Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
research [2018/10/17 12:17]
ipa [Variational Image Analysis on Manifolds and Metric Measure Spaces]
research [2019/03/20 09:59] (current)
ipa [Variational Image Analysis on Manifolds and Metric Measure Spaces]
Line 7: Line 7:
 The current focus is on the **//​assignment manifold//​** and image labeling, and on learning from image assignments in large-scale unsupervised scenarios, within the mathematical frameworks of information geometry and regularised optimal transport. A novel smooth dynamical system evolving on a statistical manifold, called **//​assignment flow//**, forms the basis of our work. The current focus is on the **//​assignment manifold//​** and image labeling, and on learning from image assignments in large-scale unsupervised scenarios, within the mathematical frameworks of information geometry and regularised optimal transport. A novel smooth dynamical system evolving on a statistical manifold, called **//​assignment flow//**, forms the basis of our work.
  
-**Current work.** We conduct ​comprehensive study of //geometric integration// techniques, including automatic step size adaption, for numerically computing ​the assignment flow in a stable, efficient and parameter-free way.  +**Mathematical aspects.** The assignment flow evolves non-locally for any data given on graph. Variational aspects, extensions to continuous domains and scale separation are investigated. A preliminary step concerns a more classical ​//additive// variational formulation that provides a smooth geometric version of the continuous cut approach
-  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Zeilmann2018aa.pdf|Geometric Numerical Integration of the Assignment Flow, preprint: arXiv:​1810.06970]] +  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Savarino2019aa.pdf|A Variational Perspective on the Assignment Flow, SSVM 2019]].
-Based on this, we study how weights for geometric diffusion can be learned from data, by applying optimal control to the assignment flow. This enables to attach a semantic meaning to such weights, a property that is missing in current models of artificial neural networks.+
  
-**Recent work.** We extended the assignment flow to //​unsupervised//​ scenarios, where label evolution on a feature manifold is simultaneously performed together with label assignment to given data - see the  +**Parameter learning.** We study how weights for geometric diffusion that parametrize the adaptivity of the assignment flow can be learned from data. Symplectic integration ensures the commutativity of discretisation and optimisation operations. We currently investigate this approach in connection with more general objective functions. 
-  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​gcpr2018.pdf|Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, ​preliminary announcement: ​GCPR 2018]]. +  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Huhnerbein2019aa.pdf|Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, SSVM 2019]]. 
-This paper sketches ​special instance ​of a more general framework, the //unsupervised assignment flow//, to be introduced ​in a forthcoming report.+ 
 +**Unsupervised label learning.** Our recent work concerns the emergence of labels in a completely unsupervised way by data //​self//​-assignment. The resulting unsupervised assignment flow has connections to low-rank matrix factorisation and discrete optimal mass transport that are explored in our current work. 
 +  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Zisler2019aa.pdf|Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment,​ SSVM 2019]]. 
 + 
 +We extended the assignment flow to //​unsupervised//​ scenarios, where label evolution on a feature manifold is simultaneously performed together with label assignment to given data. This paper sketches a special instance of a more general framework, ​the //​unsupervised assignment flow//, to be introduced in a forthcoming report. 
 +  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​gcpr2018.pdf|Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, GCPR 2018]]. 
 + 
 +**Geometric numerical integration.** We conducted ​comprehensive study of //geometric integration// techniquesincluding automatic step size adaption, for numerically computing the assignment flow in a stable, efficient and parameter-free way 
 +  * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Zeilmann2018aa.pdf|Geometric Numerical Integration of the Assignment Flow, preprint: arXiv:​1810.06970]]
  
-We applied our approach to solve in a novel way the //MAP labeling problem// based on a given graphical model by smoothly combining a geometric reformulation of the local polytope relaxation with rounding to an integral solution. A key ingredient are local `//​Wasserstein messages//'​ that couple local assignment measures along edges.+**Evaluation of discrete graphical models.** ​We applied our approach to solve in a novel way the //MAP labeling problem// based on a given graphical model by smoothly combining a geometric reformulation of the local polytope relaxation with rounding to an integral solution. A key ingredient are local `//​Wasserstein messages//'​ that couple local assignment measures along edges.
  
   * [[https://​epubs.siam.org/​doi/​abs/​10.1137/​17M1150669|Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment, SIAM J. on Imaging Science, 11/2 (2018) 1317--1362]]   * [[https://​epubs.siam.org/​doi/​abs/​10.1137/​17M1150669|Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment, SIAM J. on Imaging Science, 11/2 (2018) 1317--1362]]
  
-Kick-off paper that introduces the basic approach:+**Kick-off paper** that introduces the basic approach:
  
   * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Astroem2017.pdf|Image Labeling by Assignment.,​ J. Math. Imag. Vision 58/2 (2017) 211--238]]   * [[https://​ipa.math.uni-heidelberg.de/​dokuwiki/​Papers/​Astroem2017.pdf|Image Labeling by Assignment.,​ J. Math. Imag. Vision 58/2 (2017) 211--238]]