
Real-Time Imaging 10 (2004) 41–51

ARTICLE IN PRESS
*Correspond

E-mail addr

1077-2014/$ - se

doi:10.1016/j.rt
High performance cluster computing with 3-D
nonlinear diffusion filters

Andr!es Bruhna,*, Tobias Jakobb, Markus Fischerb, Timo Kohlbergerc, Joachim Weickerta,
Ulrich Br .uningb, Christoph Schn .orrc

aMathematical Image Analysis Group, Department of Mathematics and Computer Science, Saarland University,

Building 27.2 Room 24, Saarbr .ucken 66041, Germany
bComputer Architecture Group, Department of Mathematics and Computer Science, University of Mannheim, Mannheim 68131, Germany

cComputer Vision, Graphics and Pattern Recognition Group, Department of Mathematics and Computer Science,

University of Mannheim, Mannheim 68131, Germany
Abstract

This paper deals with parallelization and implementation aspects of partial differential equation (PDE)-based image processing

models for large cluster environments with distributed memory. As an example we focus on nonlinear diffusion filtering which we

discretize by means of an additive operator splitting (AOS). We start by decomposing the algorithm into small modules that shall be

parallelized separately. For this purpose image partitioning strategies are discussed and their impact on the communication pattern

and volume is analyzed. Based on the results we develop an algorithmic implementation with excellent scaling properties on

massively connected low-latency networks. Test runs on two different high-end Myrinet clusters yield almost linear speedup factors

up to 209 for 256 processors. This results in typical denoising times of 0:4 s for five iterations on a 256� 256� 128 data cube.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Partial differential equations (PDEs) form the basis of
a number of recent methods in the fields of image
processing and computer vision. In this paper we focus
on nonlinear diffusion techniques that allow to denoise
images while preserving edges. This property makes
them useful for various restoration and segmentation
purposes. Nonlinear diffusion models were first intro-
duced by a work of Perona and Malik [1]. After some
years their original model was improved by Catt!e et al.
[2] from both a theoretical and practical viewpoint, and
anisotropic extensions with a diffusion tensor [3]
followed.
Many nonlinear diffusion algorithms are based on the

simplest numerical scheme, an explicit finite difference
discretization. While such schemes are easy to imple-
ment, they require small time steps for stability reasons.
Hence, many iterations are needed to reach some
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interesting diffusion time, and the entire procedure is
relatively inefficient. This has triggered a number of
researchers to look for alternative algorithmic realiza-
tions of nonlinear diffusion filtering and related varia-
tional approaches.
These alternatives include three-level methods [4], semi-

implicit approaches [2,5] and their multiplicative [6] or
additive operator splitting variants [7], multigrid methods
[8], finite element techniques [9–11], finite and comple-
mentary volume methods [5], numerical schemes with
wavelets as trial functions [4,12], pseudo-spectral methods
[4], lattice Boltzmann techniques [13], and stochastic
simulations [14]. Approximations in graphics hardware
have been considered in [15], and realizations on analog
hardware are discussed in [16,17]. Related variational
approaches have been treated using linearizations by
means of auxiliary variables [18]. Also here it is possible
to use adaptive finite elements [19] and to consider analog
hardware realizations [20]. Parallel implementations on
shared memory systems are studied in [21,22].
In the present paper, we focus on additive operator

splitting (AOS) schemes for nonlinear diffusion filters.
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These specific semi-implicit schemes have been first
introduced to image analysis in [7]. Since then, they have
been used for medical imaging problems [23], for
regularization methods [24], image registration [25]
and for optic flow computation [26]. Recently, also a
number of active contour approaches [27–32] made use
of these splitting techniques. The basic idea behind AOS
schemes is to decompose a multi-dimensional problem
into one-dimensional (1-D) ones that can be solved very
efficiently. The final multi-dimensional solution is then
approximated by averaging the 1-D solutions. AOS
schemes inherit a number of favorable properties from
their original continuous diffusion process and reveal
linear complexity [7]. Their usefulness has also been
shown in a number of other applications ranging from
Navier–Stokes equations [33,34] to sandpile growth
simulations [35]. In fact, it seems that Navier–Stokes
equations have constituted one of their historically first
application domains.
The rising popularity of AOS schemes has soon

triggered first parallel implementations for diffusion
filtering [36]. At that time, however, the development of
network architectures did not allow the efficient use of
distributed memory systems for such communication-
intensive problems. For this reason these approaches
generally stayed confined to systems based on shared

memory. In recent years a rapid progress in this sector
changed the situation completely. High-performance
cluster systems with massively connected low-latency
networks were built throughout the world. There are
two reasons for this development: Firstly, cluster
systems are much more attractive to customers, since
they are less expensive than the shared memory systems.
This has increased their availability for research
purposes. Secondly, the number of processors is not
limited by such severe hardware restrictions than in the
case of shared memory systems, thus allowing larger
scaling possibilities. In order to exploit this potential,
parallelization approaches must fit the underlying net-
work topology.
The goal of the present paper is to show that a 3-D

nonlinear diffusion process can be parallelized in such
way, that it reveals excellent scaling properties regarding
both computation and communication on a distributed

memory system. To this end the use of a parallel
repartitioning strategy is proposed, that maintains the
computational efficiency from the sequential setting
while limiting the therefore required communication at
the same time.
The paper is organized as follows. In Section 2, a

review on diffusion filtering and the AOS scheme is
given. Furthermore, a modular decomposition before
parallelization is shown. In Section 3, partitioning and
communication models are discussed. Relevant paralle-
lization and implementation details of our approach are
explained in Section 4, while Section 5 deals with
communication costs. In Section 6, results obtained
from test runs on two high-performance cluster systems
are presented. The summary in Section 7 concludes our
paper. A preliminary shorter version of this paper has
been presented at a symposium [37]. In the current
version more algorithmic details are presented, theore-
tical bounds for the communication volume are given
and additional experiments are performed.
2. Nonlinear isotropic diffusion

2.1. Continuous model

In the following, we give a short review of the
nonlinear diffusion model of Catt!e et al. [2]. A gray
value image f is considered as a function from a given
domain OCRm into R: In our case we have mAf2; 3g;
which corresponds to 2-D and 3-D images. The basic
nonlinear diffusion problem then reads:
Find a function uðx; tÞ: O� Rþ

0-R that solves the
diffusion equation

@tu ¼ divðgðjrusj2ÞruÞ on O� Rþ
0 ð1Þ

with f as initial value.

uðx; 0Þ ¼ f ðxÞ on O ð2Þ

and reflecting boundary conditions

@nu ¼ 0 on @O� Rþ
0 ; ð3Þ

where us ¼ Ksu denotes the convolution of u with a
Gaussian of standard deviation s; n is a normal vector
perpendicular to @O; and the diffusivity g is a non-
negative decreasing function with gACN½0;NÞ: In this
paper, a diffusivity function originally proposed by
Perona and Malik [1] is used. It is given by

gðjrusj
2Þ :¼

1

1þ jrusj
2=l2

; ð4Þ

where l is a contrast parameter. The solution uðx; tÞ is a
family of images, where the diffusion time t acts as a
scale parameter. An example illustrating the perfor-
mance of this diffusion filter in 2-D is given in Fig. 1.
For a detailed description of nonlinear diffusion filter
design the interested reader may refer to [3].

2.2. Additive operator splitting

Since such nonlinear diffusion equations cannot be
solved analytically, numerical approximations are re-
quired. In [7] a finite difference scheme based on an AOS
technique is used for this purpose. This AOS technique
forms the basis of our parallelization efforts. It is an
extension of the semi-implicit scheme for nonlinear
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Fig. 1. (a) Test image with a gray scale range ½0; 255� degraded by
Gaussian noise with standard deviation sn ¼ 30: (b) Image denoised by
the nonlinear diffusion filter, 5 iterations with s ¼ 0:01; l ¼ 2:5 and
t ¼ 20:
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diffusion filtering and can be described as

ukþ1 ¼
1

m

Xm

l¼1

ðI � mtAlðuk
sÞÞ

�1uk; ð5Þ

where uk is a vector with the gray values at all pixels as
components. The iteration index k refers to the diffusion
time t ¼ kt where t is the time step size. The tridiagonal
matrix Al is a discretization of the divergence expression
along the lth coordinate axis. Let NlðiÞ denote the set of
neighbors of pixel i in direction of axis l; let hl be the
corresponding grid size and let gk

i stand for the
evaluated diffusivity at pixel i of the pre-smoothed
image uk

s; then the matrix Alðuk
sÞ is given by

ðAlðuk
sÞÞij :¼

�
P

nANl ðiÞ
gk

i þ gk
n

2hl

if j ¼ i;

gk
i þ gk

j

2hl

if jANlðiÞ;

0 else:

8>>>>><
>>>>>:

ð6Þ

In each iteration step, the AOS method requires the
solution of m tridiagonal linear systems of equations.
Each system describes diffusion along one coordinate
direction and may even be decomposed into smaller
tridiagonal systems. The final result at the next time
level is obtained by averaging these 1-D diffusion
results.
Such a splitting into 1-D diffusion processes offers

significant computational advantages: The correspond-
ing tridiagonal systems can be solved in linear complex-
ity by means of the so-called Thomas algorithm [38], a
specific variant of the Gaussian algorithm; see [7,39] for
further details.
Typical AOS schemes are one order of magnitude

more efficient than simple diffusion algorithms.
Although they are stable for all time step sizes t one
usually limits the step size for accuracy reasons. Hence,
the scheme is applied in an iterative way in order to
reach some interesting stopping time.
2.3. Algorithmic decomposition

The following algorithmic steps can easily be derived
from the iteration instruction for the AOS Scheme (5).
(1)
 Perform a Gaussian pre-smoothing of u using uk
s ¼

Ksuk:

(2)
 Compute derivatives jruk

sj
2 and diffusivity values

gðjruk
sj
2Þ:
(3)
 Set up and solve all m tridiagonal systems
ðI � mtAlðuk

sÞÞu
kþ1
l ¼ uk ðl ¼ 1;y;mÞ:

Average the computed results: ukþ1 ¼ ð1=mÞPm
l¼1 ukþ1

l :
3. Parallelization models

The following parallelization models are based on
image partitioning. This allows parallel execution of fast
sequential algorithms instead of applying slower parallel
variants to the complete image domain. Since the
unbalanced case shall not be discussed here, images
are assumed to be dividable in partitions of equal size.

3.1. Communication models

A large part of image processing algorithms consist of
neighborhood operations. This raises problems at
partition boundaries, since required information is
missing. Let us now discuss two communication models
to handle this problem: repartitioning and boundary
communication.

Repartitioning: The basic idea of the repartitioning
strategy is to find an appropriate partitioning for each
operation, such that the problem of missing neighbor-
hood information does not occur. Therefore, partitions
have to be relocated and reshaped by means of
communication. In many cases this communication
involves data exchanges between all processes, the so-
called all-to-all communication.
For large partition numbers such a connection–

intensive communication pattern makes high demands
on the network topology. Whether the network can
satisfy these demands or not is reflected in a scaling of
bandwidth or a rise of communication time. As long as
highly parallel pairwise disjoint communication is
possible and the network latency is small compared to
the time required for data transfer, the total bandwidth
increases almost linearly with the number of processors.
However, this effect is only present for massively
connected low-latency networks. The use of other
network types results in performance breakdowns,
either because of topological limitations (e.g. token
rings or computing grids) or relatively high latency times
(e.g. Gigabit Ethernet).
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Taking a closer look at the total communication
volume the importance of this bandwidth scaling
property becomes obvious. Since non–overlapping
partitions are used, each pixel is sent and received by
no more than one process. Thus, the communication
behavior imposes a limit to the total communication
volume that is given by the image size. The required
neighborhood and the number of processors can only
affect the total communication volume within this scope
as shown in Fig. 2. Hence, each scaling of bandwidth is
passed on to the communication time.

Boundary communication: Keeping existing partitions,
the second communication model simply exchanges the
missing neighborhood information. One should note
that this implies a dependency of the total communica-
tion volume on two unknowns: The number of
partitions as well as the boundary size.
For moderate values of both parameters, the com-

munication is limited to its adjacent segments. In this
case the total communication volume may drop
significantly beyond that of a repartitioning strategy
(cf. Fig. 2). Moreover such a simple communication
pattern has a second advantage. Since it makes less
demands on the network topology than the previously
discussed all–to–all communication, also weakly con-
nected cluster systems do benefit from a bandwidth
scaling effect. Even with respect to high-latency net-
works this strategy is favorable due to its rather large
message size that results from the limited communica-
tion pattern.
However, larger boundary sizes and partition num-

bers do change the situation completely. Then bound-
ary-volume ratios deteriorate, communication patterns
may require extensions to further partitions and finally
an inefficient parallelization remains. This is reflected in
the enormous communication volumes shown for larger
Fig. 2. Impact of boundary size and processor number on the

exchanged data volume for different communication models by the

example of a separable 3-D convolution. Data volumes refer to a 32-bit

data set of size 256� 256� 128:
boundary sizes in Fig. 2. In the worst case the
communication volume is only limited by ðn � 1Þ times
the image size, where n is the number of partitions.
Hence boundary exchange does only address operations
that require information from a small neighborhood.
In parallelized software for scientific simulations,

boundary exchange is a frequently used communication
model. Since the underlying theory allows a free scaling
of the problem size, the loss of efficiency can be
circumvented by a finer sampling of the continuous
model. Thus, along with an increased accuracy, larger
partition sizes and, therefore, better scaling properties
for larger cluster systems are obtained. In the area of
image processing such possibilities are not given. Since
the accuracy is determined at the moment of image
acquisition, a subsequent change of the problem size by
means of interpolation is only of limited use.

3.2. Partition models

In addition to the communication models appropriate
image partitioning strategies have to be chosen. In
general, cuboid partitions are preferred since they can be
realized with commonly used data structures and are
easier to handle. There are two partitioning models that
result in such cuboid partitions.

Slice partitioning: As the name anticipates the main
idea of this strategy is to partition an image along one
single direction. Thus no further boundaries arise.
Operations that are separable or do not require
neighborhood information from all directions can
exploit this property. An example is given in Fig. 3(a),
where a data cube divided in four slice partitions is
shown.
However, there are also two disadvantages of this

strategy. Firstly, the maximum number of partitions is
limited by the number of pixels in the direction of
partitioning. Secondly, slices have an evidently bad
boundary-volume ratio. While the first drawback is only
relevant for small image sizes, the second one has no
relevance if repartitioning is applied.

Mesh partitioning: This strategy focuses on partition-
ing an image along all directions. Thus the largest
Fig. 3. Partition models. (a) Slice partitioning; (b) mesh partitioning.
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theoretical scalability is achieved, since the maximum
number of partitions is only limited by the total number
of pixels. Its main disadvantage is the occurrence of
boundaries in all directions. In our case this drawback is
quite severe, since the performance of certain operations
lives on their separability property.
A special case of mesh partitioning is cube-like

partitioning. Thereby an image is partitioned in such a
way, that the sum of all partition boundaries is
minimized. Obviously, this partition strategy should be
used when it comes to the exchange of boundary
information. An example for mesh partitioning is shown
in Fig. 3(b).
4. Algorithmic details

The basic idea of our parallelization approach is the
use of two alternating slice partitions as shown in Fig. 4.
In order to obtain a balanced problem with equal

partition sizes and equal execution times, at least two
out of three data dimensions ðX ;Y Þ are required to be a
multiple of the processor number. However, there are no
restrictions regarding the size of the third dimension ðZÞ:
In the remainder of this section all parallelized

modules are discussed in detail. A global overview of
the computation and communication steps resulting
from this parallelization is given in Fig. 5. It illustrates
one iteration of the final algorithm.

Module 1: Gaussian convolution. For optimal perfor-
mance, the Gaussian convolution is implemented
exploiting separability and symmetry. The required 1-
D convolution masks are obtained by sampling the
continuous Gaussian

GðxÞ ¼
1

s
ffiffiffiffiffiffi
2p

p e�x2=2s2 ð7Þ

and truncating it at three times the standard deviation.
Each mask is then renormalized such that its weights
sum up to 1.
Moreover, data access patterns are optimized with

respect to an efficient use of the available cache
resources. This allows for an extensive use of precached
Fig. 4. Slice partitions. (a) YZ partitioning; (b) XZ partitioning.
data. As a consequence, significantly smaller runtimes
are already achieved in the sequential setting.
The parallelization is performed by combining the

alternating slice partitions with a repartitioning strategy.
Thus, Gaussian convolution in two out of three
directions can be performed without communication
effort (Fig. 6(a)). Only smoothing in the third direction
requires a previous repartitioning step (Fig. 6(b)). The
main advantage of this implementation is the indepen-
dence of its communication effort on the value for the
standard deviation s: Since no boundary exchange takes
place, the algorithm achieves equal performance for any
amount of pre-smoothing.

Module 2: Derivatives and diffusivity. Derivatives
within the diffusivity are computed using central
differences. Since this uses stencils of type
ð1=2hÞð�1; 0; 1Þ; where h denotes the grid size, the
boundary size is limited to 1. Besides, the com-
putation of the diffusivity values demands matching
partitions for all derivatives. Both aspects favor a
boundary exchange strategy. Although cube-like
partitioning would be desirable, a change of the
partition model at the cost of two repartitioning
steps is obviously not profitable. Hence, the alternating
slice partitions are combined with boundary commu-
nication.
Since parallelism is achieved via image partitioning,

derivatives are computed sequentially for all directions.
Again, the exchange of neighborhood information takes
place after the computation for two out of three
directions is completed (Fig. 7(a) and (b)). Finally,
the diffusivity values are computed in place based on the
diffusivity function given in Eq. (4).

Module 3: Diffusion and AOS. As discussed before,
AOS offers parallelism on two different levels. First, it
allows to decouple the diffusion processes for each
direction (coarse grain parallelism). For the same reason
as in the case of the derivative computation, this
property will not be exploited directly for parallelization
purposes. Of major importance is the fact, that the huge
linear tridiagonal equation systems for each diffusion
direction can be decomposed into many small indepen-
dent equation systems of same style (mid-grain paralle-
lism). Since each of these smaller systems corresponds to
the diffusion process along one complete image line, the
use of mesh partitions makes no sense. Instead, it seems
to be desirable to combine the alternating slice partitions
once more with a repartitioning strategy. This allows the
application of fast sequential solvers such as the Thomas
algorithm [7,38]. By performing an LR decomposition, a
forward substitution as well as a backward substitution
step, it solves tridiagonal systems very efficiently.
Because of the sequential nature of these substitution
steps, special variants for a boundary exchange strategy
could not have been developed without loss of
parallelism and performance.
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Fig. 5. Flow diagram illustrating one iteration step of the implemented algorithm. Column headings give information on the direction of data

partitioning and the cut direction of presented slices for intermediate results. Computation and communication steps are symbolized by arrows.
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However, even in the case of repartitioning the
parallelization effort is large: In order to set up and
solve the tridiagonal equation system for one direction,
matching slice partitions for the image uk and and the
diffusivity values gðjruk

sj
2Þ are required. Moreover, two

of this partition pairs (XZ and YZ) are needed to cover
all three diffusion directions. Therefore, not only
the image has to be repartitioned (Fig. 8(a)), but
also the diffusivity data (Fig. 8(b)). Finally, combining
the results of all three diffusion processes—the aver-
aging step in the AOS scheme—requires a third
repartitioning.
5. Communication costs

Let p be the number of processors and let nxXnyXnz

be the dimensions of the data set in direction x; y and z;
with nx and ny being a multiple of p: Then the
total number of pixels sent and received during one
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Fig. 8. Partitioning scheme for Module 3. (a) Pair YZ: repartitioned

image (repartitioning step 2) matching diffusivity from in Fig. 7(b).

(b) Pair XZ: repartitioned diffusivities (repartitioning step 3)

matching image from Fig. 6(a). Arrows show the directions in which

diffusion is computed. Solid lines are boundaries of current partitions

while dashed lines refer to boundaries of previously used

partitions.

Fig. 9. Communication pattern. (a) Repartitioning strategy. Entries

ðs; rÞ denote communication with sender s and receiver r: Blocks on the
main diagonal do not require communication. (b) Boundary commu-

nication.

Fig. 6. Partitioning scheme for Module 1. (a) Data cube before

repartitioning step 1. (b) Data cube after repartitioning step 1. Arrows

show the directions in which Gaussian convolutions are performed.

Solid lines are boundaries of current partitions while dashed lines refer

to boundaries of previously used partitions.

Fig. 7. Partitioning scheme for Module 2. (a) Data cube before

boundary exchange. (b) Data cube after boundary exchange. Arrows

show the directions in which derivatives are computed. Solid lines are

boundaries of current partitions while dashed lines refer to boundaries

that have been exchanged.
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repartitioning step is given by

vrepðpÞ ¼ ðp2 � pÞ
nx

p

ny

p
nz

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
messages�message size

¼ 1�
1

p

	 

nxnynzonxnynz: ð8Þ

Fig. 9(a) illustrates this equation by an example where
four processors have been used. While there are p2 ¼ 16
data packets of size 1

16
ðnxnynzÞ in total, only p2 � p ¼ 12

of them are exchanged between the processors.
For the boundary communication, the number of

exchanged pixels can be calculated in a straightforward
way:

vbcðpÞ ¼ ððp � 2Þ  2þ 2  1ÞðnxnzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
messages�message size

¼ 2nxðp � 1Þnzo2nxnynz: ð9Þ

Due to the fixed boundary size of one pixel, slices with a
volume of nxnz are sent to the left and right neighbor as
shown in Fig. 9(b). One should note that two
processors—the first and the last—have only one
neighbor and thus contribute only one slice to the
communication volume.
Since one iteration consists of four repartitioning

steps and one boundary communication step, the total
communication volume sums up to

vtotðpÞ ¼ 4 1�
1

p

	 

nxnynz þ 2nxðp � 1Þnzo6nxnynz ð10Þ

Thus, the total communication volume in each iteration
is limited by six times the image size.
6. Results

For performance evaluation a C=Cþþ implementa-
tion based on the platform independent inter-process
communication standard message passing interface
(MPI) was developed. Thereby the original MPI
routines for collective communication were replaced
with appropriate sequences of non-blocking send and
receive operations. Preliminary test runs showed that
this substitution leads to significantly shorter commu-
nication times and thus improves the overall scalability.
The presented results have been obtained by the

application of 10 AOS iterations to a 32-bit medical data
set of size 256� 256� 128: Required computation and
communication times were measured using the MPI
function MPI wtime. Basis for the determination of
speedup factors and the theoretical maximum is the
runtime of the optimized sequential code for the
iteration loop on a single CPU.
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Table 1

Runtimes on the Score IIIe cluster for 10 iterations divided in

computation and communication times

CPUs Runtime ðsÞ Comp. ðsÞ Comm. ðsÞ Comp. ð%Þ Comm. ð%)

1 212.741 212.741 0.000 100.000 0.000

2 114.625 106.205 8.420 92.654 7.346

4 57.534 52.221 5.513 90.766 9.234

8 29.401 26.123 3.278 88.851 11.149

16 15.065 13.471 1.594 89.420 10.580

32 7.731 6.753 0.978 87.350 12.650

64 4.029 3.333 0.696 82.725 17.275

128 1.894 1.550 0.344 81.837 18.163

256 1.017 0.745 0.272 73.255 26.745

A. Bruhn et al. / Real-Time Imaging 10 (2004) 41–5148
6.1. ScoreIIIe cluster (Tsukuba)

Our first test run has been performed on the Score IIIe
cluster of the real world computing partnership (RWCP)
at the Tsukuba Research Center in Japan. Running a
modified Linux 2.4 SMP Kernel it consists of 524 nodes
with two PIII 933 MHz processors each. Focusing on
distributed memory systems only one CPU per node has
been considered at a time. The cluster is fully connected
to a CLOS network and uses 64 Bit=66 MHz Myr-
inet2000 network interfaces in the slower 33 MHz mode.
Due to its performance it is ranked 131th in the June
2003 TOP 500 list of supercomputers.
As one can see from Fig. 10 considerations regarding

the parallelization for a specific network architecture do
pay off. The obtained results demonstrate an excellent,
almost linear scaling behavior up to 256 nodes with a
top speedup of 209. This equals 82% of the theoretical
maximum. The corresponding runtimes divided in
computation and communication effort can be found
in Table 1. Thereby up to 1.83-GB data are sent and
received in a single second. These numbers show the
importance of a sophisticated algorithm design that
allows bandwidth scaling up to a large number of
processors.
This scaling property is reflected in the percental

distribution, that shows only a moderate increase of the
communication part. In particular the bandwidth
doubling from 8 to 16 and from 64 to 128 processors
should be noted. This effect is directly connected to the
hierarchical structure of the underlying CLOS network.
Each time a doubling of the number of processors
Fig. 10. Speedup chart,
requires the extension of the actually used network to a
higher hierarchy level, the available bandwidth scales
perfectly. And even in the case of 256 processors the
communication ratio does hardly exceed one quarter of
the runtime.

6.2. HeLiCS cluster (Heidelberg)

The second test run took place on the HeLiCS cluster
of the Interdisciplinary Center for Scientific Computing
at University of Heidelberg in Germany. It consists of
256 nodes each running a Debian Woody Kernel 2.4.21
on two 1:4 GHz Athlon MP processors. Again, only one
processor per node has been used at a time. This cluster
is also connected via a CLOS network, but allows the
64 Bit=66 MHz Myrinet2000 interfaces to be run at the
ScoreIIIe cluster.
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Table 2

Runtimes on the HeLiCS cluster for 10 iterations divided in

computation and communication times

CPUs Runtime ðsÞ Comp. ðsÞ Comm. ðsÞ Comp. ð%Þ Comm. ð%Þ

1 57.991 57.911 0.000 100.000 0.000

2 32.985 28.288 4.697 85.760 14.240

4 17.348 13.645 3.703 78.645 21.355

8 8.476 6.855 1.621 80.876 19.124

16 4.426 3.420 1.006 77.275 22.725

32 2.360 1.708 0.652 72.376 27.624

64 1.362 0.857 0.505 62.912 37.088

128 0.831 0.470 0.361 56.524 43.477

Fig. 11. Speedup chart, HeLiCS cluster.
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full frequency of 66 MHz: In the June 2003 TOP 500 list
the HeLiCS cluster is ranked 80th.
Fig. 11 shows once more a very good scaling behavior

with speedup factors up to 70 for 128 processors. Since
network resources had to be shared with other parallel
programs during our test runs, this even constitutes a
lower limit for the actual scaling performance of the
algorithm on this cluster.
The corresponding runtimes divided in computation

and communication effort are presented in Table 2. As
one can see, already 128 nodes of the HeLiCS cluster are
sufficient to outperform the results obtained by 256
nodes of the ScoreIIIe cluster. With a runtime of 0:831 s
this equals an overall improvement of 18%. The
percental distribution shows that this gain is directly
connected to the scaling of the computation time.
However, the bandwidth scaling effect for an increasing
number of processors is less distinct due to the
competition for network resources. But even in this
case, the results were considerably well, as we have seen.
An example for the quality of the parallelized

nonlinear diffusion algorithm is given in Fig. 12.
Although the medical data set was severely degraded
by Gaussian noise of standard deviation sn ¼ 30; the
algorithm is still able to recover basic structures.
Performing just five iterations, runtimes of 0:4 s are
obtained on the HeLiCS cluster. This results in typical
processing rates of more than two data cubes per second.
7. Summary and conclusions

The goal of this paper was to show how to design
PDE-based image processing algorithms for high-
performance cluster systems. This was done by the
example of nonlinear diffusion. Based on an AOS
scheme, we first performed a decomposition into
modules. Then parallelization strategies suitable for a
high-performance low-latency network were discussed.
We saw that in this case a repartitioning approach is
favorable for the majority of operations. Moreover, we
noticed that this strategy should be combined with slice
partitioning for optimal performance. Test runs with
our implementation on two high-end cluster system
yielded speedup factors of up to 209 for 256 nodes,
proving its excellent scalability.
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Fig. 12. CT scan of a human foot area with gray scale range ½0; 255�:
The data size is 256� 256� 128: From top to bottom: Slices in

XY ; XZ and YZ direction. Left: Data set degraded by Gaussian noise

with standard deviation sn ¼ 30: Right: Data set denoised by the
implemented algorithm, 5 iterations with s ¼ 0:5; l ¼ 2:5 and t ¼ 20:
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