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Abstract

Building on recent progress in modeling filter response
statistics of natural images we integrate a statistical model
into a variational framework for image segmentation. In-
corporated in a sound probabilistic distance measure the
model drives level sets toward meaningful segmentations
of complex textures and natural scenes. Since each re-
gion comprises two model parameters only the approach
is computationally efficient and enables the application of
variational segmentation to a considerably larger class of
real-world images. We validate the statistical basis of our
approach on thousands of natural images and demonstrate
that our model outperforms recent variational segmentation
methods based on second-order statistics.

1. Introduction
1.1. Motivation
Statistical models play an increasingly decisive role in com-
puter vision for shape modeling, segmentation, tracking
and appearance-based recognition [5]. In the context of
Bayesian inference, the nature of a statistical model defines
the class of the optimization problem to be solved [12]. As
a consequence, there is a trade-off between the descriptive
power of statistical models and the difficulty of the asso-
ciated Bayesian (variational) inference step from the opti-
mization point of view.

Recently, the statistics of filter outputs turned out to pro-
vide powerful and general models for image statistics and
texture [29, 30, 17, 16, 27]. Unfortunately, incorporating
such a model into a variational approach to image segmen-
tation results in a computationally intractable optimization
problem which requires time-consuming stochastic sam-
pling methods to compute a minimizer [29, 30, 17].

From the viewpoint of optimization, on the other hand,
a range of variational approaches to image segmentation
exist [3, 7] which can be regarded as efficient and com-
putationally convenient approximations of the sophisticated
Mumford-Shah functional [13]. However, the class of prob-
lems which these models have been applied to so far is lim-

ited to cartoon-like piecewise smooth images and second-
order statistics of multiple filter channel responses [28, 7].

1.2. Contribution and Related Work
In the present paper, we study for the first time the use of a
recent model of natural image statistics in an efficient level
set based variational framework for image segmentation.

The statistical model which we describe in Section 2,
has been used for wavelet-based image coding [11, 1] and
was empirically verified for a large database of natural im-
ages [19, 6]. We also refer to [25] for related work.

The variational approach we use for image segmentation
follows Zhu and Yuille [28], and Chan and Vese [3]. We
considerably enhance the descriptive power of these meth-
ods by incorporating the above-mentioned statistical model
of natural images (Section 2), thereby enlarging the range of
applicability of variational segmentation to a much broader
image class. In this sense, our work is similar to Paragios
and Deriche [14] who successfully enhance the geodesic ac-
tive contour model [2, 9] with a Gaussian mixture model
of filter response statistics for supervised texture segmenta-
tion. However, our statistical model is more compact and
targeted toward natural scenes, which makes it possible to
treat natural images and unknown textures in a completely
unsupervised way. We give a rigorous derivation of the
equations driving the motion of region boundaries toward
a segmentation in Section 3.

In Section 4 we evaluate our approach numerically using
natural images and texture images from publicly available
databases. The performance is compared to the use of sec-
ond order statistics as in [28, 7] within the same variational
framework. We conclude and indicate further work in Sec-
tion 5.

Finally, we wish to point out that our results should not
solely be judged from the specific viewpoint of texture seg-
mentation. This would amount to consider a wide range
of possible dissimilarity measures [18] many of which can-
not be easily incorporated into a levelset based segmenta-
tion framework and are not appropriate for less textured
parts of natural scenes. Rather, we focus in this paper on a
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compact parametric model related to natural image statistics
for super- and unsupervised levelset segmentation of scenes
where texture plays an important but not an exclusive role.

2. Natural Image Statistics
2.1. Feature Extraction
The basis of our approach is the statistical model

p(z) =
α

2sΓ(1/α)
exp(− |z/s|α) (1)

for the filter response z of a linear filter applied to natural
images. It was pointed out in the literature that the general-
ized Laplacian (1) describes the response statistics of vari-
ous linear filters surprisingly well. This model was empiri-
cally verified for samples of natural images [19, 6] and has
been applied to compactly code wavelet coefficients of im-
ages [11, 8, 1, 10] and to Bayesian image restoration [22].
In the present paper we apply this model both locally and
globally within a variational framework to the segmentation
of natural images.

Various linear transformations of images have been used
in conjunction with the model: The discrete cosine trans-
form [19], steerable pyramids [4, 23, 22], and various or-
thogonal wavelets [11, 6]. In this work we examine steer-
able pyramid filters (spn) and quadrature mirror filters
(pmfn) as well as the well-known Haar wavelet (haar) and
Daubechies wavelet of order 3 (daub3).

2.2. Density Estimation
The generalized Laplacian model (1) has two parameters, s
and α, which are related to variance σ2 and kurtosis κ of
the filter response by

σ2 =
s2Γ(3/α)

Γ(1/α)
κ =

Γ(1/α)Γ(5/α)

Γ2(3/α)
. (2)

When κ > 9/5 we can solve1 the right equation numeri-
cally for α and determine s via the left equation. We cannot
model distributions with κ ≤ 9/5. This is not a severe re-
striction, however: In the experimental section (Sec. 4 and
Fig. 1) we give strong evidence that such statistics are very
rare in natural images.

2.3. MDL-Criterion for Segmentation
Our goal is to partition the image domain Ω into two, maybe
multiply-connected, regions Ωin and Ωout separated by a
contour C such that the local image statistics are “close“ to
the global statistics within Ωin or Ωout, respectively. More
precisely, if pdfx denotes the statistics of a small window

1The reason why we cannot model distributions with smaller kurtosis
is that for α → ∞ the generalized Laplacian approaches the uniform
distribution centered at 0, the kurtosis of which equals 9/5.
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Figure 1: Check for pathological statistics. Log-
histogram of kurtosis κ measured over 4167 images from
the van Hateren database [26] for a steerable pyramid fil-
ter bank with three scales (rows) and four orientations
(columns). The minimal and median values for κ are listed
in the individual image captions. Note that the histograms
are very regular, and that for each filter κ is well above 9/5,
thus no pathological cases are present in the database.

Wx centered at image location x, and if pdfin and pdfout

denote the statistics of the interior and exterior regions Ωin

and Ωout, respectively, then we want to minimize

Emdl(Ωin,Ωout) = (3)
∫

C

ds+

∫

Ωin

D(pdfx||pdfin)dx+

∫

Ωout

D(pdfx||pdfout)dx

where D(p||q) = −
∫

p(x) log(p(x)/q(x))dx is the
Kullback-Leibler (KL) distance between densities p and q.

In order to interpret criterion (3), let us assume for a mo-
ment that pdfin, pdfout, and pdfx model the true densities
of their domains perfectly. Minimizing (3) then amounts to
minimizing the description length of an image code: A min-
imal code for Wx has average length H(pdfx), H denoting
Shannon entropy. Encoding Wx using the model for one of
the regions Ωin or Ωout requires a code of average length
H(pdfx) + D(pdfx||pdfin/out). In order to minimize (3),
we should assign x to the region with minimal KL-distance
to pdfx. The first integral in (3) measures the length of the
separating contour C ensuring that the membership relation,
that is whether a specific point x belongs to Ωin or to Ωout,
will be inexpensive to encode.

Note that the KL-distance of two generalized Laplacians
p and q with parameters (sp, αp) and (sq, αq) is given by
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sp0 sp1 sp3 sp5 qmf9 qmf12 qmf16 haar daub3
KL-dist median 0.0533 0.0562 0.0580 0.0514 0.1267 0.1265 0.1244 0.1039 0.1117

KL-dist q-25 0.0333 0.0379 0.0409 0.0365 0.0749 0.0746 0.0755 0.0642 0.0685
KL-dist q-75 0.0886 0.0913 0.0907 0.0768 0.2647 0.2636 0.2511 0.1915 0.2137

entropy median 4.4983 4.2866 4.2202 4.2233 3.8294 3.8249 3.8324 3.8684 3.8573
entropy q-25 4.0951 3.8736 3.8283 3.8207 3.4582 3.4475 3.4614 3.4738 3.4890
entropy q-75 4.8016 4.6080 4.5214 4.5279 4.1388 4.1350 4.1423 4.2001 4.1656

KL-dist/entropy 0.0118 0.0131 0.0137 0.0122 0.0331 0.0331 0.0325 0.0269 0.0289

Table 1: Model validation. Median and quartiles of KL-distances between histograms and parametric model (1) measured
over 4167 pictures from the van Hateren database [26] for different sets of filters. For comparison, entropies of the filter
responses are also reported. The steerable pyramid filter responses (columns 1 to 4) fit particularly well: Only a small
fraction of the information present in the histograms is ignored (last row).

the following expression:

D(p||q) =
(

sp

sq
)αqΓ(

1+αq

αp
)

Γ( 1
αp

)
+ log

(

sqΓ(1 + 1
αq

)

spΓ(1 + 1
αp

)

)

−
1

αp
.

(4)

2.4. Combining Filter Responses

Given the statistics for a set of filter responses the ques-
tion arises how to combine information gathered at different
scales and orientations. In this work, we strive for a generic
measure not optimized for any particular set of textures or
filters.

We propose, as a first-order approximation, to treat
the statistics of individual filter responses as statistically
independent. Under this assumption the individual KL-
distances simply add up so we can minimize the average
distance collected over all linear filters i:

Emdl(Ωin,Ωout) =

∫

C

ds + (5)

∑

i

[
∫

Ωin

D(pdfx,i||pdfin,i)dx+

∫

Ωout

D(pdfx,i||pdfout,i)dx

]

Here pdfin/out,i denotes the probability density function
modeling the response of filter i in region Ωin/out and pdfx,i

is the corresponding density for a window Wx centered at
location x in the image plane.

Note that in reality the independence assumption does
not hold. For orthogonal wavelet bases normalization
schemes have been proposed to remove dependencies be-
tween filter responses at different scale [21]. For the time
being, however, we did not incorporate any normaliza-
tion schemes into the first implementation of our approach.
While this clearly is suboptimal in theory, empirical evi-
dence (Section 4) suggests that our model is sufficiently ac-
curate for a range of real-world scenes.

3. Levelset Formulation
3.1. Energy Functional
Motivated by the region-based segmentation model of Chan
and Vese [3] we generalize (3) and consider energy func-
tionals of the form

E(φ) =

∫

Ω

kb(x) |∇φ| δ(φ)dx (6)

+ λ1

∫

Ω

kout(x, φ)H(φ)dx+ λ2

∫

Ω

kin(x, φ)(1 −H(φ))dx

Here φ : R
2 → R denotes the levelset function, H : R →

{0, 1} is the step function, and δ stands for Dirac’s delta
function. In the following we drop the function arguments
φ and x for brevity.

Chan and Vese’s model [3] fits into this framework as a
special case











kb = 1

kin = |u0 − cin|
2

kout = |u0 − cout|
2
,

(7)

whereas our approach involves the considerably more gen-
eral statistical model from (5)











kb = 1

kin =
∑

iD(pdfx,i||pdfin,i)

kout =
∑

iD(pdfx,i||pdfout,i).

(8)

3.2. First Variation and Boundary Update
The update φ̇ = −〈E′(φ), ψ〉 of the level set function
reads2:

∂E

∂φ
=

∂

∂φ

[
∫

Ω

kb |∇φ| δdx

]

+

∫

Ω

(λ1k
out−λ2k

in)δψ dx

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1 −H)

)

ψ dx. (9)

2To save horizontal space we abbreviate 〈E′(φ), ψ〉 by ∂E/∂φ.
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L∞(σ, κ) L1(σ, κ) med(σ, κ) L∞(α, s) L1(α, s) med(α, s) L∞(KL) L1(KL) med(KL)
sp0 112 93 120 136 137 303 75 71 103
sp1 64 32 60 66 51 111 33 26 34
sp3 62 30 40 66 48 47 29 18 24
sp5 77 32 33 65 32 45 38 30 24

qmf9 64 19 32 66 38 82 16 12 17
qmf12 79 19 35 78 39 89 20 16 23
qmf16 84 21 34 84 41 83 20 17 22
haar 78 28 39 89 43 122 34 21 35

daub3 82 23 44 80 46 90 29 17 22

Table 2: Assessment of KL-distance. Number of false retrievals on 512 randomly sampled texture image patches from
the Brodatz databaseDifferent filter sets, features, and strategies to combine individual filter responses are compared. The
minimal error rate for each filter set is marked in boldface. KL-distance with L1 metric performs best in most cases.

The third term, which is omitted in [3], origins from apply-
ing the product rule to the area integrals and thus takes into
account that kin and kout also depend on the levelset func-
tion φ. After some tedious calculations (appendix A) and
with the shorthands n = ∇φ

|∇φ| and c = div(n) we arrive at

∂E

∂φ
=

∫

C

(

−∇kbn− kbc+ λ1k
out − λ2k

in
)

ψ ds

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1 −H)

)

ψ dx . (10)

We point out that this formula was recently derived in a dif-
ferent way in [7] based on the calculus of shape optimal
design [24] which, in turn, relies on previous mathematical
work like, e.g., [20].

3.3. Computation of the Area Term
Let us examine more closely the area integral in (10). As
mentioned above (Section 2.4) we model the local coding
cost w.r.t. the interior region as

kin =
∑

i

D(pdfx,i||pdfin,i). (11)

Recall that we model the probability density functions as
generalized Laplacians with two parameters s = s(α, σ2)
and α = α(κ) which depend themselves on kurtosis κ and
variance σ2 measured both locally in Wx and globally in
Ωin. Therefore, we can write more precisely

kin =
∑

i

D(p(α(κx,i), s(α(κx,i), σ
2
x,i))||

p(α(κin,i), s(α(κin,i), σ
2
in,i))).

(12)

Note that κin,i and σ2
in,i depend on the area Ωin and thus

vary with the levelset function φ. Let us drop the index i

in the following discussion, thus focusing on one filter re-
sponse only.

The derivative then reads

∂kin

∂φ
=

∂D

∂κin

∂κin

∂φ
+

∂D

∂σ2
in

∂σ2
in

∂φ
, (13)

where the computation of the partial derivatives ∂D/∂κin

and ∂D/∂σ2
in is long but nevertheless elementary when

starting from the analytical formulation of the KL-
distance (4) and inserting the relations (2) solved for α
and s.

The statistics depending on the area form a hierarchy of
region-dependent terms:

κin =

∫

Ωin

(x− µin)4

|Ωin|σ4
in

dx σ2
in =

∫

Ωin

(x− µin)2

|Ωin|
dx

µin =

∫

Ωin

x

|Ωin|
dx |Ωin| =

∫

Ωin

dx. (14)

In the levelset formulation (6) we replace the integrals over
Ωin by integrals over Ω weighted by the step function H .
Now, taking the derivative w.r.t. φ yields (cf. appendix B)

∂σ2
in

∂φ
= −

∫

Ω

(x− µin)2

|Ωin|
2 H dx

∫

Ω

δψ dx

+

∫

Ω

(x− µin)2

|Ωin|
δψ dx. (15)

A similar term is derived for ∂κ/∂φ. With (13) these terms
form the area derivatives in (10).

4. Experiments and Discussion
4.1. Model Validation
Before focusing on segmentation (Section 4.2) we con-
ducted two experiments to select a suitable filter bank and
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(a) t=0 (b) t=10 (c) t=20 (d) t=35

(e) t=0 (f) t=4 (g) t=8 (h) t=12

Figure 2: Unsupervised segmentation. Unsupervised segmentation of a natural scene from the VisTex database [15].
Contours were initialized to boxes, stopping was determined automatically according to E(φ)′. The contour evolution at
different time steps is displayed for our model (Fig. (a)–(d)) and for second order statistics (Fig. (e)–(h)). The trees in the
center of the image are the visually most dominant element which is reflected by the segmentation with our model. Second
order statistics separates the bright sky from the darker rest of the image, failing to capture the visually dominant trees.

to verify that the restriction on the kurtosis of the filter re-
sponse to be greater than 9/5 was met (cf. Section 2.2).
Following [6] we used the van Hateren database of natural
images [26] for evaluation and removed multiplicative con-
stants from the images by first log-transforming them and
then subtracting their log-means.

Tab. 1 summarizes our results: We display the median
and the two quartiles of the KL-distance between the filter
response histograms and a generalized Laplacian with iden-
tical variance and kurtosis. For comparison, we also report
the histograms’ average entropy. One can see that on aver-
age almost all information in the histograms is captured by
the parametric model.

The following experiments were conducted using the
steerable pyramid filter bank sp3 with four oriented sub-
band filters and three scales. In Fig. 1 we show the log-
histograms of the kurtosis κ for each individual filter de-
termined for all 4167 images of the database. Two things
are remarkable: First, the distribution of κ follows closely
an exponential distribution shifted away from origin. Sec-
ond, the minimal values of κ encountered are well above
the critical value of 9/5. Thus, distributions which cannot
be described by our model do not occur in natural images.

Unfortunately, during segmentation we work with small

parts of images for which small values for kurtosis are ob-
served. Especially very homogeneous image regions like
sky or plain street occasionally lead to untypical filter re-
sponse histograms. In the following segmentation exper-
iments we treated these histograms as outliers — without
any noticeable deterioration of segmentation quality.

To assess the quality of our probabilistic distance mea-
sure we ran an experiment in texture retrieval on images
from the Brodatz database: We extracted 16 image patches
of size 100 × 100 pixels non-overlappingly from 32 Bro-
datz images. Then we took each of the 32 · 16 = 512
image patches as a query and selected from the remaining
patches the one most similar to the query w.r.t. a number of
norms: We examined L1 and L∞ norms for vectors of filter
response statistics collected over different scales and orien-
tations and for different sets of linear filters. Also, we ex-
amined KL-distance. The distances for the individual scales
and orientations were combined using the max, mean, and
median operator. A retrieval was considered correct if the
patch most similar to the query originated from the same
Brodatz image. Otherwise it was considered wrong. Tab. 2
summarizes the results which show that the L1 norm of the
KL-distance performs best for most filters. This indicates
that (12) is a useful distance measure on textured images.
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reference m. proposed m. improvement
median 0.65 0.81 25%

q-25 0.47 0.69 47%
q-75 0.81 0.84 4%

Table 3: Comparison of segmentation quality. The per-
centage of correctly segmented pixels on a set of 100 ran-
domly generated Brodatz texture collages is reported for
our model and for a reference model based on second order
statistics. The median and both quartiles are shown. Our
model clearly outperforms the reference model on average
and shows much better performance on difficult images.

4.2. Segmentation Experiments
In a next step we composed randomly selected textures from
the Brodatz database and arranged them in a texture collage
with a cross-shaped inlay of one texture in another (Fig. 3).
We segmented 100 texture collages using (9) without area
derivatives and with fixed default parameters λ1 = λ2 = 1,
window size |W | = 80×80 pixels. To speed up the compu-
tations we evaluated the filter response statistics for points
located on a 10 × 10 pixel grid only and interpolated the
statistics linearly on the remaining image. In preliminary
experiments we did not observe any deterioration of seg-
mentation quality caused by this optimization. For com-
parison, we implemented an energy term based on second
order statistics (cf.[28, eqn. (20)]):















kb = 1

kin =
∑

i log(σ2
in,i) +

(µx,i−µin,i)
2

σ2

in,i

+ σ2
x,i/σ

2
in,i

kout =
∑

i log(σ2
out,i) +

(µx,i−µout,i)
2

σ2

out,i

+ σ2
x,i/σ

2
out,i.

(16)
This model should work well for images where the mean
filter response is the most important region descriptor
(Fig. 2(h)). Our Brodatz-collages are of such type: The in-
dividual texture images usually are very homogeneous so
filter response differences are likely to origin from texture
boundaries.

We ran both models for 100 iteration steps, i.e., well af-
ter we expected convergence, on each texture collage and
determined the percentage of correctly segmented pixels.
We found (Tab. 3) that the average performance (median) as
well as the performance on difficult images (25% quartile)
of our model was significantly better than the performance
of model (16).

We then evaluated the importance of the area deriva-
tives, which are often omitted in variational segmentation
implementations. We took the first 100 images from the
van Hateren database and computed the area derivative term
from (9)

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1 −H) (17)

Figure 3: Sample segmentation. A Brodatz texture collage
segmented with KL-distance (solid line) and second order
statistics (dotted line). The KL-distance captures the cross-
shaped inlay better than second order statistics.

for an initial segmentation consisting of equally spaced
squares distributed over the whole image (Fig. 2(a)). For
comparison, we computed the KL-term

λ1k
out − λ2k

in, (18)

and measured the influence over the whole image.
The results (Tab. 4) indicate clearly that for our choice

of distance measure the area derivatives can safely be ig-
nored. This validates common practice. Note, however, that
recently Jehan-Besson et al. [7] have come to different con-
clusions for a different choice of distance measure.

q-10 q-90
KL-term −4.0366 2.6027

Area-term −3.61 · 10−5 2.11 · 10−5

Table 4: Importance of the area term. The 10% and
the 90% quantiles of equations (17) and (18) evaluated on
100 images from the van Hateren database are reported. The
contributions of the area term are five orders of magnitude
smaller than the contributions of the KL-term, indicating
that the area derivatives can safely be ignored.

5. Conclusions and Further Work
In this paper we proposed a segmentation approach based
on natural image statistics and the gradient-less level set
segmentation method introduced by Chan and Vese [3]. Ex-
ploiting the fact that a simple parametric model accurately
describes the statistics of a wide class of filter responses on
natural images we constructed an energy functional justified
by a minimum description length argument.

We ran evaluations on thousands of images checking that
pathological cases not captured by our model do not occur
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on real world images (Fig. 1), that the empirically observed
histograms are accurately represented (Tab. 1), and that the
minimum description length formulation does contribute to
the descriptive power of our model (Tab. 2).

We conducted experiments to evaluate the performance
of our segmentation method in comparison to a second or-
der model which has been used successfully for image seg-
mentation before [28]. The results indicate that for seg-
mentation tasks where image structure is more important
than brightness contrasts our model compares favorably
(Fig. 2, 3; Tab. 3).

Finally, we examined the importance of an area deriva-
tive term emerging during the derivation of the first varia-
tion of our energy functional. We found (Tab. 4) that for
our functional the area derivative’s contribution is not sig-
nificant, thus validating the common practice of omitting it.
Omitting the area derivatives also greatly simplifies the im-
plementation of our method and lifts the requirement that
the area descriptors kin and kout must be differentiable.

An interesting line of research for the future is to exam-
ine how image features can be captured with different im-
age densities without compromising model simplicity too
much: Our energy functional can in principle be applied on
arbitrary probability densities. However, model validation
issues as well as performance arguments make image mod-
els desirable which are easy to train even on small image
patches.
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A. First Variation of the Energy Func-
tional

The exposition follows [3], suitably generalized and
adapted to our approach. Starting from (9)

∂E

∂φ
=

∂

∂φ

[
∫

Ω

kb |∇φ| δdx

]

+

∫

Ω

δ(λ1k
out−λ2k

in)ψ dx

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1 −H)

)

ψ dx

we take a closer look at the first term which equals

∫

Ω

kb

[

δ′ |∇φ|ψ + δ
∇φ

|∇φ|
∇ψ

]

dx (19)

by product rule. With Green’s first theorem the second part
becomes
∫

Ω

kbδ
∇φ

|∇φ|
∇ψ dx =

−

∫

Ω

∇

(

kbδ
∇φ

|∇φ|

)

ψ dx+

∫

∂Ω

kbδ∂φ

|∇φ| ∂n
ψds

= −

∫

Ω

[

∇kbδ
∇φ

|∇φ|
+ kb∇δ

∇φ

|∇φ|
+ kbδ∇

(

∇φ

|∇φ|

)]

ψ dx

+

∫

∂Ω

kbδ∂φ

|∇φ| ∂n
ψ ds (20)

which in connection with ∇δ ∇φ
|∇φ| = δ′ |∇φ| and (19) yields

∂

∂φ

[
∫

Ω

kb |∇φ| δdx

]

=

−

∫

Ω

[

∇kbδ
∇φ

|∇φ|
+ kbδ∇

(

∇φ

|∇φ|

)]

ψ dx

+

∫

∂Ω

kbδ∂φ

|∇φ| ∂n
ψ ds. (21)

Note that we can replace each area integral containing the
Dirac impulse into an integral over the region boundary
C = {x : φ(x) = 0}:

∫

Ω

f(x, φ)δ(φ)dx =

∫

C

f(x, 0)ds. (22)

Hence we can write

∂E

∂φ
=

∫

C∩∂Ω

kb∂φ

|∇φ| ∂n
ψ ds

+

∫

C

[

−∇kb ∇φ

|∇φ|
− kb div

(

∇φ

|∇φ|

)

+ λ1k
out − λ2k

in

]

ψ ds

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1 −H)

)

ψ dx. (23)

Assuming C ∩ ∂Ω = ∅, this leads to (10).

B. Sample Derivation of an Area Term
We start from relations (14) and replace the integrals over
Ωin by integrals over Ω weighted by the step function H .
Taking the derivative w.r.t. φ yields

∂σ2
in

∂φ
=

∂

∂φ

∫

Ω

(x− µin)2

|Ωin|
H dx (24)

=

∫

Ω

∂

∂φ

[

(x− µin)2

|Ωin|

]

H +
(x− µin)2

|Ωin|
δψ dx

and

∂

∂φ

[

(x− µin)2

|Ωin|

]

= 2
µin − x

|Ωin|

∂µin

∂φ
−

(x− µin)2

|Ωin|
2

∂ |Ωin|

∂φ
(25)

7



and finally

∂ |Ωin|

∂φ
=

∫

Ω

∂H

∂φ
dx =

∫

Ω

δψ dx. (26)

Collecting these terms and using
∫

Ω
(µin − x)H dx = 0

yields (15). The derivation of ∂κ/∂φ proceeds in the very
same manner but must be skipped due to lack of space.
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