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Abstract

Automatic land cover classification from satellite images is an important topic in
many remote sensing applications. In this paper, we consider three different sta-
tistical approaches to tackle this problem: Two of them, namely the well-known
maximum likelihood classification (ML) and the support vector machine (SVM),
are noncontextual methods. The third one, ICM (iterated conditional modes), ex-
ploits spatial context by using a Markov random field. We apply these methods to
Landsat 5 Thematic Mapper (TM) data from Tenerife, the largest of the Canary
Islands. Due to the size and the strong relief of the island, ground truth data could

be collected only sparsely by examination of test areas for previously defined land
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cover classes.

We show that after application of an unsupervised clustering method to iden-
tify subclasses, all classification algorithms give satisfactory results (with statistical
overall accuracy of about 90%) if the model parameters are selected appropriately.
Although being superior to ML theoretically, both SVM and ICM have to be used
carefully: ICM is able to improve ML, but when applied for too many iterations,
spatially small sample areas are smoothed away, leading to statistically slightly
worse classification results. SVM yields better statistical results than ML, but when
investigated visually, the classification result is not completely satisfying. This is
due to the fact that no a priori information on the frequency of occurrence of a

class was used in this context, which helps ML to limit the unlikely classes.

Key words: Tenerife, land cover analysis, supervised classification, ICM, support

vector machines

1 Introduction

The automatic analysis of remotely sensed data has become an increasingly
important topic over the last decades. Especially the segmentation of satellite
images into regions of different land cover is of major interest: Given data
from several spectral bands, one wants to determine for each pixel of the

image which type of land cover is present at the corresponding area on the
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surface.

The island of Tenerife is a particularly interesting study area for this pur-
pose as, due to its great vertical extent and its position in the Atlantic, it
offers a whole range of different vegetational classes (Siegmund & Naumann,
2001). However, the large area and strong relief of the island also raise the
problem that training data can only sparsely be collected. Moreover, the spec-
tral reflectances recorded by the satellite sensor may vary within a land cover
class depending on slope and aspect. Therefore, appropriate preprocessing of
the given seven bands of Landsat 5 Thematic Mapper (TM) data with the
help of a digital elevation model is essential for the success of the subsequent

classification procedure.

Classification can be performed in several ways, e.g. supervised or unsuper-
vised, parametric or nonparametric, contextual or noncontextual. In this pa-
per, we focus on the application of supervised classification algorithms. There-
fore, different classes of land cover are defined in advance, and their properties
are learned from collected training samples. Then, all data points are classified

according to the models defined this way (Richards & Jia, 1999).

Spectral classifiers are usually distinguished into parametric and nonparamet-
ric methods (Hubert-Moy et al., 2001). We study supervised classifiers from
both categories: On the one hand, the well-known Maximum Likelihood al-
gorithm (ML) is a parametric method, which assumes a special probability
distribution (usually a Gaussian distribution) of the given data a priori and
determines the appropriate parameters (mean vector and covariance matrix)
from the training data. Each data point is then assigned to the class for which

its values are most likely, i.e., the class with the highest a posteriori proba-



bility. There exists abundant literature on ML and its application to remote
sensing data; a comprehensive overview can be found e.g. in Swain & Davis
(1978) or Richards & Jia (1999). For the Canary Islands, first results of the
application of ML were given by Schweichel (1999) and Siegmund & Naumann

(2001).

On the other hand, support vector machines (SVMs) belong to the category
of nonparametric methods, which do not attempt to model the distribution
of the data, but try to separate the different classes by directly searching for
adequate boundaries between them. The advantage of this approach is that
it generalizes well even if trained with a small number of samples. Support
vector machines were developed only recently (Boser et al., 1992) and are
not yet routinely applied to remote sensing data. However, some results are

reported by Hermes et al. (1999) and Huang et al. (2002).

Both approaches suffer from the drawback that they typically yield noisy
segmentations, while in nature larger areas of the same land cover are more
likely. This effect is mainly caused by considerable noise in the input data due
to reflectances from neighboring pixels. Additionally, mixed pixels composed
of more than one land cover class also contribute to this effect, as they often

cannot be classified uniquely.

An appealing strategy to overcome these problems is to exploit spatial context,
where besides spectral values for each pixel information from its neighboring
pixels is also evaluated (e.g. Mohn et al., 1987; Gong & Howarth, 1989; Sharma
& Sarkar, 1998). In this regard, we tested the ICM (iterated conditional modes)
algorithm (Besag, 1986) on the given image data. ICM has already been ap-

plied successfully in the context of remote sensing (Solberg et al., 1996; Cortijo



& Pérez de la Blanca, 1998; Hermes et al., 1999; Hubert-Moy et al., 2001).
Basically, this parametric method models the prior distribution of the image
as a locally dependent Markov random field (Li, 1995; Winkler, 1995), for
which the maximum a posteriori estimate is approximated iteratively. After
obtaining a first estimate using some non-contextual method like ML or SVM,
at every iteration step each pixel is assigned to the class which is most proba-
ble given its spectral values and the current labels of its neighbors. This leads
to a final segmentation which is smoother and less sensitive to noise than the

results of non-contextual methods.

In this work we will compare these three supervised classification algorithms
and discuss their advantages and their limits in the context of automatic
analysis of Landsat TM imagery of a landscape with strongly rugged terrain
for which training data is only given sparsely. The results illustrate some of
the inherent problems of labeling remote sensing data, and thus should help

researchers to find an appropriate classification procedure in similar situations.

2 Study Area

The research area for the automatic land cover analysis is Tenerife, with about
2050 km? the largest of the Canary Islands. Due to its vertical and horizontal
extent and its position in the middle Atlantic, Tenerife’s climate and vegeta-
tion varies strongly. Because of the heterogeneous nature and cultivation area
a lot of different classes of land cover have to be considered. On the one hand
the classes result from unsupervised classifications (cluster analysis), on the
other hand from several ground checks. Due to the coarse resolution of the

satellite images and the high number of different land cover classes, it was



unavoidable to reduce this number by fitting similar classes together (Nau-
mann, 2001). At last, after all technical and geographical considerations for
the selection of the classes were done, we decided to use m = 10 classes in the

automatic land cover analysis for Tenerife (cf. Table 1).

Due to the size of the island, the difficult terrain characteristics and the strong
presence of mixed vegetation, ground truth data could only sparsely be col-
lected. Altogether, only approximately 4.8% of the area of Tenerife is repre-
sented by the training samples. The exact numbers of ground areas and their

sizes are given in Table 1.

The satellite images used in this study were taken on August 7, 1988 by the
Landsat 5 TM. They contain seven spectral bands with a resolution of 30 x 30
meters per pixel for each band apart from the thermal band 6, which has a
resolution of 120 x 120 meters. Fig. 1 shows the image of band 5 of the study

area as an example.

The spread of the vegetation zones for Tenerife not only depends on the cli-
mate situation in the Atlantic Ocean, but also critically on the altitude of
the location. In this context, it is helpful to use a Digital Elevation Model
(DEM) to encode the altitude data, so that it can be incorporated into the
classification process afterwards. To this end, we created a DEM by digitizing
the contour-lines of topographical maps in a scale of 1:50,000, and registered

this model to the given image data.



3 Methodology

3.1 Preprocessing

In the given Landsat TM scene of Tenerife, some part of the island unfortu-
nately is covered by clouds. In order not to have a negative impact on the
classification, these clouds were removed from the input bands in advance.
This was accomplished by selecting a threshold temperature level in the ther-
mal band 6, which distinguishes between cool clouds and the warmer ground
surface. All spectral values of data points which represent clouds according to
this criterion were then replaced with zeros. In this way, the clouds can easily
be identified in the subsequent classification without having to deal with them
separately. Additionally, all training pixels covered by clouds in the Landsat

TM images were removed from the training data.

Due to the strong relief of Tenerife the spectral reflectance values for a class
may vary considerably depending on the angle of incoming light. Therefore,
we also used a radiometric correction procedure (Civco, 1989) to reduce the
influence of topography (given by aspect and slope) on the classification result:
With the help of the DEM, a Minnaert correction as presented by Ekstrand
(1996) was applied to all spectral bands (apart from band 6). In doing so, five
different Minnaert constants were calculated for each band (instead of only

one), changing with the cosine of the incidence angle.

The data correcting methods described above may not be sufficient to yield ho-
mogeneous distributions of the spectral data given for each class. For example,

the reflectance characteristics of the vegetation free class differ on the top of



the mountain and at the coast. For this reason, before starting the supervised
classification, we first performed an unsupervised clustering for each training
data class to detect subclasses which should be better handled separately. The
unsupervised classification method we used for this purpose is the mean shift
technique developed by Comaniciu & Meer (2002). The clustering result de-
fines a new number (larger than m = 10) of classes on the given training data
points, which are then used as input to the supervised classification methods.
Finally, we obtain a segmentation of the image into the 10 previously defined
classes by relabeling each pixel to that class from which its subclass label was

derived.

In the following description of the different classification algorithms, we gen-
erally denote by m the number of classes present in the training data set, by
n the total number of training vectors, and by d the dimension of these input

data vectors.

3.2 Mazimum Likelihood Classification (ML)

The maximum likelihood algorithm (e.g. Richards & Jia, 1999) belongs to
the class of parametric classification methods. This means that the data is
assumed to be distributed according to a previously defined probability model,
for which the parameters are determined from a given training set. Each data
point z; € R? is then classified independently by labeling it as belonging to
the class y; € {w1,...,wy} which is most likely given the data z;, i.e. which

has the highest a posteriori probability P(y; = wk|z;). To calculate these



probabilities, the Bayes’ rule is used:

P(z;ly; = wi)p(w) 1)

P(y; = wk|z;) = > P(xjly; = wi)p(ws)

Here, P(z;|y; = wy) is the probability that the data point z; is observed for
the given class wy, whereas p(wy) denotes the a priori probability of the class

wg, which is known approximately from ground checks.

To calculate the probability P(z;|y; = wg), a multivariate Gaussian distribu-
tion with mean vector p and covariance matrix Y is assumed for each class

Wi

Plalyy = ) ox ()84~ exp (=5 (0 — i) S a — ) ) . ()

Consequently, the a posteriori probability (1) is maximized for a given data
point z; when it is assigned the label wy- according to the following classifi-

cation rule

1 _ 1

K =arg max — (x5 — me) S (@5 = ) — 5 (Sl + 1 (o). (3)
k=1,...m 2 2

This classification rule leads to quadratic decision boundaries between the

classes. The corresponding class dependent parameters p; and Y, are esti-

mated from the training data vectors x; available for class k:

1 &k 1 &k
pr=—y_x; and Np=—> (z; — ) (@ — )", (4)
Nk =1 Nk =1

where n; denotes the number of training samples for class k.

After the preprocessing of the training data with an unsupervised classification
method (see Section 3.1), the number n; of training samples may become

quite small for some classes in comparison to the sample sizes proposed in the



literature (less than 20 vs. between 10d and 100d, cf., e.g., Lillesand & Kiefer
(2000)). This may lead to unreliable estimates of the corresponding covariance
matrices Y. Nevertheless, these small classes should not be discarded, as they
are possibly due to small training areas which give valuable information for the
classification process. Moreover, as the training points were usually collected
from quite coherent areas (especially for the water class), the variance obtained
from the training data may be an underestimate of the true variance of the
corresponding class distribution, even for larger numbers ny. To mitigate these
problems, we employed regularization methods (Cortijo & Pérez de la Blanca,
1997; Friedman, 1989) which improve the estimates of the covariance matrices
Y; by adding appropriate multiples of the identity matrix or of the common

covariance matrix ¥ = % DI

A way to handle outliers in the data that do not fit in any of the predefined
classes (which may, e.g., be due to incorrect assumptions on the number of
classes or missing information in the training data set) is to define an addi-
tional out-class (Hjort & Mohn, 1984). If a data point does not give a prob-
ability higher than a given threshold for any of the classes, it is labeled as
belonging to this class. Moreover, a doubt-class may also be added to which
all data points are assigned that give very similar likelihoods (1) for two or

more different classes wy.

In our application, three different drawbacks of the ML classifier are obvious:

e A unimodal distribution of the data points is assumed for each class, al-
though multimodal distributions are more likely to be encountered in prac-
tice.

e The classification is solely based on the spectral information of each pixel
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without using any information given by neighboring pixels, which usually
leads to a noisy classification result.
e The fixed form of the decision boundaries prohibits a finer adjustment to

the given training data.

The first point is handled by preprocessing the data with an unsupervised
classification method as described in Section 3.1. The other two points are

tackled by the algorithms described in the next two sections.

3.3 [Iterated Conditional Modes (ICM)

Basically, the ICM algorithm (Besag, 1986) uses the same classification method
as ML: Based on the Bayes’ rule (1), each data point is assigned the label which
is most likely. The difference is the underlying probability model: Whereas
the ML classifier only uses the spectral information for each data point to
calculate the a posteriori probabilities P(y; = w|z;), the ICM algorithm also
incorporates spatial context. To this end, it is assumed that the true image is a
realization of a locally dependent Markov random field (Li, 1995), so that the
probability of a label for a specific data point z; also depends on the labeling

of the neighbors of z;:

P(y; = wilzj) o< P(z;y; = wi)p(wilys; ), (5)

with d,; denoting the neighboring data points of x;. Comparing this to (1),
the a priori probability p(wy) of a label is thus replaced by the conditional
probability p(wk|ys;) which depends on the labels ys; surrounding the data
point z;. As proposed by Besag (1986), we use a second-order neighborhood,

i.e. 0; contains the eight data points adjacent to x; in the image plane.

11



Since naturally, the probability of the data point x; to belong to class wy should
increase with the number of its neighbors that are also labeled as belonging

to this class wy, the corresponding conditional probability can be stated as

p(wilys;) o< exp (Bu;(wr) )p(wr), (6)

where u;(wy) denotes the number of data points in the neighborhood 4, labeled
wg, and p(wy) is the original a priori probability of wy. The parameter 5 > 0
is used to control the smoothness of the resulting classification: The larger its
value, the more important is that the data point x; is labeled according to

the majority of its neighbors (see Besag, 1986, for details).

Assuming as for the ML classifier a multivariate Gaussian distribution (2) for
each class, substituting (6) and (2) into (5) yields the following classification

rule to assign the label wy+ to pixel z;:

1 1
k* = arg max _E(xj — )" (= ) — 5 In(|3k]) + Buj(wk) + In (p(wk))

k=1,...m
(7)

Note that except for the contextual term fuj(wy), the classification rules (7)

and (3) coincide.

To compute the numbers u;(wy), the labeling of the neighbors of x; must
already be known. As it is computationally demanding to calculate (7) for
all data points simultaneously, the ICM algorithm estimates the solution it-
eratively. An initial estimate of the classification ¢, for each data point z; is
obtained by applying the conventional ML classifier as described in the last
section. Afterwards, in a single iteration of the ICM algorithm, each data
point is labeled with a new g;-value in turn according to (7), using the current

yi-values of the neighboring data points z; to calculate Su;(wy). This proce-
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dure is applied until convergence, or, in practice, for a predefined number of

iterations to arrive at the final classification y; for each data point.

As the parameters of the Gaussian distributions are estimated from the train-
ing data for each class, they usually are not known to be correct. Due to this
fact, we re-estimated the class parameters after each iteration by using the
current classification result as input to (4). Thus, the class parameters are not
static, but are adjusted to the data during the algorithm. For this reason, a
good initial estimate is very important, as data points classified incorrectly
may influence the new class parameters negatively. To deal with this kind
of error propagation, the additional out- and doubt-classes mentioned in the
previous section can be used, as they prevent data points to be assigned to a

class they do not really fit in.

Other class-properties which are known in advance may also be modeled in
the ICM algorithm. For example, the knowledge that some classes do not oc-
cur next to one another can be incorporated by means of an additional term
—B'uj(wg) in (7) similar to the contextual term Suj;(wy), but with u}(wy) in
this case denoting the number of neighbors which are labeled with a class
that should not be neighbored to wy. By increasing the parameter 3 > 0 to-
wards infinity with each iteration, the probability for an unwanted neighboring

classification becomes very small (cf. Besag, 1986).

3.4 Support Vector Machines (SVM)

Support vector machines (Boser et al., 1992) are discriminative binary clas-

sifiers motivated by results from statistical learning theory (Vapnik, 1995).
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Discriminative means that, in contrast to the classification algorithms out-
lined above, SVMs do not attempt to model the probability distribution
P(z;|ly; = wg) of the training vectors. Instead, the decision function f(z) is
obtained from the training data points z; as the solution to the regularization

problem (Evgeniou et al., 2000)

1 n
I}éi,;};i:zlmax((Ll —uif (2:)) + Al fI% (8)

in a suitable Hilbert space H specified by a symmetric, positive definite kernel
function K. The class labels y; of the training points are encoded as numbers
{+1, —1}, such that ideally y; = sign(f(z;)). Thus, the first term in (8) calcu-
lates the average number of misclassifications on the training data while the
second term, weighted by regularization parameter A, favors smooth decision
functions with small norm ||-||%. After the binary decision function f has been
determined, each data point z can be labeled according to whether f(z) is

positive or negative.

Under mild conditions the solution to (8) can be written in the form
f(@) = K (z,2;) +b, « €R, 9)
i=1

where b is an offset introduced to allow for arbitrary shifts of the decision
boundary. Note that «; and b can be found efficiently by solving a quadratic
program (see, e.g., Cristianini & Shawe-Taylor (2000) for suitable quadratic
programming algorithms and for a more detailed introduction to the support

vector method).

The choice of the kernel function K is crucial for good classification perfor-
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mance. In our experiments we used the Gaussian radial basis function kernel

202

2
K(z;,x;) = exp (—M) , (10)
which is one of the most commonly used kernel functions.

Various extensions of the binary SVM classification method to problems with
more than two classes exist: A popular approach is to split a multiclass
problem into multiple binary problems which can be handled by standard
SVMs. We decided for the directed acyclic graph method (Platt et al., 2000),
where m(m — 1)/2 binary SVMs are trained to distinguish each pair of classes
(wi,w;), i # j. The resulting ensemble of binary classifiers is then arranged in
a directed acyclic graph. A recent study (Hsu & Lin, 2002) has shown this
method to be efficient in terms of training and classification speed as well as

in terms of accuracy.

4 Results and Discussion

In this section we present the results obtained with the different classification
methods. Extensive pre-testing revealed that the best results were achieved
when all seven (radiometrically corrected) spectral bands from Landsat 5 TM
were simultaneously used as input data (Naumann, 2001). This also includes
the thermal band 6, which indirectly provides helpful information concerning
the land cover for the area under consideration, as for regions with dense
vegetation higher temperatures are recorded than for urban and desert regions.
To yield the same resolution as the other spectral bands, the data from band

6 has been resampled accordingly beforehand.
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Additionally, we incorporated the altitude data from the DEM as an eighth in-
put band by normalizing the height values to the greyvalue range of the other
bands (0-255) and rounding them to nearest integers. Using the elevation
data in this way (instead of combining it a posteriori with the classification
result) has several advantages: First, the different land use classses are effi-
ciently restricted to the altitude level according to their training data during
the whole classification process. Second, misclassification of data points to
land use classes which do not exist in the corresponding altitude is prevented.
Third, subclasses and outliers in differing heights can be found easier. And
finally, no additional postprocessing technique influences the classification re-
sults obtained with the methods presented in the last section in either way.
At the same time, due to the high correlation of the land cover and the eleva-
tion on Tenerife, it is still reasonable to assume normal distributions for the

different land cover classes during ML and ICM classification.

Fig. 2 shows a projection of the training data points onto the two-dimensional
space spanned by bands 4 and 7. Although this is the two-band combination
where the data points visually are spread most, the classes are highly over-
lapping — with the only exception being the classes representing water and
clouds, respectively, in the lower left corner — and thus cannot be separated

easily.

As described in Section 3.1, the training data points were preprocessed with
an unsupervised clustering method by applying the mean shift technique for
each class separately. The clusters containing less than five data points were
considered to be outliers and eliminated from the training data. This resulted
in m = 39 subclasses with a total of n = 155,928 training samples as shown

in Table 2, with 11 subclasses containing less than 20 samples.
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To get an estimate of the accuracy for each of the different classification meth-
ods we used a 10-fold cross-validation technique (Kohavi, 1995). In this con-
text, the ground truth data was split randomly into 10 pairs of test and train-
ing data. In order to reduce the positive bias introduced by spatial correlations
between neighboring pixels we ensured that the distance of each training vec-

tor to any test vector was at least three pixels.

We want to point out that we used the same cross-validation data sets for
parameter estimation and for reporting test accuracies. This might lead to
slightly overoptimistic results (Scheffer & Herbrich, 1997). For this reason,
and because accuracy assessment on remote sensing data is a problematic
task as such — since the measurements only give the degree of agreement to
the collected ground data which does not necessarily represent the whole scene

(Foody, 2002) — we also examined each classification visually.

4.1 ML classification

Different choices for the parameters were tested for the ML classification. Con-
cerning the covariance matrices, the best results with overall cross-validation
accuracy of 90.21% =+ 1.11% (we report cross-validation results always with
the standard deviation added) were obtained by using the covariance matrices
Yk calculated from the training data and regularizing them by adding a small
constant value ¢ = 10719 on the diagonal to avoid matrices that are not invert-
ible (see Section 3.2). Using larger values for ¢ always gave better results for
classes which are represented by less training samples, but also downgraded
the results for the other classes. In comparison to that, the use of linear de-

cision boundaries by means of a common ¥ = L >, %, for all classes only
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yielded an overall accuracy of 85.90% +1.35%. Regularization between X, and
Y. as proposed by Friedman (1989) also did not reveal better choices for the

covariance matrix.

The choice of the a priori probabilities p(wy) for the different subclasses had an
important impact on the result. As the a priori probabilities were only given
for the 10 predefined classes (see Table 2) and not for their subclasses ob-
tained by mean shift, these probabilities had to be distributed appropriately
to the subclasses. In this context, the best statistical results were obtained
by weighting the a priori probability of each class by the relative number of
training samples from each corresponding subclass. In this way, the subclasses
containing many training samples become more important than those which
are represented only by a small portion. In contrast to this policy, it is also
possible to give each subclass the same weight by dividing the a priori proba-
bility of a class by the number of its subclasses. While this results in a more
suitable way to weight subclasses which are underrepresented in the training
data, it also increases the importance of those classes which have only few
subclasses. For the training data given for Tenerife, the latter approach only
achieved an overall cross-validation accuracy of 87.92% + 1.23%, compared
to0 90.21% 4 1.11% of the first approach. On the other hand, with uniform a
priori probabilities for all subclasses an overall accuracy of 88.86% =+ 1.74%

was obtained.

The confusion matrix of the cross-validation result for the ML classifier with
the best parameter choice is given in Table 3. Fig. 3 shows the corresponding
classification of the whole Landsat TM scene; in this case, all available training
samples were used to estimate the parameters. Moreover, black pixels in this

figure indicate data points for which the probability of the best labeling was
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too small, meaning that they were put in an out-class.

4.2 ICM classification

The ICM algorithm should improve the classification result of the ML classi-
fier by using spatial context. We started ICM with the classification given in
Fig. 3, and ran it for 10 iterations, with the value of the smoothness parame-
ter set to 5 = 1.0 (cf. eqn. (7)). The interesting result is that cross-validation
accuracy only improved after the first iteration, where the mean vectors and
covariance matrices estimated from the training data were used unchanged.
After the mean vectors and the covariance matrices were re-estimated from the
previous classification, the number of correctly classified pixels reduced with

every subsequent iteration, with each land cover class being affected equally.

There are three possible explanations for this fact: First, each re-estimation
of the parameters is no longer based on the training data only, but on the
complete current classification of the scene. Consequently, the parameters are
mainly influenced by data points for which the true class membership is un-
known. This may lead to a shift of the Gaussian distribution of a land cover
class into a direction which does not conform to the training data any longer,
especially if many mixed pixels are involved. We observed that in this context,
the use of an out-class for data points which do not fit in any class or of a
doubt-class for data points with uncertain labeling did not help to increase

the number of correctly classified pixels.

A second explanation has been brought up in the context of semi-supervised

learning (see Cohen et al., 2002, and references therein). These studies mainly
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attribute the increase in classification error to unrealistic modeling assump-
tions — an explanation which cannot be dismissed in our case either: For some

classes, the assumption of a Gaussian distribution may be incorrect.

Finally, another problem is that due to the spatial context used by ICM,
pixels initially assigned to the correct class may be relabeled when they are
isolated from other pixels of their class and their neighborhood is dominated
by another class. Thus, narrow sample areas are smoothed away. For Tenerife,
this effect can especially be observed for the settlement class, which contains

many small training areas.

The problem of decreasing accuracy may of course be circumvented by avoid-
ing the re-estimation of the parameters and using the original mean vectors
and covariance matrices calculated from the training data throughout the
algorithm. Indeed, in this case with every iteration a higher accuracy was ob-
tained, and the algorithm converged after a few steps with a total accuracy
of about 91%. Although ICM is used in this form in most applications, we re-
frain from this proceeding here, as it usually needs accurate initial parameter
estimations, which we cannot guarantee in the case considered in this paper.
Moreover, the results obtained in this way were not convincing visually, as

they still contained a lot of noise.

Therefore, as a compromise we analyze the results of the ICM algorithm after
5 iterations, in this way preventing too much deterioration but still allowing a
significant amount of smoothing. The corresponding classification is presented
in Fig. 4, again with black pixels denoting those data points that were assigned
to the out-class. In this case, a total cross-validation accuracy of 88.55% =+

1.35% was achieved. For comparison, the corresponding accuracy of the initial
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solution obtained with ML was 89.18% + 1.11%. Although this indicates that
the result of ICM should be slightly worse, the classification is visually more
satisfying than the result of ML as it is less noisy. The comparison of the
complete confusion matrix for ICM given in Table 4 with the confusion matrix
of ML indicates which classes are most problematic: Whereas less pixels of the
settlement class were classified correctly (which punctuates the statements
made above), too many pixels are assigned to the fayal-brezal class, which
is also visible in Fig. 4 at the borders of the masked out clouds. Note that
incorporating knowledge about which classes do not occur next to one another
(as presented at the end of Section 3.3) had no impact on the result of ICM,

as this information is already encoded in the altitude values.

4.8 SVM classification

The free parameters for SVM classification are the width o of the Gaussian
kernel function (eqn. (10)) and the regularization parameter A of the SVM
optimization problem (eqn. (8)). In a first step, we had to determine suitable

values for these parameters.

We tested the SVM with different choices for o on our cross-validation data
sets. The training data sets, containing about 50,000 vectors each, led to rel-
atively large instances of SVM multiclass classification problems and thus to
long training times. To speed up parameter selection we randomly sampled
1,000 training vectors for each class and each data set. Note that this sampling
strategy introduced a slight bias towards classes that were underrepresented

in our training data sets.
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We found that the choice of ¢ was not critical for the SVM’s classification
accuracy: For o chosen from {0.1,1,5, 10,20, 50, 100, 250, 500} only the two
smallest and the two largest values led to a degradation in classification ac-
curacy. We chose 0 = 50 for our further experiments. In a similar way we
determined the value of the regularization parameter A = 0.05 of the SVM

optimization problem.

In our experiments we found that preprocessing the data with mean shift
did not help the SVM to find better classifications. This is not surprising
as, in contrast to ML and ICM, the SVM does not assume the classes being
distributed unimodally. As mean shift preprocessing increases the number of

classes to be handled we did not employ this technique for SVM classification.

Table 5 gives the confusion matrix for the SVM trained on a subset of the
cross-validation training data and tested on the same test data as the ML
and ICM classifiers. Note that for the classes where only little training data
is available, i.e. the laurisilva class, classification accuracy is severely reduced.
The overall accuracy of 93.32% =+ 0.61% is surprisingly good and probably
optimistically biased: We have very little ground truth data at hand and the
class variation caught by this sample might be lower than the true variation
within the classes. Also, we cannot rule out that remaining spatial correlations
between training and test vectors make the confusion matrix look better than

it should.

Fig. 5 depicts a classification of the whole island based on 10,000 randomly
selected training vectors. Comparing this result to ML classification (Fig. 3)
we immediately realize that the SVM classifier spreads a large amount of

the settlement class along the south-eastern coast: In this area ground truth
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data is rare so the SVM decides for settlement, which has a relatively large
inner-class variation. ML also erroneously detects settlement along the south-
eastern coast, but as ML utilizes a priori information about class probabilities
(eqn. (1)) it assigns most of the unclassified area to the cardonal-tabaibal class

which is probably the correct classification.

5 Conclusion

In this paper, we applied three different supervised classification algorithms
to find a labeling for a relatively large area into previously defined land cover
classes. As has been indicated in Section 3, all methods depend on various pa-
rameters (e.g. number of subclasses, number of iterations, kernel width) which
directly influence the computational complexity and the classification perfor-
mance. Although they could also be used with standard parameter settings,
some configuration effort is needed to obtain the best classification results.
Comparing the computational complexity of the different algorithms, typical
runs (on a 2GHz Linux PC, without special algorithmic tuning effort) for a
complete classification of the whole scene took about 15 minutes for ML, about
110 minutes for five iterations of ICM and about 90 minutes for SVM based
on 10,000 training vectors, with each method requiring more than 400 MB of

memory.

Even though only little training data was available, cross-validation tests re-
vealed a high classification accuracy for all classifiers. But the statistical results
may be misleading: Even though SVM obtains the highest accuracy, the vi-
sual impression is not as satisfying as the ML result because too many pixel

were labeled as settlement. In this context, it is a key advantage of ML that a
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priori information about class probabilities can be incorporated very easily, so
that unlikely classes are suppressed in the final classification. In this direction,
combining SVM with a contextual parametric classifier like ICM, which is able
to use a priori probabilities and to smooth the noisy classification, would be

a useful refinement (Hermes et al., 1999).

Exploiting spatial context by applying ICM to the result of a ML classification
was beneficial: A much smoother classification was obtained. But the sparse-
ness of the training data leads to segmentations which statistically decrease
in accuracy with each iteration, as the new estimates of the parameters are
mainly based on the previous classification of data points for which the true
class membership is unknown. In this context, handling mixed pixels more
appropriately may play an important role to achieve better results. Instead of
hard classification of each pixel, one can use fuzzy labelings (see, e.g., Wang,
1990; Jensen, 1996; Duda & Canty, 2002) during ICM, which allow a data
point to have partial class membership. In that way, the estimation of the
parameters depends less critically on pixels for which the correct labeling is
unknown. Closely related to this technique are probabilistic label relaxation
methods (see, e.g., Gong & Howarth, 1989; Li, 1995; Richards & Jia, 1999),
which however, usually only consider the original input data during the ini-
tialization and not within the subsequent iterations, in contrast to ICM. We
did not investigate these methods in this study, because they become quite
expensive in terms of memory requirements for large images, as instead of only
one value, now as many values as classes are given have to be stored for each

data point.

For Tenerife, including the altitude values as an additional input channel im-

proved classification results, as some land cover classes were efficiently re-
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stricted to the correct altitude range. However, this additional input channel
may also prevent to correctly label data points for which no training data from
the corresponding altitude is available. Thus the additional information also
enforces the need to collect more appropriate training data. Nevertheless, it
is promising to further include other information, like, e.g., texture measures,

into the classification process.

For ML classification, the assumption of a unimodal Gaussian distribution is
not always correct. In this context, preprocessing the training data with the
mean shift algorithm was very helpful. The detected subclasses were much
better represented by Gaussian distributions than were the original classes.
However, in cases where the basic assumption on the form of the distribution
is violated too strongly, the use of a nonparametric classifier like SVM or of
another model structure as proposed by Cohen et al. (2002) may be more

appropriate.
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Table 1
Number of training areas and corresponding number of sample data points for the

ten different land cover classes used in this study.

Training  Data

Class name (description) areas points
Cardonal-Tabaibal (shrub, euphorbia, sparse vegetation) 63 9780
Fayal-Brezal (heather, copses, degradation of Laurisilva) 20 3282
Laurisilva (forest, laurels) 11 1656
Pinar (forest, pines) 67 23206
Retamar-Codesar (desert landscape, thickets) 16 2433
Rocks without vegetation 25 25336
Plantation 14 758
Settlement 42 15573
Water 5 74307
Clouds 2 9003
Total 265 165334
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Table 2
Number of subclasses obtained with mean shift, corresponding total number of

training points, and a priori probabilities for each predefined class.

Number of Number of A priori

Class subclasses training pts. probability
Cardonal-Tabaibal 2 8077 10.0%
Fayal-Brezal 5 1695 2.0%
Laurisilva 2 124 0.5%
Pinar 5 21063 7.0%
Retamar-Codesar 1 2431 2.0%
Rocks 10 24941 5.0%
Plantation 4 713 0.5%
Settlement 8 13574 3.0%
Water 1 74307 38.0%
Clouds 1 9003 32.0%
Total 39 155928
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Table 3
Cross-validation results for the ML classifier. Each row of the confusion matrix shows
how the test data from one class is labeled, whereas each column shows which data

points are labeled as belonging to the corresponding class.

} . ) = < Acc.
& & 5 89 $ 5 2 £ F C
" I S = s Q — ° L .
Class O & = A ~ roo A = O (in %)

Card.-Tab. 813 18 1 59 0 1 0 69 0 0 84.6

Fay.-Brez. 28 138 3 24 0 1 0 3 0 0 70.1
Laurisilva 0 3 2 4 0 0 0 0 0 0 22.2
Pinar 59 56 5 2448 2 43 0 1 0 0 93.7
Ret.-Cod. 0 0 0 1 264 25 0 0 0 0 91.0
Rocks 28 0 0 65 105 2991 0 7 0 0 93.6
Plantation 9 0 0 0 0 0 7 9 0 0 79.8

Settlement 308 37 0 0 0 3 2 1267 0 0 78.4

Water 0 0 0 0 0 0 0 0 524 0 100.0

Clouds 0 0 0 0 0 0 0 0 0 503 100.0

Acc. (in %) 65.3 54.8 18.2 94.1 71.2 97.6 97.3 93.4 100.0 100.0  90.21
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Table 4
Cross-validation results for the ICM classifier. In contrast to ML, the confusion

matrix contains an additional column to indicate pixels that were assigned to the

out-class.

LTI R B - - T B
Class S B S KE £ 2 B % B S 3 (in %)
Card.-Tab. 811 31 8 66 0 0 1 43 0 0 1 84.4
Fay.-Brez. 27 143 1 26 0 0 0 0 0 0 0 72.6
Laurisilva 0 3 6 0 0 0 0 0 0 0 0 66.7
Pinar 47 59 19 2461 5 22 0 0 0 0 1 94.2
Ret.-Cod. 0 0 0 0 276 14 0 0 0 0 0 95.2
Rocks 28 0 0 78 113 2939 0 0 0 0 38 92.0
Plantation 6 0 0 0 0 0 76 7 0 0 0 85.4

Settlement 390 54 1 0 0 1 5 1116 1 0 49 69.0

Water 0 0 0 0 0 0 0 0 524 0 0 100.0
Clouds 0 0 0 0 0 0 0 0 0 503 0 100.0
Acc. (in %) 62.0 49.3 17.1 93.5 70.1 98.8 92.7 95.7 99.8 100.0 88.95
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Table 5
Cross-validation results for the SVM classifier. The SVM was trained on a randomly
selected subset of the cross-validation training data. The test data is the same as

for the ML and ICM classifiers.

=

& i 89 f 5 g & %™
Class S B S KB &£ 2 & & = O (in %)
Card.-Tab. 860 27 1 5 0 0 5 63 0 0 89.5
Fay.-Brez. 5 166 5 12 0 0 0 9 0 0 84.3
Laurisilva 1 4 4 0 0 0 0 0 0 0 44.4
Pinar 24 86 5 2459 10 30 0 0 0 0 94.1
Ret.-Cod. 0 0 0 1 279 10 0 0 0 0 96.2
Rocks 12 0 0 85 130 2963 0 6 0 0 92.7
Plantation 3 0 0 0 0 0 81 5 0 0 91.0

Settlement 96 24 0 0 0 0 4 1493 0 0 92.3

Water 0 0 0 0 0 0 0 0 524 0 100.0

Clouds 0 0 0 0 0 0 0 0 0 503 100.0

Acc. (in %) 85.9 54.1 26.7 96.0 66.6 98.7 90.0 94.7 100.0 100.0  93.32
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Fig. 1. Landsat 5 TM image of Tenerife, from August 7, 1988, band 5 (clouds

removed). Size of the scene: 2728 x 2073 pixels.
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Fig. 2. Projection of the training data on bands 4 (bottom) and 7 (left): All classes

are highly overlapping.
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Fig. 3. Result of the Maximum Likelihood classifier, using all available training

samples. Black pixels indicate data points assigned to the out-class.

37



Fig. 4. Result of the ICM classifier after 5 iterations, using the result of the ML clas-

sifier as initial estimate. Black pixels indicate data points assigned to the out-class.
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Fig. 5. Result of the SVM classifier trained on a subset of 10,000 randomly selected

training vectors.
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