (i). Then problem
(1) reads

min
µ∈M(G)

〈θ, µ〉, (2)

where the marginal polytopeM(G) is given as the convex
hull of all indicator vectors

φ(x)f,i =

{
1 if xne(f) = i
0 else, (3)

i.e.M(G) = conv{φ(x) | x ∈ X}. A common approach
to overcome the combinatorial complexity of M(G) is to
consider the outer relaxation in terms of the first order local
polytope [24]

L(G) =

{
µ ∈ [0, 1]N

∣∣∣∣ 1 =
∑
xa∈Xa

µfa,xa
∀a ∈ V,

µfa = [µf ]a ∀f ∈ F, a ∈ ne(f)

}
(4)

where [µf ]a(xa) =
∑
x̄∈Xne(f),x̄a=xa

µf (x̄a). The corre-
sponding problem relaxation

min
µ∈L(G)

〈θ, µ〉 (5)

can be solved in polynomial time. However, since even
in this case the number of variables and constraints of the
problem might be quite large for many real problems, solv-
ing (5) with standard solvers is not a feasible option due to
memory restrictions. This motivates the decomposition of
the problem into tractable subproblems and to solve (5) it-
eratively by fusing the partial solutions through convex pro-
gramming.

2.1. Dual Decomposition

Dual decomposition is an abbreviation for the applica-
tion of Lagrangian relaxation to the decomposition of (5)
into subproblems. Dualizing the constraints that ensure
consistency of the decomposed problem with (5) leads to an
(un-)constrained non-smooth concave maximization prob-
lem. We describe these two steps next.

Model Decomposition. Let us define a second factor
graph G̃ = (Ṽ , F̃ , Ẽ), together with a mapping ρ : Ṽ → V .
We say, that ã ∈ Ṽ is a duplicate of a ∈ V if ρ(ã) = a. We
call G̃ a decomposition of G if the following holds:

∀a ∈ V, ∃ã ∈ Ṽ : ρ(ã) = a, (6)
∀f ∈ F, ∃f̃ ∈ F̃ : ρ(ne(f̃)) = ne(f), (7)
∀f̃ ∈ F̃ , ∃f ∈ F : ρ(ne(f̃)) = ne(f), (8)

∀f ∈ F, i ∈ Xne(f) : ϕf (i) =
∑
f̃ ∈ F̃

ne(f) = ρ(ne(f̃))

ϕ̃f̃ (i). (9)



Note that according to this definition various problem de-
compositions are feasible.

Unconstrained Dual Problem. While (6)–(8) require
that each variable, factor and edge is represented in G̃ and
vice versa, (9) ensures equality of the objective functions.
As a result, problem (1) is equivalent to

min
x̃∈X̃

JG̃(x̃) s.t. ∀a, b ∈ Ṽ , ρ(a) = ρ(b) : x̃a = x̃b. (10)

As before at the beginning of Section 2, we replace the com-
binatorial problem (10) by a LP,

min
µ̃∈M(G̃)

〈µ̃, θ̃〉 s.t. A µ̃ = 0. (11)

Unlike with (2), however, here the feasible set M(G̃) is
tractable due to the decomposition in tractable subproblems,
and A is chosen such that A µ̃ = 0 enforces the constraints
of (10), ∀a, b ∈ Ṽ , ρ(a) = ρ(b) : µ̃fa = µ̃fb .

Problem (11) constitutes a relaxation of (10) since the
polytope {µ̃ ∈ M(G̃) | A µ̃ = 0} contains also fractional
vertices. Due to the construction of G̃, however, this relax-
ation is at least as tight as the standard relaxation (5) over
the local polytope (4), c.f . [6, 24]. Finally, to get rid of the
additional constraint A µ̃ = 0, we add them to the objective
via Lagrangian multipliers [13],

min
µ̃∈M(G̃)

max
λ
〈θ̃, µ̃〉+ 〈λ,A µ̃〉, (12)

and obtain the unconstrained dual problem

max
λ

f(λ), f(λ) = min
µ̃∈M(G̃)

〈A>λ+ θ̃, µ̃〉. (13)

Note that strong duality holds and (11) and (13) have the
same optimal value, c.f . [13].

2.2. Evaluating the Dual Function

The dual function f(λ) in (13) is concave, piecewise-linear
and non-differentiable. However, for suitable choices of G̃
we can calculate a subgradient g ∈ ∂f(λ) and the objective
value f(λ). The subdifferential of f(λ) is given by

∂f(λ) = conv
{
Aµ̃∗ | µ̃∗ ∈ arg min

µ̃∈M(G̃)

〈A>λ+ θ̃, µ̃〉
}

The common strategy to select G̃ is to decomposeG into
a set of disconnected subgraphs by duplication of nodes,
such that G̃ = G̃1 ∪ . . . ∪ G̃N , M(G̃) = {µ̃ | µ̃G̃i

∈
M(G̃i)}, and inference is tractable for each single G̃i,
c.f . [7, 1, 22, 12, 6, 26]. In order to evaluate f(λ), we have
to solve the independent subproblems for µ̃G̃i

= φ(x̃G̃i
).

This gives us a subgradient g ∈ ∂f(λ) as well as a lower
bound b = f(λ) of JG(·).

To obtain an upper bound we generate integer solu-
tions for (1). If the subgraphs G̃i are spanning, i.e. they
contain all original variables once, we can use the solu-
tion to subproblem x̃G̃i

directly to obtain an upper bound
u = JG(x̃G̃i

). Otherwise we have to construct a full so-
lution from the solutions to the subproblems, by filling the
missing parts by solutions of other subproblems

The upper bound may not be tight (integrality gap > 0),
i.e. the optimal primal solution is fractional. For special
cases of decomposition a method to obtain a tighter upper
bound exist [17], but its discussion is beyond the scope of
this paper.

3. Dual Solvers
Although the dual problem (13) is a concave maximiza-

tion problem, the non-differentiability of the objective ren-
ders the problem challenging. All corresponding optimiza-
tion methods discussed below rely on calling a primal ora-
cle that returns at each iteration step k:

• gk, a subgradient of f(λk);
• bk, the value of f(λk) as a lower bound for (1);
• xk, a (possibly non-optimal) solution of (1);
• uk, an upper bound of (1) obtained by J(xk).

We detail next several established methods (Section 3.1)
and our own novel approach (Section 3.2) that can opti-
mize (13) using only such oracle calls.

3.1. Projected Subgradient Method

Projected subgradient methods [21, 14, 2] are very pop-
ular because they are easy to implement. Commonly a con-
straint dual problem is considered, which makes a addi-
tional projection onto a simple set Λ necessary, c.f . [12]
and appendix A.2. Dual variables are iteratively updated by
a scaled subgradient and projected onto the feasible set,

λk+1 = PΛ(λk + τk · gk). (14)

The scaling sequence τk has to be specified by the user.
We consider the following choices suggested in [12]2:
(i) nonsummable diminishing step size (15), (ii) non-
summable diminishing step lengths (16), and (iii) adaptive
step length (17).

τk =
γ

1 + αk
(15)

τk =
γ

1 + αk

1

‖PΛ(gk)‖2
(16)

τk =
γ · (−bk + mink u

k)

‖PΛ(gk)‖22
(17)

2Contrary to [12] we use ‖PΛ(g
k)‖2

2 instead of ‖gk‖2
2 because the

latter choice performs worse in our experiments.



While (15),(16) guarantee convergence to the optima,
they vary with the scaling of JG(·) and often converge
slowly. The adaptive choice (17), on the other hand, is in-
variant to scaling but is not guaranteed to converge. More-
over, as the gap might be overestimated, selecting values of
γ that work well in the beginning and towards the end of
the iteration is difficult in general. Finally, all three meth-
ods usually oscillate close to non-differentiable points of the
objective function.

3.2. Bundle Methods

We suggest an alternative ansatz based on bundle meth-
ods [8, 9, 13]. The basic idea is to bound the dual function
f(λ) from above by a polyhedral approximation f̂(λ) con-
structed from a set of points λi, objective values f(λi) and
subgradients gi ∈ ∂f(λi) constituting a bundle B, such that
f(λ) ≤ f̂(λ) and f(λi) = f̂(λi),

f̂(λ) = min
(f(λ′),λ′,g′)∈B

{f(λ′) + 〈g′, λ− λ′〉}. (18)

We use the proximal point algorithm to generate a sequence

λk+1 = arg maxλf̂(λ)− wk

2
‖λ− λ̄‖22 (19)

where w > 0 is intended to keep λk+1 in the region around
our current solution estimate λ̄ in which f̂(λ) should be
close to f(λ).

As long as λk+1 does not lead to significant progress we
do not change λ̄ and tighten the approximation by adding
(f(λk+1), gk+1, λk+1) to the bundle B. This is commonly
called a null step. Otherwise we take a so-called serious
step and replace λ̄ by λk+1. To decide if a serious or null
step should be performed, we check the relative improve-
ment of f(λ) and f̂(λ) over f(λ̄). If this ratio is larger than
a predefined constant mL, then the polyhedral approxima-
tion is tight enough to take a serious step.

The belief that problem (19) cannot be solved efficiently
is indeed misleading. Due to the construction of f̂(·) we
can reformulate the convex problem (19) to take the form

arg max
λ,v

v − w

2
‖λ− λ̄‖22 (20)

s.t. f(λ′) + 〈g′, λ− λ′〉 ≥ v ∀(f(λ′), λ′, g′) ∈ B,

which in turn can be solved efficiently for small |B| by tak-
ing the corresponding dual problem into account, c.f . A.1.

Furthermore, bundle methods provide finite convergence
for piecewise-linear functions [8, Sec. 5], i.e. the problem
can be solved to precision ε = 0 in a finite number of oracle
calls.

Accordingly, two aspects of the Bundle Algorithm 1 de-
tailed above are important: dynamical management of the
bundle in order to keep B small, and selection of the weights
wk. We discuss these two aspects next.

3technical conditions for convergence, c.f . [9]

Algorithm 1 Bundle Method
λ0 = 0, u0 > 0,M > 0, ε ≥ 0,mL ∈ (0, 0.5) 3

B = {(f(λ0), g ∈ ∂f(λ0), λ0)}
for k = 0→ kmax do

Find the solution λk+1 of (19)
∆ = f̂(λk+1)− f(λ̄)

if f(λk+1)− f(λ̄) ≥ mL

(
f̂(λk+1)− f(λ̄)

)
then

λ̄ = λk+1

end if
Calculate (gk+1, bk+1, xk+1, uk+1) for λk+1

Update Bundle B ← B ∪ {(f(λk+1), gk+1, λk+1)}
Update Weight wk+1

if ∆ ≤ ε then exit
end for

Bundle Update. An unbounded bundle size quickly
makes (19) intractable. To manage the bundle we compare
two different strategies, (i) a bounded bundle size and (ii)
an aggregated bundle.

So the first strategy limits the size of the bundle and keep
only the best one if the maximal bundle size is reached. In
theory this simple strategy does not affect convergence [13]
if

|B| ≤ max{dim(∂f(λ))|λ ∈ Rm}+ 1 ≤ m+ 1.

Unfortunately, the size of the dual space m is typically
large. However, even with small bundle sizes we did not
get any problems in our experiments, but in general one can
not guarantee convergence any more.

The second strategy was proposed by Kiwiel [8]. He
suggests to replace the bundle by a single aggregate sub-
gradient without losing convergence properties.

As stated in [13] there are no theoretical results that es-
tablish differences between different bundle sizes. In other
words, a larger bundle can speed up or slow down conver-
gence.

Weight Update. The most naive choice for wk is a
constant sequence. Although this often works surprisingly
good in applications, it is inefficient for two reasons. If
we choose the constant too small than the bundle method
mimicks the cutting-plane approach and builds a non-local
model around the current working point. As a consequence
each serious step is followed by many null steps. On the
other hand, if we choose the constant too large than al-
most all steps are small serious steps slowing down con-
vergence as well. Therefore we use an update method
suggested by Kiwiel that guarantees overall convergence,
c.f . [9, Proc. 2.2] . While Kiwiel’s update method does not
take the estimated primal-dual gap into account, we suggest



an alternative adaptive sequence of the form:

wk = P[wmin,wmax]

(
γ · mink u

k −maxk b
k

‖gk‖2

)−1

(21)

To ensure convergence we setwk+1 = wk at null steps. Our
update method (21) is motivated by incorporating the adap-
tive subgradient scheme (17) into the bundle framework.
Additional bounds wmin, wmax are required for stabiliza-
tion and guaranteed convergence [13], respectively.

3.3. Implementation Details

For the experiments we use our C++ implementation,
which makes use of the concept of views for a memory effi-
cient implementation4. For acyclic subproblems we use dy-
namic programming, and for submodular binary subprob-
lems the max-flow code of Boykov and Kolmogorov [3].
For the projected subgradient method we use our own
code. For the bundle method we integrate the ConicBundle-
Library [5] into our framework. Neither our library nor the
ConicBundle-Library are yet optimized for specific prob-
lem instances, as done in [23], and we make no use of
warm-start mechanisms so far. Furthermore, we solved the
subproblems sequentially, but our code to be released5 will
support parallel optimization.

4. Experimental Evaluation
Compared Algorithms. For the projected subgra-

dient methods with scaling sequences (PSG-SIZE), (PSG-
LENGTH) and (PSG-ADAPTIVE) defined by (15), (16)
and (17) respectively, we used grid search to find good pa-
rameters. We also tested the averaged subgradient method
of Ruszczynski [16] used by Kappes et al. [7], and found pa-
rameter values leading to equal but not substantially better
performance compared to pure subgradient methods. Pos-
sibly our limit of 100 oracle calls for the grid search missed
better parameter values. This indicates the importance of
robust parameter choices which seems difficult to achieve
for this class and methods and motivates our present work.

For the bundle methods we use aggregate bun-
dle (BUNDLE-A) and bundles of maximal size of 2
(BUNDLE-2) and 10 (BUNDLE-10). When the maximal
bundle sized was reached the bundle was reduced by the
least violated constraints, c.f . [5]. The adaptive weight
rule of Kiwiel (BUNDLE-*-KIWIEL) was used for all three
bundle methods. Since we did not observe a significant dif-
ference between these methods, we applied our adaptive
weight rule (21) only to aggregated bundle (BUNDLE-A-
ADAPTIVE). The exact parameter values used are listed in
the appendix A.3.

4For none of the experiments we require more than 1 GB of memory.
5http://hci.iwr.uni-heidelberg.de/opengm2/

Figure 1. Energy values of the best estimated integer solutions uk

and lower bounds bk. For the Tsukuba dataset all bundle methods
outperform the competing subgradient methods, while the adap-
tive bundle and subgradient methods based on the primal-dual-gap
are superior to all others. The lower bounds and integer solutions
for all version of our bundle aproach are better than any result
reported in [23] including TRW-S. Since the energy of Tsukuba
is integer we obtain guaranteed global optimality after 370 ora-
cle calls of BUNDLE-A-ADAPTIVE, 397 oracle calls of PSG-
ADAPTIVE, and 1206 oracle calls of BUNDLE-A-KIWIEL. Also
the convergence behavior of our bundle is superior to subgradi-
ent methods, as the close-up plot clearly shows. Furthermore,
BUNDLE-A-ADAPTIVE converge fast and found as only method
the optimal lower bound, up to double precision.

As a representative of block coordinate ascent methods
we chose TRW-S [10]. A single iteration of TRW-S has the
complexity of two oracle calls. While TRW-S is one of the
fastest available methods it can – and in fact did – get stuck
in non-optimal fixed points.

For the stereo problems Tsukuba and Venus from the
MRF-benchmark [23], we applied a decomposition into two
spanning trees in each case.

Figures 1 and 2 show the energy of the best estimated
integer solutions uk and lower bounds bk. In order to visu-
alize oscillations we show the lower bound estimated after
the k-th oracle call rather than the best bound found so far.

http://hci.iwr.uni-heidelberg.de/opengm2/


Figure 2. Energy values of the best estimated integer solutions uk

and lower bounds bk. For the Venus dataset all bundle approaches
outperform the projected subgradient methods. The lower bounds
are even better than the one reported for TRW-S, as the close-up
plot clearly shows. Contrary to Tsukuba a gap remains which in-
dicates that the LP-relaxation is not tight for this problem. As a
consequence, the adaptive rules based on gap estimates performed
worse, since these estimates are necessarily worse.

The apparent oscillation of bundle methods is due to null-
steps – the subsequence of serious steps only is monotone.

Performance. For the Tzukuba dataset adaptive meth-
ods dominate all others since the integrality gap is nearly
zero. The adaptive bundle method clearly outperforms the
projected subgradient method and solves the dual problem
to optimality after 2260 oracle calls, up to double preci-
sion6.

Since for the Venus dataset an integrality gap remains,
adaptive methods no longer dominate. They showed slow
progress at later iterations when the ratio (mink u

k −
maxk b

k)/(b∗−maxk b
k) becomes large. However, bundle

methods performed better than subgradient methods and re-
turned contrary to subgradient methods better bounds than

6The found optimal value was 369217.99999905284, the best
value after 5000 oracle calls was 369217.9999905776 for PSG-
ADAPTIVE, 369217.88337642595 for BUNDLE-A-KIWIEL, and
369217.54575490614 for TRW-S.

Table 1. Number of iterations k until uk − bk < 1 / < 10−7. The
symbol ’-’ indicates that this condition was not met after 100 itera-
tions. Overall, our bundle method with adaptive weights performs
best. Notably even the bundle method with Kiwiel’s heuristic per-
forms competitive and robust without any parameter tuning.

person flower sponge
PSG-SIZE 16/16 13/- 5/5
PSG-LENGTH 24/26 -/- 3/3
PSG-ADAPTIVE -/- 6/6 2/2
BUNDLE-A-KIWIEL 26/26 15/15 4/4
BUNDLE-2-KIWIEL 24/28 16/16 4/4
BUNDLE-10-KIWIEL 10/10 14/14 4/4
BUNDLE-A-ADAPTIVE 6/7 7/7 2/2

TRW-S after 5000 oracle calls7.
The average run-time for a single oracle call was 2.40

seconds for Tsukuba and 4.72 seconds for Venus. A dual
update step via aggregated bundle (0.71 and 1.20 sec) takes
less than two times the costs of a projected subgradient step
(0.46 and 0.75 sec), hence is quite effective in terms of the
resulting better overall performance. When we consider
fixed bundle size, a single dual step becomes slightly more
time consuming, 1.44 and 2.59 sec for BUNDLE-2 and 2.80
and 4.70 sec for BUNDLE-10. We point out that our code
is very general and not optimized for any special instance.

As a second scenario we followed Strandmark [22]
and optimized binary sub-modular problems by domain-
decomposition. We confined ourself to the binary prob-
lems from the MRF-benchmark [23] which can be solved
to global optimality, to demonstrate clearly the advantages
of our approach over projected subgradient methods. We
decomposed each image in a left and right image part and
coupled them by an overlapping stripe of 2 pixels width.
Subproblems were solved by a standard max-flow solver
without warm-start techniques. Again we tuned the param-
eters for projected subgradient methods by grid search as
well as the parameters for our adaptive weighting.

Table 1 displays the number of oracle calls until optimal-
ity was achieved and the dual solver had converged. Again
the bundle method with adaptive weight gives the best over-
all results, but the bundle method with Kiwiel’s rule also
showed a robust behavior without any parameter tuning.

Summary. Overall, and largely independent of the par-
ticular choice of the bundle management, bundle methods
outperformed established subgradient methods under com-
parable conditions. They also avoided non-optimal fixed
points that sometimes attract established block coordinate
methods.
Using a fixed bundle size of 10 performed slightly better in
terms of oracle calls but caused longer runtime time. How-
ever, since the differences were small and there is room for

7The best lower bound on the optimal primal solution was
3047948.37739271 found by BUNDLE-10-KIWIEL.



speeding up the bundle-solver, this finding is preliminary.

5. Conclusion and Further work
We introduced and presented a novel approach to the

global optimization of non-smooth dual objective functions
in connection with decompositions of discrete graphical in-
ference problems in computer vision. Our method sig-
nificantly outperforms state-of-the-art methods established
in computer vision under competitive conditions. Further-
more, we presented a parameter-free rule for selecting the
trust region in terms of bundle updates, that led to improved
convergence rates in our benchmark experiments.

There are clear indications that better estimates of the
primal bound may further improve the convergence of the
adaptive version of our approach.
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A. Appendix

A.1. Solving the Trust-Region Problem

With the notation

B =
{

(f(λi), λi, gi) | i = 1, . . . , N
}

for the bundle set we can reformulate problem (20) into

max
λ

min
ξ

N∑
i=1

ξi
(
f(λi) + 〈gi, λ− λi〉

)
− w

2
‖λ− λ̄‖22

s.t. ξi ∈ [0, 1],

N∑
i=1

ξi = 1 (22)

Instead of (22) we solve its dual

min
ξ

max
λ

N∑
i=1

ξi
(
f(λi) + 〈gi, λ− λi〉

)
− w

2
‖λ− λ̄‖22

s.t. ξi ∈ [0, 1],

N∑
i=1

ξi = 1, (23)

for which the inner maximization over λ can be solved ex-
plicitly for any choice of ξ,

λmax =

N∑
i=1

ξig
i

w
+ λ̄.

Substituting λmax into (23) we obtain

min
ξ

N∑
i=1

ξi

(
f(λi) + 〈gi,

N∑
i=1

ξig
i

w
+ λ̄− λi〉

)
− w

2
‖
N∑
i=1

ξig
i

w
‖22

s.t. ξi ∈ [0, 1],

N∑
i=1

ξi = 1. (24)

This can be reformulated into

min
ξ

N∑
i=1

ξi
(
f(λi) + 〈gi, λ̄− λi〉

)
+

1

2w

∥∥∥∥∥
N∑
i=1

ξig
i

∥∥∥∥∥
2

2

s.t. ξi ∈ [0, 1],

N∑
i=1

ξi = 1. (25)

This quadratic program in ξ can be solved efficiently by in-
terior point methods. We use the implementation included
in the Conic Bundle Library [5], which is more general than
required in (24).

A.2. Constrained Dual Problem

For the construction of the constraint dual we force con-
sistency, by an additional variable x.

min
x̃∈X̃,x∈X

JG̃(x̃) s.t.∀a ∈ Ṽ : x̃a = xρ(b) (26)

Again we change to the LP-formulation and relax µ ∈
M(G) to µ ∈ RN

min
µ̃∈M(G̃),µ∈RN

〈µ̃, θ̃〉 s.t. B µ = µ̃ (27)

and include the constraint B µ = µ̃ via Lagrangian multi-
pliers

min
µ̃∈M(G̃),µ∈RN

max
λ
〈θ̃, µ̃〉+ 〈λ,B µ− µ̃〉 (28)

By calculating the derivative for µ,

∂

∂µ
max
λ
〈θ̃, µ̃〉+ 〈λ,B µ− µ̃〉 = B>µ

we are able to replace µ but have to enforce that λ ∈
{λ|B>λ = 0} = Λ. Overall this ends in the following
constraint dual problem

max
λ∈Λ

min
µ̃∈M(G̃)

〈B>λ+ θ̃, µ̃〉. (29)

The Euclidean projection on Λ can be calculated by

PΛ(λ) = (I −B(B>B)−1B>)λ



A.3. Parameters

For the bundle method as well as for the update rule of
Kiwiel, we used the default parameters of the ConicBun-
dle library. While tuning them for special problem classes
would give further improvements, we found it more appeal-
ing to keep them fixed. The parameter for deciding if a
null-step or serious-step is performed mL = 0.1 as well as
the parameter used in Kiwiel’s update to decide if the trust
region should be increased, mr = 0.5, were not changed
in all experiments. The relative precision condition for ter-
mination was set to ε = 0. For our own adaptive update
rule we choose wmin = 10−10 and wmax = 101 and set
γ = 0.1 for stereo and γ = 1 for binary problems. For the
nonsummable diminishing step size rule we set α = 0.01,
γ = 1 for stereo and γ = 32 for binary problems. For
the nonsummable diminishing step length rule we choose
α = 0.01 and γ = 100. For the adaptive step length rule we
choose γ = 0.1 for stereo and γ = 1 for binary problems.


